
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA SL Content Language Specification 5

 6

Document title FIPA SL Content Language Specification
Document number XC00008H Document source FIPA TC C
Document status Experimental Date of this status 2002/10/1805/10
Supersedes FIPA00003
Contact fab@fipa.org
Change history See Informative Annex B — ChangeLog

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

© 1996-20020 Foundation for Intelligent Physical Agents 18
- http://www.fipa.org/ 19

 20
Geneva, Switzerland 21

Notice

 ii

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual
property rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages
anyone implementing any part of this specification to determine first whether part(s) sought to be implemented are
covered by the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the
holder(s) of such intellectual property prior to implementation. This specification is subject to change without notice.
Neither FIPA nor any of its Members accept any responsibility whatsoever for damages or liability, direct or
consequential, which may result from the use of this specification.

 iii

Foreword 22

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 23
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-24
based applications. This occurs through open collaboration among its member organizations, which are companies 25
and universities that are active in the field of agents. FIPA makes the results of its activities available to all interested 26
parties and intends to contribute its results to the appropriate formal standards bodies where appropriate. 27

The members of FIPA are individually and collectively committed to open competition in the development of agent-28
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 29
partnership, governmental body or international organization without restriction. In particular, members are not bound 30
to implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 31
participation in FIPA. 32

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 33
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the 34
process of specification may be found in the FIPA Document Policy [f-out-00000] and the FIPA Specifications Policy [f-35
out-00003]Procedures for Technical Work. A complete overview of the FIPA specifications and their current status may 36
be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA specifications may be 37
found in the FIPA Glossaryon the FIPA Web site. 38

FIPA is a non-profit association registered in Geneva, Switzerland. As of Juneanuary 20020, the 56 members of FIPA 39
represented many17 countries worldwide. Further information about FIPA as an organization, membership information, 40
FIPA specifications and upcoming meetings may be found on the FIPA Web site at http://www.fipa.org/. 41

 iv

Contents 42

1 Scope ..1 43
2 Grammar FIPA SL Concrete Syntax ...2 44

2.1 Lexical Definitions ..3 45
3 Notes on FIPA SL Semantics..5 46

3.1 Grammar Entry Point: FIPA SL Content Expression ...5 47
3.2 Well-Formed Formulas...5 48
3.3 Atomic Formula ..6 49
3.4 Terms ...7 50
3.5 Referential Operators...7 51

3.5.1 Iota ..7 52
3.5.2 Any ..98 53
3.5.3 All ..1110 54

3.6 Functional Terms ...1211 55
3.7 Result Predicate...1311 56
3.8 Actions and Action Expressions...1312 57
3.9 Notes on the Grammar Rules ..1412 58
Representation of Time...1413 59

4 Reduced Expressivity Subsets of FIPA SL ...1614 60
4.1 FIPA SL0: Minimal Subset ...1614 61
4.2 FIPA SL1: Propositional Form..1715 62
4.3 FIPA SL2: Decidability Restrictions ...1816 63

5 References ..2119 64
6 Informative Annex A — Syntax and Lexical Notation ...2220 65
7 Informative Annex B — ChangeLog..2321 66

7.1 2002/05/10 - version H by FIPA Architecture Board..2321 67
1 Scope ..1 68
2 Grammar FIPA SL Concrete Syntax ...2 69

2.1 Lexical Definitions ..3 70
3 Notes on FIPA SL Semantics..5 71

3.1 Grammar Entry Point: FIPA SL Content Expression ...5 72
3.2 Well-Formed Formulas ..5 73
3.3 Atomic Formula ..6 74
3.4 Terms ...7 75
3.5 Referential Operators...7 76

3.5.1 Iota ..7 77
3.5.2 Any ..9 78
3.5.3 All ..10 79

3.6 Functional Terms ...11 80
3.7 Result Predicate...12 81
3.8 Actions and Action Expressions ..12 82
3.9 Agent Identifiers ...13 83
3.10 Numerical Constants..13 84
3.11 Date and Time Constants ..13 85

4 Reduced Expressivity Subsets of FIPA SL ...14 86
4.1 FIPA SL0: Minimal Subset ...14 87
4.2 FIPA SL1: Propositional Form ...15 88
4.3 FIPA SL2: Decidability Restrictions ...16 89

5 References ..19 90
6 Informative Annex A — Syntax and Lexical Notation ...20 91
7 Informative Annex B — ChangeLog..21 92

7.1 2001/10/03 - version H by FIPA Architecture Board..21 93
94

1 Scope 94

This specification defines a concrete syntax for the FIPA Semantic Language (SL) content language. This syntax and 95
its associated semantics are suggested as a candidate content language for use in conjunction with the FIPA Agent 96
Communication Language (see [FIPA00037]). In particular, the syntax is defined to be a sub-grammar of the very 97
general s-expression syntax specified for message content given in [FIPA00037]. 98
 99
This content language is included in the specification on an informative basis. It is not mandatory for any FIPA 100
implementation to implement the computational mechanisms necessary to process all of the constructs in this 101
language. However, FIPA SL is a general purpose representation formalism that may be suitable for use in a number 102
of different agent domains. 103
 104

105

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 2

2 Grammar FIPA SL Concrete Syntax 105

This content language is denoted by the normative constant fipa-sl in the :language parameter of an ACL 106
message. 107
See section 6, Informative Annex A — Syntax and Lexical NotationInformative Annex A — Syntax and Lexical 108
NotationInformative Annex A — Syntax and Lexical Notation for an explanation of the used syntactic notation. 109
 110
Content = "(" ContentExpression+ ")". 111
 112
ContentExpression = IdentifyingExpression 113
 | ActionExpression 114
 | Proposition. 115
 116
Proposition = Wff. 117
 118
Wff = AtomicFormula 119
 | "(" UnaryLogicalOp Wff ")" 120
 | "(" BinaryLogicalOp Wff Wff ")" 121
 | "(" Quantifier Variable Wff ")" 122
 | "(" ModalOp Agent Wff ")" 123
 | "(" ActionOp ActionExpression ")" 124
 | "(" ActionOp ActionExpression Wff ")". 125
 126
UnaryLogicalOp = "not". 127
 128
BinaryLogicalOp = "and" 129
 | "or" 130
 | "implies" 131
 | "equiv". 132
 133
AtomicFormula = PropositionSymbol 134
 | "(" BinaryTermOp TermOrIE TermOrIE ")" 135
 | "(" PredicateSymbol TermOrIE+ ")" 136
 | "true" 137
 | "false". 138
 139
BinaryTermOp = "=" 140
 | "\=" 141
 | ">" 142
 | ">=" 143
 | "<" 144
 | "=<" 145
 | "member" 146
 | "contains" 147
 | "result". 148
 149
Quantifier = "forall" 150
 | "exists". 151
 152
ModalOp = "B" 153
 | "U" 154
 | "PG" 155
 | "I". 156
 157
ActionOp = "feasible" 158
 | "done". 159
 160
TermOrIE1 = Term 161
 | IdentifyingExpression. 162
 163
Term = Variable 164
 | FunctionalTerm 165
 | ActionExpression 166

1 Note that this grammar rule is used to group and represent both Terms and Identifying Expressions.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 3

 | IdentifyingExpression 167
 | Constant 168
 | Sequence 169
 | Set. 170
 171
IdentifyingExpression = "(" ReferentialOperator TermOrIE Wff ")". 172
 173
ReferentialOperator = "iota" 174
 | "any" 175
 | "all". 176
 177
FunctionalTerm = "(" "cons" Term Term ")" 178
 | "(" "first" Term ")" 179
 | "(" "rest" Term ")" 180
 | "(" "nth" Term Term ")" 181
 | "(" "append" Term Term ")" 182
 | "(" "union" Term Term ")" 183
 | "(" "intersection" Term Term ")" 184
 | "(" "difference" Term Term ")" 185
 | "(" ArithmeticOp Term Term ")" 186
 | "(" FunctionSymbol TermOrIE* ")" 187
 | "(" FunctionSymbol Parameter* ")". 188
 189
Constant = NumericalConstant 190
 | String 191
 | DateTime. 192
 193
NumericalConstant = Integer 194
 | Float. 195
 196
Variable = VariableIdentifier. 197
 198
ActionExpression = "(" "action" Agent TermOrIE ")" 199
 | "(" "|" ActionExpression ActionExpression ")" 200
 | "(" ";" ActionExpression ActionExpression ")". 201
 202
PropositionSymbol = String. 203
 204
PredicateSymbol = String. 205
 206
FunctionSymbol = String. 207
 208
Agent = TermOrIE. 209
 210
Sequence = "(" "sequence" TermOrIE* ")". 211
 212
Set = "(" "set" TermOrIE* ")". 213
 214
Parameter = ParameterName ParameterValue. 215
 216
ParameterValue = TermOrIE. 217
 218
ArithmeticOp = "+" 219
 | "-" 220
 | "*" 221
 | "/" 222
 | "%". 223
 224

2.1 Lexical Definitions 225

All white space, tabs, carriage returns and line feeds between tokens should be skipped by the lexical analyser. 226
An escaping mechanism has been defined for 227
See section 6, Informative Annex A — Syntax and Lexical NotationInformative Annex A — Syntax and Lexical 228
NotationInformative Annex A — Syntax and Lexical Notation for an explanation of the used notation. 229
 230
String = Word 231

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 4

 | ByteLengthEncodedString 232
 | StringLiteral. 233
 234
ByteLengthEncodedString = "#" DecimalLiteral+ "\"" <byte sequence>. 235
 236
Word = [~ "\0x00" - "\0x20", "(", ")", "#", "0" - "9", ":", "-", "?"] 237
 [~ "\0x00" - "\0x20", "(", ")"]*. 238
 239
ParameterName = ":" String. 240
 241
VariableIdentifier = "?" String. 242
 243
Sign = ["+" , "-"]. 244
 245
Integer = Sign? DecimalLiteral+ 246
 | Sign? "0" ["x", "X"] HexLiteral+. 247
 248
Dot = "." 249
 250
Float = Sign? FloatMantissa FloatExponent? 251
 | Sign? DecimalLiteral+ FloatExponent. 252
 253
FloatMantissa = DecimalLiteral+ Dot DecimalLiteral* 254
 | DecimalLiteral* Dot DecimalLiteral+. 255
 256
FloatExponent = Exponent Sign? DecimalLiteral+. 257
 258
Exponent = ["e","E"]. 259
 260
DecimalLiteral = ["0" - "9"]. 261
 262
HexLiteral = ["0" - "9", "A" - "F", "a" - "f"]. 263
 264
StringLiteral = "\""([~ "\""] 265
 | "\\\"")*"\"". 266
 267
DateTime = Sign? Year Month Day "T" Hour Minute 268
 Second MilliSecond TypeDesignator?. 269
 270
Year = DecimalLiteral DecimalLiteral DecimalLiteral DecimalLiteral. 271
 272
Month = DecimalLiteral DecimalLiteral. 273
 274
Day = DecimalLiteral DecimalLiteral. 275
 276
Hour = DecimalLiteral DecimalLiteral. 277
 278
Minute = DecimalLiteral DecimalLiteral. 279
 280
Second = DecimalLiteral DecimalLiteral. 281
 282
MilliSecond = DecimalLiteral DecimalLiteral DecimalLiteral. 283
 284
TypeDesignator = ["a" - "z" , "A" – "Z"]. 285
 286

287

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 5

3 Notes on FIPA SL Semantics 287

This section contains explanatory notes on the intended semantics of the constructs introduced in above. 288
 289

3.1 Grammar Entry Point: FIPA SL Content Expression 290

An FIPA SL content expression may be used as the content of an ACL message. There are three cases: 291
 292
• A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed formula (Wff) 293

using the rules described in the Wff production. A proposition is used in the inform communicative act (CA) and 294
other CAs derived from it. 295

 296
• An action, which can be performed. An action may be a single action or a composite action built using the 297

sequencing and alternative operators. An action is used as a content expression when the act is request and 298
other CAs derived from it. 299

 300
• An identifying reference expression (IRE), which identifies an object in the domain. This is the Referential operator 301

and is used in the inform-ref macro act and other CAs derived from it. 302
 303
Other valid content expressions may result from the composition of the above basic cases. For instance, an action-304
condition pair (represented by an ActionExpression followed by a Wff) is used in the propose act; an action-305
condition-reason triplet (represented by an ActionExpression followed by two Wffs) is used in the reject-306
proposal act. These are used as arguments to some ACL CAs in [FIPA00037]. 307
 308

3.2 Well-Formed Formulas 309

A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the semantics of 310
the underlying domain representation or recursively by applying one of the construction operators or logical 311
connectives described in the Wff grammar rule. These are: 312
 313
• (not <Wff>) 314

Negation. The truth value of this expression is false if Wff is true. Otherwise it is true. 315
 316
• (and <Wff0> <Wff1>) 317

Conjunction. This expression is true iff2 well-formed formulae Wff0 and Wff1 are both true, otherwise it is false. 318
 319

• (or <Wff0> <Wff1>) 320
Disjunction. This expression is false iff well-formed formulae Wff0 and Wff1 are both false, otherwise it is true. 321
 322

• (implies <Wff0> <Wff1>) 323
Implication. This expression is true if either Wff0 is false or alternatively if Wff0 is true and Wff1 is true. 324
Otherwise it is false. The expression corresponds to the standard material implication connective Wff0 ⇒ Wff1. 325

 326
• (equiv <Wff0> <Wff1>) 327

Equivalence. This expression is true if either Wff0 is true and Wff1 is true, or alternatively if Wff0 is false and 328
Wff1 is false. Otherwise it is false. 329

 330
• (forall <variable> <Wff>) 331

Universal quantification. The quantified expression is true if Wff is true for every value of value of the quantified 332
variable. 333
 334

• (exists <variable> <Wff>) 335

2 If and only if.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 6

Existential quantification. The quantified expression is true if there is at least one value for the variable for which 336
Wff is true. 337
 338

• (B <agent> <expression>) 339
Belief. It is true that agent believes that expression is true. 340
 341

• (U <agent> <expression>) 342
Uncertainty. It is true that agent is uncertain of the truth of expression. Agent neither believes expression 343
nor its negation, but believes that expression is more likely to be true than its negation. 344

 345
• (I <agent> <expression>) 346

Intention. It is true that agent intends that expression becomes true and will plan to bring it about. 347
 348

• (PG <agent> <expression>) 349
Persistent goal. It is true that agent holds a persistent goal that expression becomes true, but will not 350
necessarily plan to bring it about. 351
 352

• (feasible <ActionExpression> <Wff>) 353
It is true that ActionExpression (or, equivalently, some event) can take place and just afterwards Wff will be 354
true. 355
 356

• (feasible <ActionExpression>) 357
Same as (feasible <ActionExpression> true). 358
 359

• (done <ActionExpression> <Wff>) 360
It is true that ActionExpression (or, equivalently, some event) has just taken place and just before that Wff 361
was true. 362
 363

• (done <ActionExpression>) 364
Same as (done <ActionExpression> true). 365

 366

3.3 Atomic Formula 367

The atomic formula represents an expression which has a truth value in the language of the domain of discourse. 368
Three forms are defined: 369
 370
• a given propositional symbol may be defined in the domain language, which is either true or false, 371
 372
• two terms may or may not be equal under the semantics of the domain language, or, 373
 374
• some predicate is defined over a set of zero or more arguments, each of which is a term. 375
 376
The FIPA SL representation does not define a meaning for the symbols in atomic formulae: this is the responsibility of 377
the domain language representation and ontology. Several forms are defined: 378
 379
• true false 380

These symbols represent the true proposition and the false proposition. 381
 382
• (= Term1 Term2) 383

Term1 and Term2 denote the same object under the semantics of the domain. 384
 385
•(\= Term1 Term2) 386

Term1 and Term2 do not denote the same object under the semantics of the domain. 387
 388
•(> Constant1 Constant2) 389

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 7

The > operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the 390
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 391
comes after the object denoted by Constant2, under the semantics of the domain. 392

 393
•(>= Constant1 Constant2) 394

The >= operator relies on an order relation defined to be the usual numeric ordering for numerical constants and 395
the usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 396
comes after or is the same object as the object denoted by Constant2, under the semantics of the domain. 397

 398
•(< Constant1 Constant2) 399

The < operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the 400
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 401
comes before the object denoted by Constant2, under the semantics of the domain. 402

 403
•(=< Constant1 Constant2) 404

The =< operator relies on an order relation defined to be the usual numeric ordering for numerical constants and 405
the usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 406
comes before or is the same object as the object denoted by Constant2, under the semantics of the domain. 407

 408
•(member Term Collection) 409

The object denoted by Term, under the semantics of the domain, is a member of the collection (either a set or a 410
sequence) denoted by Collection under the semantics of the domain. 411

 412
•(contains Collection1 Collection2) 413

If Collection1 and Collection2 denote sets, this proposition means the set denoted by Collection1 414
contains the set denoted by Collection2. If the arguments are sequences, then the proposition means that all of 415
the elements of the sequence denoted by Collection2 appear in the same order in the sequence denoted by 416
Collection1. 417

 418
Other predicates may be defined over a set of arguments, each of which is a term, by using the (PredicateSymbol 419
Term+) production. 420
 421
The FIPA SL representation does not define a meaning for other symbols in atomic formulae: this is the responsibility 422
of the domain language representation and the relative ontology. 423
 424

3.4 Terms 425

Terms are either themselves atomic (constants and variables) or recursively constructed as a functional term in which 426
a functor is applied to zero or more arguments. Again, FIPA SL only mandates a syntactic form for these terms. With 427
small number of exceptions (see below), the meanings of the symbols used to define the terms are determined by the 428
underlying domain representation. 429
 430
Note that, as mentioned above, no legal well-formed expression contains a free variable, that is, a variable not 431
declared in any scope within the expression. Scope introducing formulae are the quantifiers (forall, exists) and 432
the reference operators iota, any and all. Variables may only denote terms, not well-formed formulae. 433
 434

3.5 Referential Operators 435

3.5.1 Iota 436

• (iota <term> <formula>) 437
The iota operator introduces a scope for the given expression (which denotes a term), in which the given 438
identifier, which would otherwise be free, is defined. An expression containing a free variable is not a well-formed 439
FIPA SL expression. The expression (iota x (P x)) may be read as "the x such that P [is true] of x". The iota 440
operator is a constructor for terms which denote objects in the domain of discourse. 441

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 8

Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 442
its formal definition depends on the KB. 443

 444
• Formal Definition 445

A iota expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 446
that T (KB) is the theory generated from KB by a given reasoning mechanism. Formally, ι(τ, φ)=θτ iff θτ is a term 447
that belongs to the set Σ={θτ: θφ∈T (KB)} and Σ is a singleton; or ι(τ, φ) is undefined if Σ is not a singleton. In this 448
definition θ is a most general variable substitution, θτ is the result of applying θ to τ, and θφ is the result of applying 449
θ to φ. This implies that a failure occurs if no object or more than one object satisfies the condition specified in the 450
iota operator. 451
If ι(τ, φ) is undefined then any term, identifying expression or well-formed formula containing ι(τ, φ) is also 452
undefined. 453

 454
• Example 1 455

This example depicts an interaction between agent A and B that makes use of the iota operator, where agent A 456
is supposed to have the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. 457

 458
(query-ref 459
 :sender (agent-identifier :name B) 460

 :receiver (set (agent-identifier :name A)) 461
 :content 462
 "((iota ?x (p ?x)))" 463
 :language fipa-sl 464
 :reply-with query1) 465
 466
(inform 467
 :sender (agent-identifier :name A) 468
 :receiver (set (agent-identifier :name B) 469
 :content “ 470
 " ((= (iota ?x (p ?x)) a)) "” 471
 :language fipa-sl 472
 :in-reply-to query1) 473
 474
The only object that satisfies proposition P(x) is a, therefore, the query-ref message is replied by the inform 475
message as shown. 476
 477

• Example 2 478
This example shows another successful interaction but more complex than the previous one. 479
 480
(query-ref 481
 :sender (agent-identifier :name B) 482
 :receiver (set (agent-identifier :name A)) 483
 :content 484
 "((iota ?x (q ?x ?y)))" 485
 :language fipa-sl 486
 :reply-with query2) 487
 488
(inform 489
 :sender (agent-identifier :name A) 490
 :receiver (set (agent-identifier :name B)) 491
 :content 492
 "((= (iota ?x (q ?x ?y)) 1))" 493
 :language fipa-sl 494
 :in-reply-to query2) 495
 496
The most general substitutions θ such that θQ(x, y) can be derived from KB are θ1={x/1, y/A} and θ2={x/1, y/B}. 497
Therefore, the set Σ={θτ: θφ∈T(KB)}={{x/1, y/A}x, {x/1, y/B}x }={1} is a singleton and hence (iota ?x (q ?x ?y)) 498
represents the object 1. 499
 500

• Example 3 501

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 9

Finally, this example shows an unsuccessful interaction using the iota operator. In this case, agent A cannot 502
evaluate the iota expression and therefore a failure message is returned to agent B 503
 504
(query-ref 505
 :sender (agent-identifier :name B) 506
 :receiver (set (agent-identifier :name A)) 507
 :content 508
 "((iota ?y (q ?x ?y)))" 509
 :language fipa-sl 510
 :reply-with query3) 511
 512
(failure 513

 :sender (agent-identifier :name A) 514
 :receiver (set (agent-identifier :name B)) 515
 :content 516
 "((action (agent-identifier :name A) 517
 (inform-ref 518
 :sender (agent-identifier :name A) 519
 :receiver (set (agent-identifier :name B)) 520
 :content 521
 \"((iota ?y (q ?x ?y)))\" 522
 :language fipa-sl 523
 :in-reply-to query3))" 524
 more-than-one-answer) 525
 :language fipa-sl 526
 :in-reply-to query3) 527

 528
The most general substitutions that satisfy Q(x, y) are θ1={x/1, y/a} and θ2={x/1, y/b}, therefore, the set Σ={θτ: 529
θφ∈T(KB)}={{x/1, y/A}y, {x/1, y/B}y}={A, B}, which is not a singleton. This means that the iota expression used in 530
this interaction is not defined. 531

 532

3.5.2 Any 533

• (any <term> <formula>) 534
The any operator is used to denote any object that satisfies the proposition represented by formula. 535
Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 536
its formal definition depends on the KB. 537

 538
• Formal Definition 539

An any expression can only be evaluated with respect to a given theory. 540
Suppose KB is a knowledge base such that T(KB) is the theory generated from KB by a given reasoning 541
mechanism. 542
Formally, any(τ, φ)=θτ iff θτ is a term that belongs to the set Σ={θτ: θφ∈T(KB)}; or any(τ, φ) is undefined if Σ is the 543
empty set. In this definition θ is a most general variable substitution, θτ is the result of applying θ to τ, and θφ is the 544
result of applying θ to φ. 545
If the set Σ is empty then any term, identifying expression or well-formed formula containing any(τ, φ) is undefined. 546
If the set Σ is not empty, then for any formula ψ containing any(τ, φ) let ψ' be the formula obtained from ψ by 547
replacing any(τ, φ) with a variable x (not occurring in ψ) and let s_k be a new Skolem constant. Then ψ is true 548
when {x/s_k}ψ' element_of T(KB union {τ/s_k}φ), ψ is false when {x/s_k}not(ψ’) element_of T(KB union {τ/s_k}φ), 549
and otherwise ψ is undefined. 550
In other words if ψ contains any(τ, φ), ψ is true if a modified form of ψ obtained by replacing the any expression in it 551
with a new constant s_k can be inferred based on the assumption that phi holds of s_k. ψ is false if not(ψ) inferred 552
in a similar way. 553
This definition is needed to avoid the following contraddition: 554
(implies 555
 (and (= Stephen (any ?x (fipa-member ?x))) 556
 (= Farooq (any ?x (fipa-member ?x)))) 557
 (= Stephen Farooq)) 558

 559

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 10

This definition implies that failures only occur if there are no objects satisfying the condition specified as the 560
second argument of the any operator. 561
If any(τ, φ) is undefined then any term, identifying expression or well-formed formula containing any(τ, φ) is also 562
undefined. 563
 564

 565
• Example 4 566

Assuming that agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}, this example shows a 567
successful interaction with agent A using the any operator. 568

 569
(query-ref 570
 :sender (agent-identifier :name B) 571
 :receiver (set (agent-identifier :name A)) 572
 :content 573
 "((any (sequence ?x ?y) (q ?x ?y)))" 574
 :language fipa-sl 575
 :reply-with query1) 576
 577
(inform 578
 :sender (agent-identifier :name A) 579
 :receiver (set (agent-identifier :name B)) 580
 :content 581
 "((= (any (sequence ?x ?y) (q ?x ?y)) (sequence 1 a)))" 582
 :language fipa-sl 583
 :in-reply-to query1) 584
 585
The most general substitutions θ such that θQ(x, y) can be derived from KB are {x/1, y/A} and {x/1, y/B}, therefore 586
Σ={θSequence(x, y): θQ(x, y)∈T(KB)}={Sequence(1, A), Sequence(1, B)}. Using this set, agent A chooses the first 587
element of Σ as the appropriate answer to agent B. 588

 589
• Example 5 590

This example shows an unsuccessful interaction with agent A, using the any operator. 591
 592
(query-ref 593
 :sender (agent-identifier :name B) 594
 :receiver (set (agent-identifier :name A)) 595
 :content 596
 "((any ?x (r ?x)))" 597
 :language fipa-sl 598
 :reply-with query2) 599
 600
(failure 601
 :sender (agent-identifier :name A) 602
 :receiver (set (agent-identifier :name B)) 603
 :content 604
 "((action (agent-identifier :name A) 605
 (inform-ref 606
 :sender (agent-identifier :name A) 607
 :receiver (set (agent-identifier :name B)) 608
 :content 609
 \"((any ?x (r ?x)))\" 610
 :language FIPA-SLfipa-sl 611
 :in-reply-to query2)) 612
 (unknown-predicate r))" 613
 :language fipa-slFIPA-SL 614
 :in-reply-to query2) 615
 616
Since agent A does not know the r predicate, the answer to the query that had been sent by agent B cannot be 617
determined, therefore a failure message is sent to agent B from agent A. The failure message specifies the 618
failure’s reason (i.e., unknown-predicate r) 619

 620

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 11

3.5.3 All 621

• (all <term> <formula>) 622
The all operator is used to denote the set of all objects that satisfy the proposition represented by formula. 623
Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 624
its formal definition depends on the KB. 625
 626

 627
• Formal Definition 628

An all expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 629
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, all(τ, φ)={θτ: θφ∈T(KB)}. 630
Notice that all(τ, φ) may be a singleton or even an empty set. In this definition θ is a most general variable 631
substitution, θτ is the result of applying θ to τ, and θφ is the result of applying θ to φ. 632
 633
If no objects satisfy the condition specified as the second argument of the all operator, then the identifying 634
expression denotes an empty set. 635
 636

 637
• Example 6 638

Suppose agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. This example shows a successful 639
interaction between agent A and B that make use of the all operator. 640
 641
(query-ref 642
 :sender (agent-identifier :name B) 643
 :receiver (set (agent-identifier :name A)) 644
 :content 645
 "((all (sequence ?x ?y) (q ?x ?y)))" 646
 :language fipa-slFIPA-SL 647
 :reply-with query1) 648
 649
(inform 650
 :sender (agent-identifier :name A) 651
 :receiver (set (agent-identifier :name B)) 652
 :content 653
 "((= (all (sequence ?x ?y) (q ?x ?y)) (set(sequence 1 a)(sequence 1 b))))" 654
 :language fipa-slFIPA-SL 655
 :in-reply-to query1) 656
 657
The set of the most general substitutions θ such that θQ(x, y) can be derived from KB is {{x/1, y/A}, {x/1, y/B}}, 658
therefore all(Sequence(x, y), Q(x, y))={Sequence(1, A), Sequence(1, B)}. 659
 660

• Example 7 661
Following Example 6, if there is no possible answer to a query making use of the all operator, then the agent 662
should return the empty set. 663
 664
(query-ref 665
 :sender (agent-identifier :name B) 666
 :receiver (set (agent-identifier :name A)) 667
 :content 668
 "((all ?x (q ?x c)))" 669
 :language fipa-slFIPA-SL 670
 :reply-with query2) 671
 672
(inform 673
 :sender (agent-identifier :name A) 674
 :receiver (set (agent-identifier :name B)) 675
 :content 676
 "((= (all ?x (q ?x c))(set)))" 677
 :language fipa-slFIPA-SL 678
 :in-reply-to query2) 679
 680

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 12

Since there is no possible substitution for x such that Q(x, C) can be derived from KB, then all(x, Q(x, c))={}. In this 681
interaction the term (set) represents the empty set. 682

 683

3.6 Functional Terms 684

A functional term refers to an object via a functional relation (referred by the FunctionSymbol) with other objects 685
(that is, the terms or parameters), rather than using the direct name of that object, for example, (fatherOf Jesus) 686
rather than God. 687
 688
Two syntactical forms can be used to express a functional term. 689
In the first form the functional symbol is followed by a list of terms that are the arguments of the function symbol. The 690
semantics of the arguments is position-dependent, for example, (divide 10 2) where 10 is the dividend and 2 is the 691
divisor. 692
In the second form each argument is preceded by its name, for example, (divide :dividend 10 :divisor 2). 693
This second form is particularly appropriate to represent descriptions where the function symbol should be interpreted 694
as the constructor of an object, while the parameters represent the attributes of the object. 695
The encoder is required to adopt the following criteria to select which form to use in order to represent a functional 696
term. 697
The first form, i.e. the position-dependent form, should be used to encode all those functional terms for which the 698
ontology does not specify the names of the parameters (e.g. all the functions of the Fipa-Agent-Management 699
ontology). 700
The second form, i.e. the parameter-name dependent form, must be used to encode all those functional terms for 701
which the ontology does specify the names of the parameters but not their position (e.g. all the object descriptions of 702
the Fipa-Agent-Management ontology). This second form is particularly appropriate to represent descriptions where 703
the function symbol should be interpreted as the constructor of an object, while the parameters represent the attributes 704
of the object. 705
 706
The following is an example of an object, instance of a vehicle class: 707
 708
(vehicle 709
 :colour red 710
 :max-speed 100 711
 :owner (Person 712
 :name Luis 713
 :nationality Portuguese)) 714
 715
Some ontologies may decide to give a description of some concepts only in one or both of these two forms, that is by 716
specifying, or not, a default order to the arguments of each function in the domain of discourse. How this order is 717
specified is outside the scope of this specification. 718
 719
Functional terms can be constructed by a domain functor applied to zero or more terms. 720
 Besides domain functions, FIPA SL includes functional terms constructed from widely used functional operators and 721
their arguments described in Table 1. 722
 723

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 13

Operator Example Description
+
-
/
%
*

5 % 2 Usual arithmetic operations.

Union (union ?s1 ?s2) Represents the union of two sets.
Intersection (intersection ?s1 ?s2) Represents the intersection of two sets.
Difference (difference ?s1 ?s2) Represents the set difference between ?s1 and ?s2.
First (first ?seq) Represents the first element of a sequence.
Rest (rest ?seq) Represents sequence ?seq except its first element.
Nth (nth 3 ?seq) Represents the nth element of a sequence.
Cons (cons a (sequence b c)) If its second argument is a sequence, it represents the

sequence that results of inserting its first argument in
front of its second argument. If its second argument is
a set, it represents the set that has all elements
contained in its second argument plus its first
argument.

Append (append ?seq (sequence c d)) Represents the sequence that results of concatenating
its first argument with its second argument.

 724
Table 1: Functional Operators 725

 726

3.7 Result Predicate 727

A common need is to determine the result of performing an action or evaluating a term. To facilitate this operation, a 728
standard predicate result, of arity two, is introduced to the language. Result/2 has the declarative meaning that the 729
result of evaluating a term, or equivalently of performing an action, encoded by the first argument term, is the second 730
argument term. However, it is expected that this declarative semantics will be implemented in a more efficient, 731
operational way in any given FIPA SL interpreter. 732
 733
A typical use of the result predicate is with a variable scoped by iota, giving an expression whose meaning is, for 734
example, "the x which is the result of agent i performing act": 735
 736
(iota x (result (action i act) x))) 737
 738

3.8 Actions and Action Expressions 739

Action expressions are a special subset of terms. An action itself is introduced by the keyword action and comprises 740
the agent of the action (that is, an identifier representing the agent performing the action) and a term denoting the 741
action which is [to be] performed. 742
 743
Notice that a specific type of action is an ACL communicative act (CA). When expressed in FIPA SL, syntactically an 744
ACL communicative act is an action where the agent of the action is the sender of the CA, and the term denotes the 745
CA including all its parameters where the performative should be used as a function symbol, as referred by the used 746
ontology. Example 5 includes an example of an ACL CA, encoded as a String, whose content embeds another CA. 747
 748
Two operators are used to build terms denoting composite CAs: 749
 750
• the sequencing operator (;) denotes a composite act in which the first action (represented by the first operand) is 751

followed by the second action, and, 752
 753
• the alternative operator (|) denotes a composite act in which either the first action occurs, or the second, but not 754

both. 755
 756

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 14

3.9 Notes on the Grammar Rules 757

1. The standard definitions for integers and floating point are assumed. However, due to the necessarily 758
unpredictable nature of cross-platform dependencies, agents should not make strong assumptions about the 759
precision with which another agent is able to represent a given numerical value. FIPA SL assumes only 32-bit 760
representations of both integers and floating point numbers. Agents should not exchange message contents 761
containing numerical values requiring more than 32 bits to encode precisely, unless some prior arrangement is 762
made to ensure that this is valid. 763

 764
2. All keywords are case-insensitive. 765
 766
3. A length encoded string is a context sensitive lexical token. Its meaning is as follows: the message envelope of the 767

token is everything from the leading # to the separator " inclusive. Between the markers of the message envelope 768
is a decimal number with at least one digit. This digit then determines that exactly that number of 8-bit bytes are to 769
be consumed as part of the token, without restriction. It is a lexical error for less than that number of bytes to be 770
available. 771

 772
4. Note that not all implementations of the ACC (see [FIPA00067]) will support the transparent transmission of 8-bit 773

characters. It is the responsibility of the agent to ensure, by reference to internal API of the ACC, that a given 774
channel is able to faithfully transmit the chosen message encoding. 775

 776
5. Strings encoded in accordance with [ISO2022] may contain characters which are otherwise not permitted in the 777

definition of Word. These characters are ESC (0x1B), SO (0x0E) and SI (0x0F). This is due to the complexity that 778
would result from including the full [ISO2022] grammar in the above EBNF description. Hence, despite the basic 779
description above, a word may contain any well-formed [ISO2022] encoded character, other (representations of) 780
parentheses, spaces, or the # character. Strings must be enclosed between quote symbols. If the quote symbol 781
itself needs to be part of the String, then it must be escaped by a ‘\’ symbol. 782

 783
6. The format for time tokens is defined in section 3.10. 784
 785
7. An agent is represented by its agent-identifier using the standard format from [FIPA00023]. 786

3.9Agent Identifiers 787

An agent is represented by referring to its name. The name is defined using the standard format from [FIPA00023]. 788
 789

3.10Numerical Constants 790

The standard definitions for integers and floating point numbers are assumed. However, due to the necessarily 791
unpredictable nature of cross-platform dependencies, agents should not make strong assumptions about the precision 792
with which another agent is able to represent a given numerical value. FIPA SL assumes only 32-bit representations of 793
both integers and floating point numbers. Agents should not exchange message contents containing numerical values 794
requiring more than 32 bits to encode precisely, unless some prior arrangement is made to ensure that this is valid. 795
 796

3.113.10 Date and Time ConstantsRepresentation of Time 797

Time tokens are based on [ISO8601], with extension for relative time and millisecond durations. Time expressions may 798
be absolute, or relative. Relative times are distinguished by the sign character "+" or “-” appearing as the first character 799
in the token. If no type designator is given, the local time zone is then used. The type designator for UTC is the 800
character Z; UTC is preferred to prevent time zone ambiguities. Note that years must be encoded in four digits. As an 801
example, 8:30 am on 15th April, 1996 local time would be encoded as: 802
 803
19960415T083000000 804
 805
The same time in UTC would be: 806
 807
19960415T083000000Z 808

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 15

 809
while one hour, 15 minutes and 35 milliseconds from now would be: 810
 +00000000T011500035 811
 812
 813

814

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 16

4 Reduced Expressivity Subsets of FIPA SL 814

The FIPA SL definition given above is a very expressive language, but for some agent communication tasks it is 815
unnecessarily powerful. This expressive power has an implementation cost to the agent and introduces problems of 816
the decidability of modal logic. To allow simpler agents, or agents performing simple tasks, to do so with minimal 817
computational burden, this section introduces semantic and syntactic subsets of the full FIPA SL content language for 818
use by the agent when it is appropriate or desirable to do so. These subsets are defined by the use of profiles, that is, 819
statements of restriction over the full expressive power of FIPA SL. These profiles are defined in increasing order of 820
expressivity as FIPA-SL0, FIPA-SL1 and FIPA-SL2. 821
 822
Note that these subsets of FIPA SL, with additional ontological commitments (that is, the definition of domain 823
predicates and constants) are used in other FIPA specifications. 824
 825

4.1 FIPA SL0: Minimal Subset 826

Profile 0 is denoted by the normative constant fipa-slFIPA-SL0 in the :language parameter of an ACL message. 827
Profile 0 of FIPA SL is the minimal subset of the FIPA SL content language. It allows the representation of actions, the 828
determination of the result a term representing a computation, the completion of an action and simple binary 829
propositions. The following defines the FIPA SL0 grammar: 830
 831
Content = "(" ContentExpression+ ")". 832
 833
ContentExpression = ActionExpression 834
 | Proposition. 835
 836
Proposition = Wff. 837
 838
Wff = AtomicFormula 839
 | "(" ActionOp ActionExpression ")". 840
 841
AtomicFormula = PropositionSymbol 842
 | "(" "result" Term Term ")" 843
 | "(" PredicateSymbol Term+ ")" 844
 | "true" 845
 | "false". 846
 847
ActionOp = "done". 848
 849
Term = Constant 850
 | Set 851
 | Sequence 852
 | FunctionalTerm 853
 | ActionExpression. 854
 855
ActionExpression = "(" "action" Agent Term ")". 856
 857
FunctionalTerm = "(" FunctionSymbol Term* ")" 858
 | "(" FunctionSymbol Parameter* ")". 859
 860
Parameter = ParameterName ParameterValue. 861
 862
ParameterValue = Term. 863
 864
Agent = Term. 865
 866
FunctionSymbol = String. 867
 868
PropositionSymbol = String. 869
 870
PredicateSymbol = String. 871
 872
Constant = NumericalConstant 873

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 17

 | String 874
 | DateTime. 875
 876
Set = "(" "set" Term* ")". 877
 878
Sequence = "(" "sequence" Term* ")". 879
 880
NumericalConstant = Integer 881
 | Float. 882
 883
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL0. 884
 885

4.2 FIPA SL1: Propositional Form 886

Profile 1 is denoted by the normative constant fipa-slFIPA-SL1 in the :language parameter of an ACL message. 887
Profile 1 of FIPA SL extends the minimal representational form of FIPA SL0 by adding Boolean connectives to 888
represent propositional expressions. The following defines the FIPA SL1 grammar: 889
 890
Content = "(" ContentExpression+ ")". 891
 892
ContentExpression = ActionExpression 893
 | Proposition. 894
 895
Proposition = Wff. 896
 897
Wff = AtomicFormula 898
 | "(" UnaryLogicalOp Wff ")" 899
 | "(" BinaryLogicalOp Wff Wff ")" 900
 | "(" ActionOp ActionExpression ")". 901
 902
UnaryLogicalOp = "not". 903
 904
BinaryLogicalOp = "and" 905
 | "or". 906
 907
AtomicFormula = PropositionSymbol 908
 | "(" "result" Term Term ")" 909
 | "(" PredicateSymbol Term+ ")" 910
 | "true" 911
 | "false". 912
 913
ActionOp = "done". 914
 915
Term = Constant 916
 | Set 917
 | Sequence 918
 | FunctionalTerm 919
 | ActionExpression. 920
 921
ActionExpression = "(" "action" Agent Term ")". 922
 923
FunctionalTerm = "(" FunctionSymbol Term* ")" 924
 | "(" FunctionSymbol Parameter* ")". 925
 926
Parameter = ParameterName ParameterValue. 927
 928
ParameterValue = Term. 929
 930
Agent = Term. 931
 932
FunctionSymbol = String. 933
 934
PropositionSymbol = String. 935
 936
PredicateSymbol = String. 937

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 18

 938
Constant = NumericalConstant 939
 | String 940
 | DateTime. 941
 942
Set = "(" "set" Term* ")". 943
 944
Sequence = "(" "sequence" Term* ")". 945
 946
NumericalConstant = Integer 947
 | Float. 948
 949
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL1. 950
 951

4.3 FIPA SL2: Decidability Restrictions 952

Profile 2 is denoted by the normative constant fipa-slFIPA-SL2 in the :language parameter of an ACL message. 953
Profile 2 of FIPA SL allows first order predicate and modal logic, but is restricted to ensure that it must be decidable. 954
Well-known effective algorithms exist that can derive whether or not an FIPA SL2 Wff is a logical consequence of a set 955
of Wffs (for instance KSAT and Monadic). The following defines the FIPA SL2 grammar: 956
 957
Content = "(" ContentExpression+ ")". 958
 959
ContentExpression = IdentifyingExpression 960
 | ActionExpression 961
 | Proposition. 962
 963
Proposition = PrenexExpression. 964
 965
Wff = AtomicFormula 966
 | "(" UnaryLogicalOp Wff ")" 967
 | "(" BinaryLogicalOp Wff Wff ")" 968
 | "(" ModalOp Agent PrenexExpression ")" 969
 | "(" ActionOp ActionExpression ")" 970
 | "(" ActionOp ActionExpression PrenexExpression ")". 971
 972
UnaryLogicalOp = "not". 973
 974
BinaryLogicalOp = "and" 975
 | "or" 976
 | "implies" 977
 | "equiv". 978
 979
AtomicFormula = PropositionSymbol 980
 | "(" "=" TermTermOrIE TermTermOrIE ")" 981
 | "(" "result" TermTermOrIE TermTermOrIE ")" 982
 | "(" PredicateSymbol TermTermOrIE+ ")" 983
 | "true" 984
 | "false". 985
 986
PrenexExpression = UnivQuantExpression 987
 | ExistQuantExpression 988
 | Wff. 989
 990
UnivQuantExpression = "(" "forall" Variable Wff ")" 991
 | "(" "forall" Variable UnivQuantExpression ")" 992
 | "(" "forall" Variable ExistQuantExpression ")". 993
 994
ExistQuantExpression = "(" "exists" Variable Wff ")" 995
 | "(" "exists" Variable ExistQuantExpression ")". 996
 997
TermOrIE = Term 998
 | IdentifyingExpression. 999
 1000
Term = Variable 1001

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 19

 | FunctionalTerm 1002
 | ActionExpression 1003
 | IdentifyingExpression 1004
 | Constant 1005
 | Sequence 1006
 | Set. 1007
 1008
IdentifyingExpression = "(" ReferentialOp TermTermOrIE Wff ")". 1009
 1010
ReferentialOp = "iota" 1011
 | "any" 1012
 | "all". 1013
 1014
FunctionalTerm = "(" FunctionSymbol TermTermOrIE* ")" 1015
 | "(" FunctionSymbol Parameter* ")". 1016
 1017
Parameter = ParameterName ParameterValue. 1018
 1019
ParameterValue = TermTermOrIE. 1020
 1021
ActionExpression = "(" "action" Agent TermTermOrIE ")" 1022
 | "(" "|" ActionExpression ActionExpression ")" 1023
 | "(" ";" ActionExpression ActionExpression ")". 1024
 1025
Variable = VariableIdentifier. 1026
 1027
Agent = TermTermOrIE. 1028
 1029
FunctionSymbol = String. 1030
 1031
Constant = NumericalConstant 1032
 | String 1033
 | DateTime. 1034
 1035
ModalOp = "B" 1036
 | "U" 1037
 | "PG" 1038
 | "I". 1039
 1040
ActionOp = "feasible" 1041
 | "done". 1042
 1043
PropositionSymbol = String. 1044
 1045
PredicateSymbol = String. 1046
 1047
Set = "(" "set" TermTermOrIE* ")". 1048
 1049
Sequence = "(" "sequence" TermTermOrIE* ")". 1050
 1051
NumericalConstant = Integer 1052
 | Float. 1053
 1054
 1055
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL2. 1056
 1057
The Wff production of FIPA SL2 no longer directly contains the logical quantifiers, but these are treated separately to 1058
ensure only prefixed quantified formulas, such as: 1059
 1060
(forall ?x1 1061
 (forall ?x2 1062
 (exists ?y1 1063
 (exists ?y2 1064
 (Phi ?x1 ?x2 ?y1 ?y2))))) 1065
 1066
Where (Phi ?x1 ?x2 ?y1 ?y2) does not contain any quantifier. 1067

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 20

 1068
The grammar of FIPA SL2 still allows for quantifying-in inside modal operators. For example, the following formula is 1069
still admissible under the grammar: 1070
 1071
(forall ?x1 1072
 (or 1073
 (B i (p ?x1)) 1074
 (B j (q ?x1)))) 1075
 1076
It is not clear that formulae of this kind are decidable. However, changing the grammar to express this context 1077
sensitivity would make the EBNF form above essentially unreadable. Thus, the following additional mandatory 1078
constraint is placed on well-formed content expressions using FIPA SL2: 1079
 1080
Within the scope of an SLModalOperator only closed formulas are allowed, that is, formulas without free variables. 1081
 1082

1083

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 21

5 References 1083

[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 1084
http://www.fipa.org/specs/fipa00023/ 1085

[FIPA00037] FIPA Agent Communication Language Overview. Foundation for Intelligent Physical Agents, 2000. 1086
http://www.fipa.org/specs/fipa00037/ 1087

[ISO8601] Date Elements and Interchange Formats, Information Interchange-Representation of Dates and 1088
Times. International Standards Organisation, 1998. 1089
http://www.iso.ch/cate/d15903.html 1090

 1091

1092

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 22

6 Informative Annex A — Syntax and Lexical Notation 1092

The syntax is expressed in standard EBNF format. For completeness, the notation is given in Table 2. 1093
 1094

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("

Non terminals are written as capitalised identifiers Expression

Square brackets denote an optional construct ["," OptionalArg]

Vertical bar denotes an alternative Integer | Real

Asterisk denotes zero or more repetitions of the preceding expression Digit *

Plus denotes one or more repetitions of the preceding expression Alpha +

Parentheses are used to group expansions (A | B) *

Productions are written with the non-terminal name on the left-hand
side, expansion on the right-hand side and terminated by a full stop

AnonTerminal = "an expansion".

 1095
Table 2: EBNF Rules 1096

 1097
Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as above, 1098
with the exceptions noted in Table 3. 1099
 1100

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]

Dash in a character set denotes a range ["a" - "z"]

Tilde denotes the complement of a character set if it is the first
character

[~ "(", ")"]

Post-fix question-mark operator denotes that the preceding lexical
expression is optional (may appear zero or one times)

["0" - "9"]? ["0" - "9"]

 1101
Table 3: Lexical Rules 1102

 1103

1104

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 23

7 Informative Annex B — ChangeLog 1104

7.1 2002/05/10 - version H by FIPA Architecture Board 1105

Page 1x, line 72-75y: <blah>Removed redundant sentence. 1106
Page 2, line 78-79 : Added symbol identifying fipa-sl content language. 1107
Entire document : Added new non-terminal symbol TermOrIE and replaced all occurences of Term with 1108

TermOrIE 1109
Page 2, line 113-119 : Removed superfluous binary term operators 1110
Page 3, line 147-155 : Removed superfluous functional term operators 1111
Page 3, line 188-192 : Removed superfluous arithmetic operators 1112
Page 4, line 233 : Added optional Sign symbol to represent relative time 1113
Page 6,7, line 351-382 : Removed description of superfluous operators 1114
Page 7, line 414,415 : Added note on interpretation of iota identifying expression 1115
Page 8, line 424,425 : Added note on interpretation of iota identifying expression 1116
Page 9, line 508,509 : Added note on interpretation of any identifying expression 1117
Page 9, line 518,530 : Improved the definition of any identifying expression 1118
Page 9, line 534,535 : Improved the definition of any identifying expression 1119
Page 10, line 596,597 : Added note on interpretation of all identifying expression 1120
Page 12, line 668-675 : Added requirement on encoding functional terms. 1121
Entire document : Fixed bugs in the examples, by adding quotes and converting symbols into lower case 1122
Page 11,12, line 647-651 :Removed description of superfluous operators 1123
Page 12, line 613 : Added description of the actor of an ACLMessage 1124
Page 12, line 626 : Clarification of how to express an Agent identifier. 1125
Page 13, line 693-695 : Added description of relative time 1126
Page 13: Added section 3.9 with some notes on the grammar. 1127
Page 13, line 741 : Removed ambiguity in representing communicative acts in SL 1128
 1129
 1130

