
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Agent Systems Reference Model
Release Version 1.0a

Project ACIN1

DoD Contract #DAAB07-01-9-L504
Document #: 1.0a • Date: 2006-11-20 13:15:19 -0400 (Mon, 20 Nov 2006)

Built from Working Revision 9345

This document has been developed under the Applied Communications and Information
Networking (ACIN) Program, DoD Contract #DAAB07-01-9-L504 to the US Army

Communications and Electronics Command Research Development and Engineering Center
(CERDEC) in support of the Intelligent Agents Sub-IPT.

Waterfront Technology Center
200 Federal Street, Suite 300

Camden, NJ 08103

1http://www.acincenter.org

1

http://www.acincenter.org

Editors:
Israel Mayk

William C. Regli

Contributing Authors:
Brandon Bloom

Christopher J. Dugan
Tedd Gimber

Bernard Goren
Andrew Hight
Moshe Kam

Joseph B. Kopena
Robert N. Lass

Israel Mayk
Spiros Mancoridis
Pragnesh Jay Modi

William M. Mongan
William C. Regli
Randy Reitmeyer
Jeff K. Salvage

Evan A. Sultanik
Todd Urness

Authority

This draft document is being developed by the Intelligent Agents Integrated Product Sub-Team (IA
Sub-IPT) of the Networking Integrated Product Team (Networking IPT) of the US Army Commu-
nications and Electronics Command Research Development and Engineering Center (CERDEC).
The document represents the consensus technical agreement of the participating IA Sub-IPT Mem-
ber Agencies, Companies and Institutions. The goals and procedures of the IA Sub-IPT are detailed
in its charter document as part of the Network IPT. The record of participation in the development
of this document is available from the chair of the Intelligent Agent Sub-IPT at the address below.

Chair
Intelligent Agents Integrated Product Sub-Team
Networking Integrated Product Team
Command and Control Directorate
Headquarters, US Army Research, Development, and Engineering Command
Communications-Electronics Research, Development, and Engineering Center
DEPARTMENT OF THE ARMY
Fort Monmouth, New Jersey 07703

i

Statement of Intent

This document is a technical recommendation for a reference model for those who develop and
deploy systems based on agent technology. As such, it

• establishes a taxonomy of terms, concepts and definitions needed to compare agent systems;

• identifies functional elements that are common in agent systems;

• captures data flow and dependencies among the functional elements in agent systems; and,

• specifies assumptions and requirements regarding the dependencies among these elements.

The Agent Systems Reference Model (ASRM) allows existing and future agent frameworks to
be compared and contrasted, as well as providing a basis for identifying areas requiring standard-
ization within the agents community. As a reference model, the document makes no prescriptive
recommendations about how to best implement an agent system, nor is its objective to advocate
any particular agent system, framework, architecture or approach.

Through the normal process of evolution, it is expected that expansion, deletion or modification
of this document will occur. Current versions of this document are maintained on the Project
ACIN (Applied Communication and Information Networking) website:

https://www.swat.acincenter.org/pubdocs/wiki

This site is password protected. To request a username and password, or for questions relating
to the status of this document, please e-mail:

agent-ref-model@lists.cs.drexel.edu

ii

https://www.swat.acincenter.org/pubdocs/wiki
agent-ref-model@lists.cs.drexel.edu

Document Control

Document Title Date Status and
Substantive Changes

Initial
Document

DRAFT: Intelligent
Agent Systems
Reference Model

August 31, 2005 Release and review at
August 31–September
1 CERDEC IA
Sub-IPT meeting.

Quarterly
Release

DRAFT: Intelligent
Agent Systems
Reference Model

October 31, 2005 Release and
placement on IASRM
Wiki.

Document # 1,
Revision 6698

DRAFT: Intelligent
Agent Systems
Reference Model

December 06, 2005 Second release to the
CERDEC IA Sub-IPT

Version 6709:6765M DRAFT: Intelligent
Agent Systems
Reference Model

December 19, 2005 Release post
December IA Sub-IPT
meeting.

Version 7183 DRAFT: Intelligent
Agent Systems
Reference Model

February 9, 2006 Release for February
IASRM meeting.

Version 7574 DRAFT: Agent
Systems Reference
Model

April 3, 2006 Release for April IA
Sub-IPT meeting.

Version 9373:9374M Agent Systems
Reference Model

November 20, 2006 Release Version 1.0a.

iii

Contents

Authority i

Statement of Intent ii

Document Control iii

1 Introduction 1
1.1 Purpose and Scope . 1
1.2 Basis . 1
1.3 Approach . 2
1.4 Applicability . 4
1.5 Rationale . 4
1.6 Conformance . 5
1.7 Related Efforts . 5

2 Terminology 10
2.1 Definitions and Acronyms . 10
2.2 UML Graphical Notation . 17

2.2.1 Use Case . 17
2.2.2 Activity Diagram . 18
2.2.3 Sequence Diagram . 18
2.2.4 Component Diagram . 18
2.2.5 Component . 22
2.2.6 Example Implementation . 22
2.2.7 Subsystem . 22
2.2.8 Layer . 22
2.2.9 Miscellaneous Diagrams . 23
2.2.10 Agent UML . 23

3 Agent System Concepts and Layers 24
3.1 What is Meant by Agent (i.e., What is an Agent?) 25
3.2 Infrastructure for Building and Supporting Agents 26
3.3 Communication Among Agents . 28
3.4 Classifying Agents . 32

3.4.1 Internal Agent Complexity . 32

iv

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3.4.2 Operational Abstraction . 33
3.5 Multi-Agent System Structure . 34

3.5.1 Dimensions of Multi-Agent System Complexity 34
3.5.2 Structured Groups of Agents . 36
3.5.3 Communication in Multi-Agent System Layers 36

4 Functional Concepts 38
4.1 Agent Administration . 38
4.2 Security and Survivability . 39
4.3 Mobility . 40
4.4 Conflict Management . 42
4.5 Messaging . 43
4.6 Logging . 44
4.7 Directory Services . 44

5 Software Engineering Methodology for Creating a Reference Model 46
5.1 Creating the Reference Model . 46
5.2 Documenting the Reference Model: The 4+1 Model 47

5.2.1 Reference Model, Reference Architecture, Design and Implementation Hi-
erarchy . 47

5.3 Reverse Engineering Techniques for Informing a Reference Model 49
5.3.1 Static Analysis . 50
5.3.2 Dynamic Analysis . 50

6 Structural and Behavioral UML Documentation of the Reference Model 51
6.1 Structural Descriptions: the Development View and the Physical View 51

6.1.1 Development View . 51
6.1.2 Physical View . 55

6.2 Behavioral Descriptions: the Logical View, Process View, and Use Case Scenarios 55
6.2.1 Agent Society . 56
6.2.2 Initializing an Agent System . 57

7 Mapping Existing Systems to the Reference Model: Case Studies 59
7.1 Agent Framework Mappings to the Idealized Framework 59

7.1.1 Scenario . 59
7.1.2 A-Globe . 60
7.1.3 Jade . 64

7.2 Case Studies . 69
7.2.1 Command and Control (C2) . 69
7.2.2 Mapping the C2 Domain to the Civilian Domain 73
7.2.3 Agent Society Example: Integrated Process Team (IPT) Structure 77
7.2.4 Situated Agent Example: Robot Soccer 78
7.2.5 Situated Agent Example: Secure Wireless Agent Testbed (SWAT) 89
7.2.6 Example: Viruses as Agents . 92

7.3 Example Instantiation: CoABS Grid . 94

Version 1.0a v November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

7.3.1 Overview of the CoABS Grid . 94
7.3.2 Mapping of the CoABS Grid . 94

A Agent Standards Report 102
A.1 Introduction . 102
A.2 Mapping . 102

A.2.1 Agent Administration . 103
A.2.2 Security . 105
A.2.3 Mobility . 105
A.2.4 Conflict Management . 107
A.2.5 Messaging . 108
A.2.6 Logging . 109

B Survey of Surveys 110
B.1 Introduction . 110
B.2 Categories . 111
B.3 Results . 111
B.4 Summaries . 112

B.4.1 Analysis of the Agent Paradigm . 112
B.4.2 Research Methodology . 114
B.4.3 Status of Agent Research . 114
B.4.4 Textbooks . 116

B.5 Conclusion . 117

Bibliography 118

Index 122

Version 1.0a vi November 20, 2006

List of Figures

1.1 Role of a Reference Model . 2
1.2 Example Software Analysis of an Agent Framework 3

2.1 Use Case Diagram Legend. 18
2.2 Activity Diagram Legend. 19
2.3 Sequence Diagram Legend. 20
2.4 Component Diagram Legend. 21
2.5 Basic Diagram Legend. 23

3.1 Legend for agent system figures and layer diagrams. 24
3.2 Agent system structural layers and agent model. 25
3.3 A system which includes agent systems. 28
3.4 Structural layers within an agent system. 29
3.5 Current technologies (circa 2006) mapped onto agent system layers. 30
3.6 Agent Systems in the OSI Reference Model . 31
3.7 Matrix of agent internal complexity and level of operational abstraction. 32
3.8 Dimensions of multi-agent system complexity. 35
3.9 Labels for common types of multi-agent systems. 35
3.10 Agent-based system layers in communication. 37

4.1 Axis of mobility features, adapted from [63]. 40

5.1 Hierarchy of Reference Model Abstraction . 48

6.1 MAS Packages . 53
6.2 Framework Packages . 54
6.3 Agent System Layers . 55
6.4 Flow of Teams, Systems and Mission with Data. 57
6.5 Initialization of an Agent System. 58

7.1 A-Globe Framework Dynamic Analysis Data . 61
7.2 A-Globe Dynamic Analysis Data: Before Migration 62
7.3 A-Globe Dynamic Analysis Data: After Migration 62
7.4 A-Globe sending agent s1 and receiving agent s2 dynamic analysis data. 63
7.5 Jade Framework Dynamic Analysis Data . 66

vii

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

7.6 Jade static agents dynamic analysis data. Here, the agent is initialized and run by
the framework. 67

7.7 Jade Dynamic Analysis Data: Before Migration 67
7.8 Jade Dynamic Analysis Data: Before Migration 68
7.9 Battle Command Information Exchange. 70
7.10 Hierarchy of Domain Resources. 71
7.11 Correlation Between C2 and Civilian Domains 74
7.12 Abstract Workflow Process . 76
7.13 Robot Messaging Use Case. 78
7.14 Messaging Activity Diagram. 79
7.15 Messaging Sequence Diagram. 79
7.16 Robot Conflict Management Use Case. 81
7.17 Conflict Management Activity Diagram. 82
7.18 Conflict Management Sequence Diagram. 83
7.19 Security Use Case. 84
7.20 Security Activity Diagram. 85
7.21 Security Sequence Diagram. 86
7.22 Mobility Use Case . 87
7.23 Mobility Activity Diagram . 88
7.24 Mobility Sequence Diagram . 88
7.25 SWAT Messaging Use Case Diagram. 90
7.26 SWAT Messaging Sequence Diagram. 90
7.27 SWAT Mobility Sequence Diagram. 91
7.28 SWAT Resource Management Use Case Diagram. 92
7.29 CoABS ASRM Mapping . 95

A.1 FIPA ASRM Map . 103

Version 1.0a viii November 20, 2006

Chapter 1

Introduction

1.1 Purpose and Scope
This document is a technical recommendation for a reference model for those who develop and
deploy systems based on agent technology. As such, it

• establishes a taxonomy of terms, concepts and definitions needed to compare agent systems;

• identifies functional elements that are common in agent systems;

• captures data flow and dependencies among the functional elements in agent systems; and,

• specifies assumptions and requirements regarding the dependencies among these elements.

The Agent Systems Reference Model (ASRM) allows existing and future agent frameworks
to be compared and contrasted, as well as providing a basis for identifying areas that requiring
standardization within the agents community. As a reference model, the document makes no pre-
scriptive recommendations about how to best implement an agent system, nor is its objective to
advocate any particular agent system, framework, architecture or approach.

A reference model describes the abstract functional elements of a system. A reference model
does not impose specific design decisions on a system designer. APIs, protocols, encodings,
etc. are standards that can be used concurrently with a reference model.

A reference model does not define an architecture1. A reference model drives the implementa-
tion of multiple architectures in the same way that a reference architecture drives multiple designs,
or a design drives multiple implementations (see Figure 1.1).

1.2 Basis
The basis for this effort follows the approach advocated by the International Standards Organiza-
tion (ISO)2 for the development of reference models. In addition, this effort aims to be compatible
with the reference models being developed for the Federal Enterprise Architecture3.

1See definition for “architecture” on page 11.
2http://www.iso.org/
3http://www.feapmo.gov/

1

http://www.iso.org/
http://www.feapmo.gov/

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Reference Model

↓

Reference Architecture

↓

Design

↓

Implementation

Figure 1.1: Role of a reference model: drives creation of one or more reference architectures,
which drive the creation of one or more designs, which, in turn, drive the development of one or
more implementations.

This document draws heavily on the reference modeling approaches utilized by several ap-
proved international standards:

• ISO 14721:2003, also known as Consultative Committee for Space Data Systems (CCSDS)
650.0-B-1, “Reference Model for an Open Archival Information System (OAIS)”. Blue
Book. Issue 1. January 2002.

• ISO/IEC 7498-1:1994 “Open Systems Interconnection Basic Reference Model”.

1.3 Approach
The approach taken to create the reference model in this document is based on a forensic analysis of
existing agent systems. As noted by the definition on page 11, an agent system may consist of many
different kinds of agents operating across a heterogeneous set of computing platforms. Rather than
trying to develop a consensus about “what is an agent,” this document offers a different approach
from the largely inconclusive debates of the past: the reference model developed in this document
is based on static and dynamic software analysis of fielded agent systems. Hence, an agent system
describes a software platform for both building agents and supporting their communications and
collaboration within systems. An example of static analysis applied to a portion of the NOMADS
agent framework is shown in Figure 1.2.

There are many products in the marketplace today that are marketed as agent frameworks from
various sources: from companies, from academia and from the open source community. These
agent frameworks have emerged from several large governmental and private research and de-
velopment programs and were used in the creation of many successful military and commercial
systems. This document takes a quantitative and evidentiary approach; if it can be built with one

Version 1.0a 2 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Project

N-SS-L2-FlexFeedManager

SerializableDataMessage

DataMessage

Message

StreamableDataMessage N-SS-L2-ClassStartStreamRequestMsg

ControlMessage

NodeTerminationMsgStartStreamMsg AckMessage StopStreamRequestMsg

MobilityReqStopMsg

IDGenerator

N-SS-L2-CommHelper

EnvParamsUpdateMsgEnvDeregistrationMsgExceptionMessage EnvRegistrationMsg MobilityReqMoveMsg

FlexFeedManager

NodeRegistrationMsgSysInfo

N-SS-L2-ConfigLoader

N-SS-L2-FlexFeedCoordinator

N-SS-L2-Mocket

Relay

CoordFeedParams

CoordTransformation

EnvTFInfo

CostCalculator

TFInfo SysResourceCostsSysResourcesSysLocation N-SS-L2-Graph

SystemParams

EnvironmentalAgent N-SS-L2-MasterSlaveCoordinator

N-SS-L2-FGraphClient

N-SS-L2-AccountsManagerDialog

N-SS-L2-PureTLSSocketFactory

N-SS-L2-NomadsConsole

N-SS-L2-ServiceAgent

N-SS-L2-ServiceLocationException

N-SS-L2-AODVRouter

N-SS-L2-FGraphServer

Figure 1.2: An example of software analysis on an existing agent framework. In this case, the figure
shows a functional breakdown of the FlexFeed subsystem of the NOMADS agent framework.

of these systems, an artifact might be called an “agent.” Anyone building a new agent frame-
work recreates or reproduces some portion of the components in these frameworks (i.e., to enable
communication, to enable agent startup and shutdown, etc.). Hence, by analyzing existing frame-
works and the agent systems they can be used to build, this reference model documents the existing
state-of-the-art for what the community believes is an “agent.”

The ASRM documents a superset of the features, functions and data elements in the set of
existing agent frameworks. Given that each framework may have slightly different functional
components, the reference model describes, at an abstract level, a set of functional components
that an agent framework may have. It is important to note, however, that the model is not confined
to being a description of existing capabilities and platforms—it serves as a basis for situating a set
of functional and data elements that anyone may want or need to have in an agent platform. For
example, security for mobile agent code is currently a vastly challenging problem lacking a sat-
isfactory solution. However, the lack of any established, uniform and generally accepted security
system for mobile agents does not preclude the reference model from including a description of
the security functions and facilities that an agent platform should provide.

Reference models do not prescribe how functions and systems should be implemented; the
ASRM is no different. Agents could be implemented in COBOL on an IBM 360 to control smoke
detectors just as well as they could be implemented in Java to interact with air traffic controllers
using cognitive models of air traffic control behavior. The ASRM makes no assumptions about the
internal processing structure of an agent. An agent could be built with a cognitive model (e.g., ACT-
R), a neural network that monitors a physical process, just as well as an expert system working to
support an automated voice/telephone “help” line. Given the vast array of tasks envisioned for
agent systems, it is not the role of a reference model to account for each possible application
architecture.

Version 1.0a 3 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1.4 Applicability

The ASRM is applicable to existing agent frameworks and will be applicable to all those in the
future, as well. The ASRM is designed by extracting commonalities between existing frame-
works and by applying existing agent research. The ASRM provides a common ontology for agent
frameworks. Previous systems benefit from this model since a language is provided for describing
the advantages and disadvantages of each system. Developers of future frameworks will have a
blueprint to follow, forming the basis on which all agent systems—past, present, and future—are
compared.

System engineering tasks also benefit from the reference model because the information used to
construct the model was gathered using both common and specially developed analysis techniques.
Previously built systems were analyzed and compared in order to piece together a common model.
These techniques are applicable to the analysis of almost any system since they, too, are built piece
by piece. The reverse engineering techniques specifically geared towards agent systems can be
applied in a similar fashion to other systems. Further, the techniques themselves can be studied and
improved. Agent frameworks are very similar to operating systems, so these reverse engineering
techniques also apply in this realm.

The reference model provides a common ontology, innovative and practical system engineer-
ing techniques, and software development guidance. All of these ideas support evolving Agent
Frameworks and Application Program Interfaces (APIs)—past, present, and future. If the ASRM
is used correctly, the result will be independently developed software agents and agencies capable
of interoperating in a heterogeneous environment.

1.5 Rationale

The motivation for this project is in part analogous to the previous need for a communications
reference model, which has since been adopted in many related disciplines. In the early 1980s,
communications systems were proprietary in nature; consequently, there was a divide between
communications devices and computer systems. The proposed solution was to establish an open
system architecture—an n-layered approach to standardize communications systems [74]. The
primary issue was what this reference model should contain. Unfortunately, many of the existing
reference models were not open for inspection. Nevertheless, a 7-layer model was established that
has withstood the test of time. The growth of these communications systems prior to the develop-
ment of the reference model is comparable to the present growth of agent frameworks. Currently,
enough openly-available frameworks exist such that the construction of a reference model is pos-
sible.

A reference model is behavioral and domain-oriented. A reference model is not a reference
architecture. For example, one cannot define conflict resolution in simple Unified Modeling Lan-
guage (UML). The reference model motivates languages (such as UML, XML) and architectures.
In addition, the model includes requirements and supports behavior patterns in addition to the sim-
ple structure (e.g., architecture) of the system. The goal of this effort is to abstract the architectural
details into concepts.

This reference model facilitates the adoption, adaptation and integration of agent technologies

Version 1.0a 4 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

into systems for use by government and private industry, with a particular focus on applications in
military command and control. According to [54], a reference model achieves this payoff by pro-
viding appropriate abstractions, simplifying problem solving and providing patterns of the solution
for software developers. It is essential and commonplace to create compelling reference models in
all fields of knowledge.

1.6 Conformance
A conforming agent system implementation supports the layered model described in Chapter 3
and its agent framework supports the functional model described in Chapter 4. Chapter 6 provides
an idealized view of what elements are contained in a conforming reference model. The Agent
Systems Reference Model does not define or require any particular method of implementation
of these concepts. A conforming ASRM agent framework needs to fulfill certain responsibilities;
however, due to the great variety of agent technology and differences in agent system architectures,
this document does not attempt to specify any minimal or sufficient set required to be deemed
conforming. Where appropriate, examples of the mechanisms that may be used to discharge the
functional components and modules identified in Chapter 4 are provided. Use of these, or any
other, specific mechanisms are not required for conformance.

It is assumed that implementers will use this reference model as a guide while developing
a specific implementation to provide identified services and content. This document does not
assume or endorse any specific computing platform, system environment, system design paradigm,
system development methodology, database management system, database design paradigm, data
definition language, command language, system interface, user interface, technology, or media
required for implementation.

A conforming ASRM agent system may provide additional services to users beyond those
minimally required of an agent system as defined herein. The Agent System Reference Model is
designed as a conceptual framework discussing and comparing agents, agent frameworks, internal
and external agent architectures as well as agent-based systems (i.e., systems built with agent
technology). As such, it attempts to address all the major needs and activities for agent operating
within the context of a multi-agent system in order to define a consistent and useful set of terms
and concepts. A standard and other documents that conform to this reference model shall use the
terms and concepts defined in the Agent Systems Reference Model in the same manner.

1.7 Related Efforts
An excellent example of an existing reference model is the ISO Open Systems Interconnection (OSI)
reference model that describes a seven-layered network framework for implementing protocols.
OSI only describes the abstract functional layers of the network, and does not impose standards or
protocols that are to be used at each layer. One could choose to use Transmission Control Proto-
col/Internet Protocol (TCP/IP), Appletalk, or even create their own protocol for each layer, while
still remaining true to the OSI model.

In the same way, this reference model is not an attempt to impose (or even define) standards
for the implementation of agent systems. It is an attempt to describe the abstract functional layers

Version 1.0a 5 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

and components of such a system.
In the area of agent systems, a reference model for mobile agent systems was constructed

in [62]. While superficially similar to the ASRM (most of the definitions for terms, relationships,
and abstract entities are compatible with the ASRM), its main focus is on comparing and evaluating
different mobile agent systems. In addition, the model is more prescriptive of software architecture
than the ASRM, which is architecture independent. For example, [62] presents a set of minimum
feature requirements (e.g. one of the required components, the Agent Execution System supports
mobility, communications, agent serialization and security).

Standards such as those of the Foundation for Intelligent Physical Agents (FIPA), Knowledge
Interchange Format (KIF), Knowledge Query Manipulation Language (KQML), and even some
non-agent specific standards have a place in the agent standards community; some of which may
be used in conjunction with the ASRM. The ASRM defines the required existence of components;
standards prescribe how they are designed.

While there is some resemblance between the FIPA Abstract Architecture and the ASRM.
However, a reference model is a further abstraction of an abstract architecture. The Agent Systems
Reference Model defines terms, describes concepts and identifies functional elements in agent sys-
tems. The ASRM allows people developing and implementing agent systems to have a frame of
reference to discuss agent systems. The FIPA Abstract Architecture describes an abstract architec-
ture, with the intent of enforcing interoperability between conforming agent systems.

Web Services standards were also examined in the background study of standards. While the
W3C Web Services Architecture does not define all the standards compliant frameworks must
use, it does prescribe a number of specific standards for interoperability (WSDL, SOAP, etc),
whereas the ASRM is standard independent. The W3C Web Services Architecture also describes
an architecture that can be used to drive the creation of WS system designs, whereas the ASRM
does not make any prescription of the architecture of an agent system. Web services are part of the
study, but more specifically, the focus is on agent systems, which are systems that may be used to
deliver web services. Not all web services are agents.

The standards that were analyzed fall roughly into five categories. For a more detailed descrip-
tion of any of these standards, refer to Appendix A.

General. Efforts that are higher-level—and therefore less specific—than the ASRM.

• FIPA Abstract Architecture [11]: Defines an agent platform’s architectural entities and
their relationships, providing standards for interoperability amongst different agents
and agent systems;

• FIPA Nomadic Application Support [30]: Describes a monitoring agent and a control
agent for restrictive mobile computing environments, as well as an ontology for sup-
porting nomadic computing; and,

• FIPA Agent Management [20]: Describes the module where agent creation, registra-
tion, locating, communication, migration, and retirement occurs;

Communications. Efforts dealing with both the actual logistics of communications and the infor-
mation being communicated. These are mostly protocol-defining standards, and therefore
define processes at a much lower level than the ASRM, however, nothing precludes these

Version 1.0a 6 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

standards from working in conjunction with the ASRM. For example, these protocols might
be implemented inside an agent framework to fulfill the messaging and mobility functional
concepts described in Chapter 4.

• KIF [38]: A standard for encoding knowledge in first order logic;

• KQML [51]: A standard for knowledge exchange;

• FIPA SL Content Language [27]: Describes the syntax for the FIPA Semantic Lan-
guage content language;

• FIPA Communicative Acts Library Specification [24]: A description of all the FIPA
communicative acts;

• FIPA ACL Message Structure [13]: Describes specifications for FIPA ACL message
parameters;

• FIPA Message Transport Service [29]: Describes transportation of messages between
compliant agents;

• Common Logic (CL) [67] ISO Draft Standard for an information exchange and trans-
mission language;

• SOAP [41] A protocol for exchanging messages encoded in XML, mainly to facilitate
interoperability between software objects;

• Hypertext Transfer Protocol (HTTP) [9] A request / response protocol designed for the
distribution of “hypermedia,” although it is also used for other purposes;

• Web Services Description Language (WSDL) [6] A formal XML-based format for de-
scribing the public interface to web services; and,

• Business Process Execution Language for Web Services (BPEL4WS) [2] A formal
language for specifying business processes and business interaction protocols, formed
by combining WSFL and XLang, languages from IBM and Microsoft respectively.

It is quite likely that one or more of these communication standards will be implemented in
a framework architecture. They will help standardize intra-framework communication and
facilitate inter-framework communication. Compatibility will be direct result. The ASRM
does not specify which standards, if any, are used. Implementation is at the developers
discretion and the reference model merely suggests the need for a communication module.

Communication, independent of the standard chosen, can be used for coordination. FIPA
extends its domain by standardizing several coordination protocols that can be used in nego-
tiation, resource allocation, or just simple message passing.

Agent Coordination Protocols. Protocols for coordinating the actions of multiple agents; these
could be used to fulfill the “agent administration” and “conflict management” functional
concepts.

• FIPA Propose Interaction Protocol [31]: describes the process by which an agent sug-
gests to other agents the actions that it wishes to complete;

Version 1.0a 7 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• FIPA Request Interaction Protocol [33]: defines the protocol that an initiator agent uses
to ask another agent to perform some action;

• FIPA Query Interaction Protocol [26]: a protocol that details how one agent requests to
perform some action on another agent;

• FIPA Request When Interaction Protocol [34]: similar to the Request Interaction Pro-
tocol, this allows an agent to specify a time at which it wishes for another agent to
perform some action;

• FIPA Contract Net Interaction Protocol [16]: this protocol defines a process for sub-
mitting a job to available contractors, submission and selection of a single proposal,
and the completion of the job;

• FIPA Iterated Contract Net Protocol [28]: similar to the Contract Net Interaction Pro-
tocol, except contracts can be negotiated prior to selection;

• FIPA Brokering Interaction Protocol [15]: describes the process by which a broker-
ing agent is used by one agent to find resources provided by an other agent and then
facilitate the use of those resources;

• FIPA Recruiting Interaction Protocol [32]: similar to Brokering, this protocol allows
direct communication between the agent requesting a resource and the agent providing
the resource; and,

• FIPA Subscribe Interaction Protocol [35]: allows an agent to request updates concern-
ing resources owned by another agent.

Again, the number of coordination protocols is not specified by the ASRM. Specifying it
suggests the need for coordination protocols because coordination is necessary in a MAS.
An uncoordinated MAS is perfectly acceptable and still complies with the reference model
just as a fully coordinated system that implements all of the above standards.

Once communication protocols are selected and the proper coordination protocols are cho-
sen, it is necessary to specify actual messages at a lower level. FIPA defines a general mes-
sage and envelope architecture in its representation and encoding standards. These standards
operate at a very low-level and describe the format of a message as it is being sent from one
agent to another.

Representation and Encoding. Protocols for encoding messages for transmission, or performing
protocols over existing communications channels.

• FIPA Bit Efficient ACL [12]: a low-level protocol for general communication;

• FIPA String ACL [18]: a high-level, string representation of the Bit Efficient protocol;

• FIPA XML ACL [19]: a more structured, high-level protocol for message passing in
XML;

• FIPA IIOP Transport Protocol (Inter-Orb Protocol) [23]: a message passing protocol
involving messages and envelopes all transferred as one single unit of data;

• FIPA HTTP Transport Protocol [14]: a protocol for sending messages via HTTP;

Version 1.0a 8 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• FIPA XML Message Envelope [22]: the XML encoding for message envelopes that is
independent of the type of transport protocol used;

• FIPA Bit Efficient Envelope [21]: the low-level bit encoding for message envelopes
that is independent of the type of transport protocol used;

• Extensible Markup Language (XML) [4] A meta-language for describing other markup
languages, intended to facilitate sharing of data across heterogeneous systems;

• Web Ontology Language (OWL) [56], a markup language to facilitate ontology sharing
on the World Wide Web;

• Resource Description Framework (RDF) [44] A general purpose language for repre-
senting information on the web; and,

• RDF in XML [3].

The representation and encoding standards specify how messages should be formatted and
possible encodings that can be used for transmission. These processes are very low-level and
far beyond the scope of the reference model. No communication protocol is specified so its
representation is certainly omitted as well.

Lastly, FIPA and others provide a vocabulary for the messages. These ontologies restrict
the contents of a given message to a finite ontology that should be used by most agents in a
framework.

Ontologies. Standards for knowledge representation. These might be utilized in the “agent rea-
soner” component of the agent model presented in Chapter 3.

• FIPA Device Ontology [25]: used to specify resource information (such as size or
availability) in inter-agent communication;

• FIPA QoS Ontology [17]: provides a vocabulary for communication concerning the
quality of service that can be provided by agent services and resources;

• Dublin Core Metadata Initiative [1]: provides abstract online metadata standards that
are business model independent;

• IEEE Standard Upper Ontology [47]: describes an ontology that can be used for data
interoperability, information search and retrieval, automated inferencing, and natural
language processing.

Once again, no ontology is specified in the ASRM; however, the need for an ontology is noted
and even suggested. The overall goal of the ASRM is to specify areas where standards may be
necessary and should be implemented, but it makes no prescription as to which ones should be
used.

Version 1.0a 9 November 20, 2006

Chapter 2

Terminology

This section puts forth a set of formalisms, terminology and definitions to be used for the remainder
of this document. Where appropriate, citations to relevant sources in the literature are given. It is
not the goal of this section, however, to be completely compatible with existing literature. This is
impossible as existing literature from the field does not offer complete and consistent definitions. In
many cases there are considerable conflicts and overloaded terms. Where possible, this document
attempts to be consistent with the most generally accepted conventions of use of terms.

2.1 Definitions and Acronyms
Note that terms are shown in bold and defined when first used in the text. An index is also provided
at the end of this document.

Action: An event triggered by an agent that may affect its environment (see agent environment).

Adversary: An agent whose goal conflicts with another agent’s goal.

Agent: An agent is a situated computational process with one or more of the following properties:
autonomy, proactivity and interactivity. This topic is discussed at length in Chapter 3.

Agent Architecture: Modules and structure for designing and implementing individual agents.
This reference model abstracts these internals into three components: a sensor interface, a
effector interface and a reasoner. The reasoner inside an agent architecture might include
a knowledge base, workflow monitor, or planner.

Agent Complexity: The level of interaction sophisticatation and computational complexity of the
internal agent architecture.

Agent Environment: See Enivornment.

Agent Framework: A software component that supports the execution of agents. In some agent
systems, the agent framework may be trivial, if the agents run natively on the platform (as
opposed to in a virtual machine or some other local execution environment). However, most
agent systems are based on a framework that supports key functionality commonly needed
by all agents, such as services for migration, agent messaging, and matchmaking.

10

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Agent Framework Architecture: The structure for the design of an agent framework, including
implementation specifics of how the required and optional functional components of the
agent framework are to be implemented and inter-connected.

Agent Group: A set of one or more agents.

Agent Infrastructure/Infrastructure: The combination of the host and platform on which the
agent framework and agents execute.

Agent Messaging: The means by which agents communicate. Agent messaging is sometimes
implemented by deploying a class of mobile agents to act as a message delivery system. In
some domains and agent system architectures, reliable message delivery is not ensured (or
even feasible). The OSI reference model provides a general framework for discussing these
communications.

Agent Organization: An arrangement of communications and interaction constraints among agents
in an agent group. Examples of agent organizations include peer-to-peer and hierarchical
structures.

Agent System: A system in which the functionality is implemented by one or more agents.

Agent System Architecture: The structure for the design of an entire agent system, including
how agents interact, configuration of infrastructure and selection of frameworks.

Agent Team: An agent group in which all of the agents have common goals.

Agent-Based System: A system that includes agents as a substantial aspect of its functionality.
Note an agent system is necessarily agent-based, but an agent-based system may include
other systems not based on agents.

Architecture: A set of abstract patterns that dictate the design of a software system.

Autonomy/Autonomous: The characteristic of being self-sufficient, independent, or self-controlling.

Belief: An agent’s position as to the state of a proposition, usually influenced by its Perceptions.

BNF: The “Backus Naur Form” of a grammar description, based on terminal and nonterminal
definitions.

Class: Throughout the majority of this document, this term refers to a group of system compo-
nents (usually agents) that can be grouped together as possessing common characteristics.
In places this term refers to the accepted Software Engineering definition: an object-oriented
software component consisting of a collection of methods and variables that may be instan-
tiated as an object.

Communication: The transmission of information between entities (e.g. agents). In the case of
stigmergic systems, such transmission might occur through an intermediary medium, such
as the environment.

Version 1.0a 11 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Complexity: Complexity refers to the cost, in time or space, of a system.

Composition: The act or result of combining similar objects to increase complexity (and thereby
expressivity). Examples of such objects include data types within a language, plans, and
ontologies.

Concept: A software entity comprised of one or more components that performs a high-level
business logic function within a software system.

Conformance: See Section 1.6.

Consistent: The state of a set of propositions containing no contradictions.

Continuous: A continuous function or activity is one that can be divided into arbitrarily small
units or components. For example, time is a continuous parameter in the environment of an
agent-based system.

Control: Deals with the behavior of dynamical systems, built of agents, over time.

Controller/Agent Controller: The software that handles the internal processing for an individual
agent, mapping its sensory inputs into output by its effectors.

Cooperative: The state of being helpful not only to one’s self, but also others. Note that coopera-
tion does not imply that the collective behavior is globally optimal.

Decide: To decide is to render a yes-no answer to a specific query or input (e.g. a theoretical
computer science decision problem such as boolean satisfiability (SAT)).

Desire: A state or property of the world that an agent may want to be or be true.

Deterministic: A process that contains no random chance. The outcome of a deterministic process
is always predictable, given a description of the process and the state of the world.

Dynamic Analysis: Methods for analyzing software code by processing run-time statistics.

Effector Interface: The interface or API through which an agent acts on the outside world, in-
cluding the transmission of messages to other agents.

Encryption: A security mechanism that encodes messages in order to make them prohibitively
difficult to interpret by unauthorized parties. This process often involves a function based on
a shared secret or certificate.

Environment: The world in which an agent is situated from the point of view of the agent. The
agent senses and affects its environment through its actions. The environment may be virtual,
such as a logical view of the World Wide Web or an virtual market for a combinatoral auction.
The environment may also be an abstraction for the physical world, such as a computer
network or robotic domain.

Framework: See Agent Framework.

Version 1.0a 12 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Functional Decomposition: A model of a system or architecture in which each “block” (i.e.
component) is described without “and” or “or” qualifiers.

Goal: A desire an agent intends to fulfill.

Heterogeneous: Of different types or kinds. A group of agents is heterogeneous if it includes
agents from at least two different agent frameworks.

Hierarchy: An organizational structure, often used for ranking, that utilizes an n-tier schema,
with each tier serving as the “parent” to the tier(s) below.

Homogeneous: Of the same types or kind. A group of agents is homogeneous if they are all
based on the same agent framework.

Host: A physical computing device on which the platform resides and the agent framework exists
and executes.

Inference: A proposition drawn from (or implied by) another that is admitted or supposed to be
true.

Intelligent Agent: This document makes little distinction between agents, as a general concept,
and intelligent agents. Hence, an intelligent agent is simply an agent for purposes of this
document.

Intent: A commitment toward an Action or sequence of actions.

Interact: The act of invoking behavior in or sharing data with another software entity.

Interactivity: Mutually or reciprocally active; of, relating to, or being a two-way electronic com-
munication system.

Itinerary: An ordered set of Hosts to which a Mobile Agent attempts to Migrate.

Knowledge Base: A set of representations of facts about the world.

Layer: An abstraction that is used to partition a system into more independent and cohesive com-
ponents.

Legacy Software: Software systems at the end of their development life cycle. They are often
expensive to maintain but even more expensive or risky to re-write.

MANET: See Mobile Ad-hoc Network.

MAS: See Multi-Agent System.

Matchmaker: An agent or service capable of conducting matchmaking.

Matchmaking: The act of pairing agents and/or services with each other. This is usually moti-
vated by fulfilling a needed capability. Given a description of such a capability, a match-
maker must pair the requester with an agent or service that provides the capability.

Version 1.0a 13 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Mediator: A facilitator of agent interoperability that helps to identify conflicts in agent behavior
or language and provides translation or conflict resolution services to the conflicting agents.

Message: An encapsulation of information containing enough meta-data to be transmitted from its
source to one or more ultimate destinations, according to some level of Quality of Service.
For example, a message between agents communicating over the Internet might contain the
IP addresses of both the sender and the recipient. On the other hand, agents in a stigmer-
gic system might use pheromones as messages, in which case the ultimate recipient of the
messages might neither be known nor required at the time of transmission.

Migration: The process of pausing agent execution, serializing the state of the agent, traveling
over the network and resuming execution on a new host.

Mobile Ad-hoc Network: A network in which each host acts as a router. Hosts may be capable
of moving, allowing the possibility of a dynamic network topology. Since each host can
communicate with its immediate neighbors, routing algorithms and mechanisms are required
for global connectivity.

Mobile Agent: An agent capable of migrating from one host to another.

Module: A software component containing a set of subprograms and data structures/classes in a
group.

Multi-Agent System: An Agent System composed of multiple agents, possibly distributed, and
possibly implemented on different architectures.

Network: A physical, hardware, and software medium through which agents are capable of mes-
saging and migrating. In most networks, there is no guarantee of communication between
all pairs of agents. In such instances, messages must be routed between agents for complete
connectivity.

Observable: A form of decision process in which the agent has complete information regarding
its state and environment when making its decision.

Operating System: The software system responsible for providing platform-level services to the
agents.

Operational Abstraction: A formal mathematical description of the observed behavior of a soft-
ware system.

Package: A software component in which related classes and interfaces are grouped.

Packet: The network’s encapsulation of information. There is not necessarily a one-to-one map-
ping between packets and the information (i.e. messages) they transmit; a message may be
split into multiple packets for delivery. Likewise, a single packet might contain parts of
multiple messages.

Partially Observable: A form of decision process in which the agent does not have complete
information regarding its state and environment when making its decision.

Version 1.0a 14 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Partial Order: The state in which a list of elements are not necessarily ordered with respect to
each other. This term is usually used in reference to the ordering of steps/tasks in a Plan.

Perception: An atomic unit of information gleaned from the Environment.

Permissions Manager: The host or mechanism responsible for trust management in the system.
The permissions manager ensures that an agent or host is authorized to perform its requested
actions at any given time.

Physical World: The complete world in which the agent is situated, including the host, platform,
framework, geography, etc. For example, for a agent embodied in a robot that has to navigate
a room, the room would be part of the world in which the agent is situated.

Plan: A course of action, usually devised to achieve a goal. Usually, a plan consists of a set of
states that need not be totally ordered.

See Partial Order. Each state consists of a set of propositions, including preconditions and
postconditions. Plans can be defined for both individual agents and collectives.

Planner: A program, or agent, that is able to generate a Plan.

Platform: The collection of all of the software resources atop of which the Agent Framework
and agents run. Note that software other than the agents and agent framework may run on
the platform.

Proactivity (or Proactive): Acting in anticipation of future problems, needs, or changes.

Quality of Service: A guaranteed level of performance in the transfer of information [52]. Ab-
stractly, QoS is considered a contract between two nodes in a network. The contract can even
span multiple layers of the OSI reference model [74]; for example, the transport layer might
guarantee a lower bound on available bandwidth to a streaming video program running on
the application layer.

Reverse Engineering: The analysis of software systems by extracting artifacts and functionality
from an existing system.

Routing: Abstractly, the process of choosing the next entity to which to forward an object. This
is usually used in terms of networking, in which case it is the process of chosing the next
network Host in the path of a Packet to its destination. In the case of Mobile Agents, this
is means by which an Itinerary is created.

Security: Policies and procedures that enforce authentication, authorization, trust management,
and access limits among the agents.

Self-Interested: A property of agent interaction in which an agent selects actions based upon its
own utility, as opposed to the utility provided to other agents.

Semantics (or Semantic): The meanings of that which is represented by a formal abstraction
(i.e. according to a syntax).

Version 1.0a 15 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Semantic Web Service: A service that uses Semantic Web standards to describe its capabilities
and for others to access its outputs.

Sensor Interface: The interface or API through which an agent receives input from the outside
world, including the receiving of messages to other agents.

Service: A continuous computing process acting largely in response to requests from agents or
other services. Examples include a database, a form on the World Wide Web, or a sensor
interface.

Situated: Instantiated within an environment or physical world which may be sensed and acted
upon.

Socket: The combination of an IP address, a protocol, and a port number [59, 60].

Software Agent: A type of agent without a physical embodiment; a program. This in contrast to
a human user or robot, which are also agents. Nonetheless, a robot’s control software may
be constructed out of a set of software agents.

Software Component: The software equivalent of “Hardware Component:” a loosely-defined
term that refers to any piece of software that encapsulates functionality. Examples include
objects (e.g. classes), architectures, frameworks, and design patterns.

Standard: A basis for comparison; a reference point against which implementations are evaluated
and validated.

Static Analysis: Methods for analyzing software strictly from the source code.

Stochastic: A process whose outcome is not predictable with absolute certainty.

Stream: A sequence of communicated bits, often over the network, on a file system, or looped on
a local host.

Syntax: Formalisms (e.g. rules and relations) that govern the valid structure of sentences within a
language.

Task: Relating to an event or an activity needed as a pre-requisite to achieve one or more goals.

Tier: This partition of an agent software system defines a physical or logical layer of abstraction
within the system. Tier is used in the same context as it is in the ISO model.

UML: The Unified Modeling Language is an open object modeling and specification language.
Software engineers may use UML to specify software architectures.

View: An architecture description of a software system in a particular context that is relevant to a
group of stakeholders, including developers, business-persons, customers, etc.

Web Service: A service that uses W3C standards for the WWW (HTTP, UDDI, etc).

Version 1.0a 16 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Workflow: A series of tasks that serve as sub-goals toward an agent’s objective. Workflows are
defined by either an individual agent or by a management and control agent.

Wrapper: Software that provides a layer of abstraction above or interface to another piece of
software. Agents are often used as wrappers to add intelligence and control to existing
applications.

2.2 UML Graphical Notation

The Unified Modeling Language (UML) is used to generate most illustrations in this document.
UML is an Object Management Group (OMG) standard for modeling software architecture, be-
havior, and processes. UML is used to create diagrams that show levels of abstraction appropriate
to a reference model in a formal, well-defined way, while maintaining widely-accepted readability
of the diagram.

A subset of the Unified Modeling Language is chosen to formally describe behavioral and the
structural components of agent systems. Each diagram contains entities and relationships appro-
priate to those entities. These relationships are intuitive; for example, inheritance, containment,
and “uses” relationships exist among components in many UML descriptions. These diagrams can
contain numerous stencils and illustrations; a brief description of the most important stencils is
presented in this section.

Entities and Relationships. Each of the diagrams presents a set of relevant UML entities. De-
pending on the diagram, these entities may represent artifacts including actions, actors, processes,
products, etc. The meaning of the entities is described within the context of the diagram. For exam-
ple, use cases present certain entities, while component diagrams present other entities; although
the two diagrams may describe the same system, they do so from different perspectives because of
the entities appropriate to the diagram.

In each diagram, there also may exist relationships between the entities. These relationships are
depicted as lines and arrows between the entities. The meaning of these relationships depends on
the context of the diagram. For example, a process diagram’s relationships indicates data flow or
temporal ordering of events, whereas a component diagram’s relationships indicates coupling via
data sharing, a method call, or data flow. In situations where further description is appropriate to
add meaning to the relationships, they are indicated via a�caption� within brackets as shown.

2.2.1 Use Case

The use case UML subset contains actors, use cases, and relationships. Use cases are described by
the oval figures in the diagram, and the relationships may vary from use case to use case. Use cases
are carried out by one or more actors, described by the stick figure stencil. Relationships include
general relations (solid lines), extends, and includes relations. These relations are indicated with
dashed lines and a qualifier in angle brackets. See Figure 2.1.

In this discussion, use cases represent the Scenarios view of agent software systems.

Version 1.0a 17 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

ExtensionPoint
Extension Points

UseCase 1
UseCase 2

Actor

UseCase 3

<<Extend>>

Figure 2.1: Use Case Diagram Legend.

2.2.2 Activity Diagram

Activity diagrams, among others, use Activities to represent high level business-model level pro-
cesses that take place in the system. These Activities contain Actions that represent the smaller,
more focused behaviors that take place to achieve that business process. The result is a flow chart
that forks and joins (represented by the black bars) arbitrarily. Start and end points on the flow
chart are represented by a solid circle and concentric circles, respectively. See Figure 2.2.

To partition execution modeled by an Activity diagram, swimlanes are used. Swimlanes show
various Activities executing in parallel or in sequence by multiple actors. It is a way of separating
the description into its associated processes. Anything that is appropriate for the diagram may be
contained within a swimlane. In Figure 2.2, these swimlanes are depicted via partitions.

In this discussion, Activity Diagrams represent the Logical view of agent software systems.

2.2.3 Sequence Diagram

Sequence diagrams show a timeline of events. Lifelines represent particular processes in the sys-
tem, with the blue vertical bars below them indicating relative times during which process is ac-
tively executing. Communication is achieved through message passing (the arrows between the
Lifelines), and these messages can represent recursive or returning execution via messages passed
within a lifeline, as shown in Message 1 on LifeLine2. See Figure 2.3.

In this discussion, Sequence Diagrams represent the Process view of agent software systems.

2.2.4 Component Diagram

Component diagrams are typically used for static UML descriptions, and represent a higher level
object diagram. The entities in this diagram are components instead of objects, and they could
represent a collection of objects or an entire subsystem. Components, like objects, have inputs
and outputs (called ports) that are the basis for relationships between components. Relationships
include generalization (the solid arrow with a triangle), composition (the solid line with a con-
centric cross and circle), and a generic relation (the dashed arrow) that is usually qualified with a

Version 1.0a 18 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Action1

Action2 Action3

S
w
im
la
ne

S
w
im
la
ne

Action4 Action5

Action6 Action7

Figure 2.2: Activity Diagram Legend.

Version 1.0a 19 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

LifeLine2LifeLine

1:

2:

Figure 2.3: Sequence Diagram Legend.

Version 1.0a 20 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

description in angle brackets. Finally, Notes are represented in all diagrams by pieces of paper.
See Figure 2.4.

<<component>>
Component 1

<<component>>
Component 2

<<component>>
Component 3

Note

Figure 2.4: Component Diagram Legend.

In this discussion, Component Diagrams represent the Development view of agent software
systems. It should be noted that in typical 4+1 Model documentation (see Section 5.2), the Devel-
opment View represents a software system down to the object level of abstraction. This is certainly
possible using UML diagrams, but is too detailed for a reference model. Therefore, component
diagrams are used to illustrate development-level concepts in an agent software system. These
components are meant as an idealized example of a possible agent software system conforming to
the ASRM (described further in Section 6.1).

Version 1.0a 21 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2.2.5 Component
A Component is a class-level entity containing specific functionality to the system. For exam-
ple, Quality of Service metrics, Cryptography, and User Authentication are examples of system
components. They are the most concrete system components.

2.2.6 Example Implementation
An Example Implementation is an attribute of a Component. It provides more detail about a
component by showing domain specific possibilities for the component being described.

For example, Encryption could be considered a Component, but there are many ways to imple-
ment Encryption in a system. In fact, some implementations are more appropriate to a particular
domain than others. For instance, a public-key scheme is often desirable in multi user systems,
whereas a fast point-to-point solution might prefer a shared secret scheme. In either case, the
Encryption component is implemented, but there are a variety of ways to carry out that implemen-
tation.

In fact, this concept is central to any reference model. The most concrete components still
leave a great deal of choice to the developers regarding implementation. Implementation details
are intentionally excluded to allow for domain specificity. Instead, slightly to highly abstract views
that represent most agent systems in general are presented.

2.2.7 Subsystem
A Subsystem is a collection of components. These components interoperate closely to achieve
common or similar functionality. For example, a graph display subsystem contains a number of
components (or even other subsystems) to handle parsing the graphic, laying out the graph on
screen and physically drawing the pixels. These classes have much higher coupling with one
another than with other components in the system; therefore they comprise a subsystem.

2.2.8 Layer
A Layer is the most abstract system component. Layers are package-level components consisting
of Subsystems, forming a hierarchical view of the system. Layers are logically stacked on top
of one another, and interaction is implied in a top-down manner between adjacent layers of the
system. In other words, components existing in one layer may call or use components in the layer
directly below it, and return information to components in the layer directly above it.

For example, most operating system designs exhibit a layered structure. In the top layer, user-
interaction functionality exists and the user makes requests at a high level (i.e., open a file on
the screen). The top layer components send that request to the security layer below to check file
permissions, etc. The security layer calls components in the hardware layer to open the file from
disk and draw it on screen using the video card. The result is then passed back through the layers
to indicate to the user that the command completed successfully. In the event of an error that
is initiated at the lower layer (i.e., disk read error), this error is passed back to the top layer for
presentation to the user.

Version 1.0a 22 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2.2.9 Miscellaneous Diagrams
Other UML diagrams may be used to add clarity to the text or to the standard UML subset chosen
in this section. These diagrams show actors and other entities as slight variations to show that these
diagrams are generic and do not indicate data flow or behavior defined within the ASRM. As an
example, the Generic Business Actor (see Figure 2.5) is essentially the same as an actor, but it is
depicted differently to show that this is a generic role that is not specifically assumed by agents or
agent systems.

Generic Business Actor

Figure 2.5: Basic Diagram Legend.

2.2.10 Agent UML
Agent UML [45] (AUML) defines a new notation that uses UML as a guide for defining multi-agent
systems. This notation includes formal descriptions for agents, roles and group management. The
UML subset chosen for this document relies more heavily on standard UML notation, because this
document does not assume an understanding of agent groups and roles. Therefore, standard UML
notation provides a more primitive description of the concepts and components described. Once
these definitions are understood, they can be mapped to standards such as AUML.

Version 1.0a 23 November 20, 2006

Chapter 3

Agent System Concepts and Layers

This chapter begins to formalize and describe concepts for agent systems. It places agents within
the context of required infrastructure, and the larger computational and world environment. Sec-
tion 3.1 provides a definition of agents and their relationship to agent systems and their interaction
with the environment via this model. The layers of structure present in agent systems, mediating
between agents and their environment, are then described in Section 3.2. Section 3.3 relates this
structure to the OSI model for networking. Broad classifications of agents and agent systems in
terms of complexity and level of abstraction are defined in Section 3.4.

Several diagrams are used throughout this chapter and the remainder of the diagram to define
and explain these models. Figure 3.1 provides a legend to the symbols used in these figures.

aaaa

aaaa

Agents

Framework,
with agents

Hosts

Agent Frameworks
(denoted by color)

Relationships /
Interfaces

Component
(UML)

Data Flow

Agent
Communication

Layer

Agent System
Layer Agent Framework(s)

Figure 3.1: Legend for agent system figures and layer diagrams.

24

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Effector
Interface

Sensor
Interface

Controller

Agent Framework(s)

Platform(s)

Host(s)

Physical World

In
fra

st
ru

ct
ur

e

n-to-1

Agent-Based System

n-to-1

n-to-1

Agent

n-to-1

Agent
System

Figure 3.2: Abstract model of an agent system. Such systems decompose into several layers of
hardware and software that provide an operating context for agents, situated computational process
that sense and affect their environment. Note that the relationships across layers may be n-to-1.

3.1 What is Meant by Agent (i.e., What is an Agent?)
Software agents, sometimes called intelligent agents or simply “agents,” are situated computa-
tional processes—instantiated programs existing within an environment that they sense and effect.
Figure 3.2 portrays an abstract model of an agent and its relationship with the system and envi-
ronment in which it exists. An agent actively receives percepts, signals from the environment,
through a sensor interface. Though its response need not be externally observable at all times, an
agent may take actions through an effector interface that can manipulate and affect the environ-
ment. Importantly, the model does not commit sensor and effector interfaces to specific hardware
or software structure and form, but rather generically as dataflow in and out of an agent.

Being situated in an environment is a key property of agents, whether that environment be a
virtual (i.e., a file system or the World Wide Web) or a real world setting (i.e., a computer network,
a robotic system, or an image understanding system). Although the focus of this document is on
software agents, this does not preclude the possibility that an agent or collection of agents may be
embodied in the physical world, e.g., a sensor monitoring system or robot controller. In addition
to being situated in an environment, one or more of the following properties hold for any agent:

• Autonomous. Agents may perform their own decision-making, and need not necessarily
comply with commands and requests from other entities.

Version 1.0a 25 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Proactive. Agents need not wait for commands or requests and may initiate actions of their
own accord.

• Interactive. Agents may observably respond to external signals from the environment, e.g.
reacting to sensed percepts or exchanging messages.

Although many agents possess two or all of these properties, it is possible to construct agents
possessing of one but not the others. However, software that is not situated or does not hold one
of these properties forms a different class of software from agents. In particular, services, compu-
tational processes that exist to provide functionality for use by other processes, do not necessarily
exhibit these properties. While by definition interactive, services may have no significant ties to an
external environment. They are also infrequently associated with autonomy and proactivity. While
an agent may be or provide a service, a service is not in general an agent. Other properties that
may hold of an agent include:

• Continuous. Agents are typically a long-lived thread of execution. They are not spawned
and terminated for each individual task. As described later, specific agent technology may
provide support for preservation and resuscitation across restarts and other events.

• Social. Many agents interact significantly with other agents in achieving their tasks, a spe-
cialization of interactive agents. Social agents may be further classified with respect to the
relationship between their implicit and explicit priorities, preferences, and actions versus
those of other agents. Basic divisions along these lines include self-interested, adversarial,
and cooperative agents. Such agents may utilize many protocols and forms of discovery, co-
ordination, communication, and negotiation in their interactions, as discussed in Chapter 4.

• Mobile. Some agents are not static, fixed features of the operating environment. Robots may
physically move in the world; software agents may migrate between computing devices—
temporarily pausing execution, transferring to another host, and there continuing execution.
Mobility is further classified and described in Chapter 4.

Section 3.4 discusses several other properties in the context of multiple agents and overall
system applications. These include the level of reasoning individual agents conduct and the so-
phistication of the tasks they perform.

3.2 Infrastructure for Building and Supporting Agents
As computational processes, agents do not exist on their own but rather within computing software
and hardware providing them mechanisms to execute. Many agent implementations also require
substantial libraries and code modules. Further, agents frequently possess properties not found in
traditional software, such as mobility. Development and implementation of such software requires
significant infrastructure to provide core functionality agents may use in conducting their tasks.

An agent-based system comprises one or more agents designed to achieve a given function-
ality, along with the software and hardware supporting them. It is comprised of several layers as
shown in Figure 3.2 and described as follows:

Version 1.0a 26 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Agents implement the application, they achieve the intended functionality of the system.

• Frameworks provide functionality specific to agent software, acting as an interface or ab-
straction between the agents and the underlying layers. In some cases, the framework may
be trivial or merely conceptual. For example if it is merely a collection of system calls or
is compiled into the agents themselves. At one extreme, the a framework could even be
considered “null” or empty, such as in the case where agents are programmed directly into
hardware. This is consistent, since implementing their agents in such a way would be a con-
scious decision of the agent system designers. A virtual machine is an example of an agent
framework in the other extreme.

• Platforms provide more generic infrastructure from which frameworks and agents are con-
structed and executed. Items such as operating systems, compilers, and hardware drivers
make up the platforms of an agent system.

• Hosts are the computing devices on which the infrastructure and agents execute, along with
the hardware providing access to the world. This may range from common disk drives and
displays to more specialized hardware such as GPS receivers or robotic effectors.

• Environment is the world in which the infrastructure and agents exist. This may include
physical elements, such as the network connections between hosts, as well as computational
elements, such as web pages the agents may access.

An agent system is simply a set of frameworks and agents that execute in them. A multi-agent
system is an agent-based system that includes more than one agent. Such systems may consist of
many agents running within a single framework instantiation, or in different frameworks, on differ-
ent hosts, etc. A conceptual example is shown in Figure 3.3 of an agent-based system that extends
over several hosts. Figure 3.4 shows another example, of devices in the agent system connected at
the host layer via wireless networking, transmitting and receiving signals in the environment of the
physical world. With respect to the ASRM, communications are abstracted at the platform layer by
operating system and network software, e.g. routing tables. At the framework layer, each platform
has one or more executing frameworks. Each framework instantiation then may be associated with
many currently executing agents in the agent layer.

Taken together, the hosts and platforms of an agent system define the infrastructure that pro-
vides fundamental services and operating context on which frameworks are constructed. Frame-
works and infrastructures mediate between agents and the external environment, and therefore
between agents, providing for both execution and access to the world. Figure 3.5 provides several
examples of current technology mapped onto these layers.

In general, this document does not distinguish between instantiations of elements and their
type except when it is important. For example, the distinction between an agent program’s source
code and an executing instantiation of that program is only drawn when necessary. However, each
agent system layer explicitly supports multiple entities above it—a framework may be executing a
multitude of agents, a platform may contain several frameworks, and so on.

Version 1.0a 27 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

In
fra

st
ru

ct
ur

e

Effector
Interface

Sensor
Interface

Controller

Agent Framework #1

Platform #1

Host #1

Physical World #1

Agent-Based System

Agent

Agent
System

Effector
Interface

Sensor
Interface

Controller

Agent Framework #2

In
fra

st
ru

ct
ur

e

n-to-1

Agent

Effector
Interface

Sensor
Interface

Controller

Agent Framework #3

Platform #2

Agent

Effector
Interface

Sensor
Interface

Controller

Agent

….. …..
Effector
Interface

Sensor
Interface

Controller

Agent Framework #4

Platform #3

Host #2

Agent

Figure 3.3: Agents and agent frameworks are often part of larger systems. Such larger systems
are called agent-based systems and encompass all of the different agents, frameworks, platforms
(along with their non-agent software) and hosts needed to deliver the functionality of the system.

3.3 Communication Among Agents
Communication among agents is a critical aspect of many agent systems. As such, the existing
Open Systems Interconnection (OSI ISO 7498:1984) reference model is applicable to describing
communication among and between agents. As agents are situated within a system, they make use
of its communication components. There are several distinct ways in which an agent framework’s
communication components can be mapped to the OSI reference model.

Figure 3.6(a) shows the established OSI 7 layer communications model. In this model,1

• The Physical layer (Layer 1) defines all the electrical and physical specifications for devices
and their major functions, including tasks such as establishment and termination of a connec-
tion to a communications medium; contention resolution and flow control; and modulation
between the representation of digital data in user equipment and the corresponding signals
transmitted over a communications channel.

• The Data Link layer (Layer 2) provides the functional and procedural means to transfer
data between network entities and to detect and possibly correct errors that may occur in
the Physical layer. Any addressing scheme at this layer is physical, which means that the
addresses (e.g., MAC address) are hard-coded into the network hardware and the addressing
scheme is flat. This is the layer where bridges and switches operate.

• The Network layer (Layer 3) provides the functional and procedural means of transferring
variable length data sequences from a source to a destination via one or more networks
while maintaining the quality of service requested by the Transport layer (Layer 4). The
Network layer performs network routing, flow control, segmentation/de-segmentation, and
error control functions. Traditional hardware routers operate at this layer, for example. The
best known example of a layer 3 protocol is the Internet Protocol (IP).

• The Transport layer (Layer 4) provides transparent transfer of data between end users, thus
relieving the upper layers from any concern with providing reliable and cost-effective data

1Information abstracted directly from the ISO OSI Standard and Wikipedia.

Version 1.0a 28 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 3.4: Agents are depicted as computational processes running within frameworks supported
by platforms and executing on hosts operating together on some network.

Version 1.0a 29 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Agent Framework(s)

Platform(s)

Host(s)

In
fra

st
ru

ct
ur

e
Examples

Jade
COUGAAR
Nomads

OS (Windows, Linux, etc)
Software (compiler, VMs, etc)
Device drivers, firmware, etc
Computing Node (PC, PDA, Cell phone, etc)
Devices (network cards, cameras, GPS,
robotic actuators, sonars, etc)

etc...

Figure 3.5: Examples of current technologies (circa 2006) mapped onto different layers of agent
systems as presented in Figure 3.2.

transfer. The transport layer controls the reliability of a given link. Some protocols are state
and connection-oriented, implying that the transport layer keeps track of the packets and
retransmits those that fail. The best known example of a layer 4 protocol is TCP.

• The Session layer (Layer 5) provides the mechanism for managing the dialogue between
end-user application processes. It provides for either duplex or half-duplex operation and
establishes check-pointing, adjournment, termination, and restart procedures.

• The Presentation layer (Layer 6) relieves the Application layer of concern regarding syn-
tactical differences in data representation within the end-user systems. MIME encoding,
data compression, encryption, and similar manipulation of the presentation of data is imple-
mented at this layer. Examples: converting an EBCDIC-coded text file to an ASCII-coded
file, or serializing objects and other data structures into and out of XML.

• The Application layer (Layer 7) provides services that facilitate communication between
software applications and lower-layer network services so that the network can interpret an
application’s request and, in turn, the application can interpret data sent from the network.
Through application layer protocols, software applications negotiate their formatting, proce-
dural, security, synchronization, and other requirements with the network. Some common
Application layer protocols are HTTP, SMTP, FTP and Telnet.

Figure 3.6(b) shows one way (perhaps the most common in practice) that the OSI layered
model is related to the agent systems reference model. In this view, agents and agent frameworks
exist entirely at the application layer. The agent platform and host (i.e., the agent infrastructure)
interfaces with the other layers of the the OSI stack and agents are largely insulated from needing
to process information at these layers. However, it is conceivable that designers of agent systems
may wish to have their agents interact with and operate in the OSI layers 1-to-6. This option is not
precluded in the current reference model. For designers of such agents (i.e., an agent for OSI layer
2), the agent framework needs to provide APIs or other means for the executing agents to sense
and effect operations at these layers.

Alternative mappings between the ASRM and the OSI layers can be made if one considers
possible configurations in which agent and agent frameworks assume the responsibilities for the

Version 1.0a 30 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Application Application

Agent Framework Y

Physical World

Host

Platform(s)

Effector
Interface

Sensor
Interface

Controller

Agent Framework(s)

Physical World

Agent

Application
Presentation
Session
Transport
Network
Data Link
Physical

` `

Application
Presentation

Session
Transport

Network
Data Link
Physical

Physical World

Host A Host B

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host B
Agent 2

Agent Framework X

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host A
Agent 1

Agent
Framework Y

Physical World

Presentation

Session

Transport

Network

Data Link

Physical

Host
 B Agent 2

Agent
Framework X

Presentation

Session

Transport

Network

Data Link

Physical

Host
 A Agent 1

(a) 7 Layer OSI Model.

Application Application

Agent Framework Y

Physical World

Host

Platform(s)

Effector
Interface

Sensor
Interface

Controller

Agent Framework(s)

Physical World

Agent

Application
Presentation
Session
Transport
Network
Data Link
Physical

` `

Application
Presentation

Session
Transport

Network
Data Link
Physical

Physical World

Host A Host B

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host B
Agent 2

Agent Framework X

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host A
Agent 1

Agent
Framework Y

Physical World

Presentation

Session

Transport

Network

Data Link

Physical

Host
 B Agent 2

Agent
Framework X

Presentation

Session

Transport

Network

Data Link

Physical

Host
 A Agent 1

(b) Agent systems within the OSI model.

Figure 3.6: Agent systems often fit nicely within the application layer of the OSI reference model.
A typical example is shown above; however, the agent system is not required to reside at this layer.

lower layers on the OSI stack. For an extreme example, one could envision each agent as a separate
entity that must communicate with other agents. In which case the Physical layer of the OSI
reference model can be mapped directly to the Sensor Interface and Effector Interface of each agent
(i.e., Figure 3.2), with the functionality of the other layers encoded inside the Agent Controller. A
simple example of this case is in the situation of robotic entities (i.e., the vacuum cleaner world
described in exercise 2.5 on page 51 of [61]) communicating stigmergically through their physical
environment.

Other relevant mappings between the ASRM and OSI model include:

• Protocols such as KQML, when implemented at the framework or agent layer, could be used
to serve a similar purpose for agents as TCP/IP serves for host communications.

• Serialization, or other encoding needed for agent mobility, may be considered a Presentation
layer functionality and be provided by the agent framework.

• Individual agents could encode or encrypt their own messages, hence assuming the function-
ality of the Presentation layer.

• Agent negotiation and auction protocols are special communications protocols. For certain
kinds of auctions, the information flow patterns among the agents could be viewed as mes-
sage routing. Hence, agents could serve as routers and these protocols could be mapped to
the Network layer.

This list of configurations and mappings could be extended into a wide variety of permutations.
The conclusion is that there is no one way in which OSI can or should be mapped into ASRM;
however, certain mappings, once specified, can help to clarify the context and semantics of agent
communications within an agent-based system.

Version 1.0a 31 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Physical Logical Syntactic Semantic Human
Interface

Task

Reasoning

Fusion/Control

Sense/Effect

Model-Based

Operational Abstraction

In
te

rn
al

 C
o

m
p

le
xi

ty

Figure 3.7: Matrix of agent internal complexity and level of operational abstraction.

3.4 Classifying Agents

The complexity of an agent, and subsequently of a multi-agent system built of many agents, may
be viewed along at least two different aspects:

• Internal agent complexity. The sophistication of the agent’s internal reasoning. Agents
may be constructed from simple condition-action rules to elaborate deliberative models.

• Operational abstraction. A necessarily informal characterization of the level of problem or
task which an agent is intended to address in the world. This may range from simple signal
monitoring to human-level problems such as medical or mechanical diagnosis support.

These two aspects outline a classification of agents, as shown in Figure 3.7. Every individual
agent falls somewhere in this classification. However, the two axes are independent: an agent
might perform sophisticated reasoning about a primitive physical task, or might utilize a simple
mechanism to address an abstract problem. For example, an agent may perform very sophisti-
cated reasoning about low level networking decisions, or a very basic rule-based chat agent might
answer user queries in “natural language.” By classifying agent complexity, these axes also pro-
vide a complexity classification of a multi-agent system through an aggregation of the agents in its
community.

An agent of a particular level in either axis must possess capabilities of the lower levels. How-
ever, agents of disparate levels may interact freely. Further, note that these levels do not imply any
particular internal agent structure or implementation preference—an agent’s implementation need
not be explicitly broken into such levels. Internally an agent may be built in any fashion and use
any reasoning mechanisms. The following two subsections describe these axes in more detail.

3.4.1 Internal Agent Complexity

The internal complexity axis of Figure 3.7 is a leveling of increasingly sophisticated agent reason-
ing mechanisms:

Version 1.0a 32 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Sense/Effect agents are the simplest class of agents, reacting directly to basic environmental
stimuli. Examples include agents monitoring smoke detectors or executing stock market
limit orders.

• Fusion/Control agents integrate multiple environmental stimuli to create a decision. This
implies at minimum a method of weighting or prioritizing stimuli in choosing a response. It
does not imply a history or fusion of inputs over time. A spam filter agent judging received
mail agents by a weighted sum of several taboo word-list scans would be such an agent.

• Model-based agents fuse multiple inputs to produce and evolve a model of the world and
its change over time. This may be a simple record of past observations or may incorporate
predictions and estimations based on previous actions. For example, a just-in-time inven-
tory monitor may track demand over time to create a predictive model for use in evaluating
inventory levels and issuing resupply requests.

• Reasoning agents extend model-based mechanisms to plan over multiple actions or perform
a sequence of inferences. In addition to memory for tracking and developing world state,
reasoning agents implicitly or explicitly possess some notion of goals and a process or de-
termining actions evolving the current state under the agent’s world model to match those
goals. Agents involved in multi-step service interactions, such as searching and purchasing
from online merchants, may have to perform such reasoning when determining what prod-
ucts to consider purchasing and under what conditions to actually purchase those products,
authenticate themselves, provide payment information, etc.

• Task agents, in addition to having a notion of their own goals, model and reason using the
goals of other agents. At the end of this complexity spectrum, a task agent may interact with
a set of agents in achieving shared goals. Examples include coordinated robot maneuvers
and auction proxy-agents.

Of course, more sophisticated reasoning mechanisms are built on more primitive foundations.
Agents of a given layer therefore incorporate the underlying layers of internal complexity.

3.4.2 Operational Abstraction
The operational abstraction axis of Figure 3.7 captures the layers of application domains with
respect to the external world in which agents may be deployed:

• Physical agents receive raw stimuli from the physical world as their environmental percepts.
Examples include agents that monitor physical parameters such as signal strength on wireless
networking cards, or agents that receive camera or video input as raw pixel data. Percepts
are minimally pre-processed but may be either reacted to in that form, e.g. by a sense/effect
agent, or processed and refined, e.g. by a model-based agent. A smoke detector monitor is
an example of the former, and a video-processing face detector the latter.

• Logical agents receive primitive, abstracted input from the environment. A user clicking an
“OK”-button to dismiss a dialog window is an example of such input. An agent that polls

Version 1.0a 33 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

web servers for the existence of or updates to a given web page and looks for HTTP 304
(Not Modified) or 404 (Not Found) responses is an agent of the logical layer.

• Syntactic agents operate on structured or semi-structured input with a priori fixed meaning
and schema. As opposed to a physical agent receiving raw pixel signals from a camera, a
syntactic agent may be able to parse a variety of image or video formats. An agent that can
read and write XML2 data that may be exchanged with other agents capable of parsing and
generating the given schema is another example.

• Semantic agents have an understanding of the primitive elements and composition of data
objects they manipulate in their domain. In contrast to syntactic agents, semantic agents may
operate on syntactically unstructured data where the elements of the data object’s structure
or syntax have a priori fixed meaning and schema, rather than the data itself. An example
is scheduling agents exchanging calendars encoded in the W3C Ontology Web Language
(OWL)3. The syntactic structure of the content of such documents is more free form than
under an XML schema, and much meaning may remain implicit for the agent to infer.

• Human Interface agents are situated in an environment where they work in concert with a
human user. Examples include “paper-clip” agents, interactive proof-checkers, CAD/CAM
design aids, and medical diagnosis assistants. Presenting a graphical or other interface to
the user is neither sufficient nor necessary for inclusion in the class of human interface
agents. While many may include sophisticated cognitive interfaces, some may interact en-
tirely through stigmergy (shared observable effects on the environment). Rather, the key
element of a human interface agent is substantial, deliberate user interaction at a significant
level in the domain.

The above classifications are for single individual agents, but have implications for multi-agent
systems as well. These are further discussed in Section 3.5.

3.5 Multi-Agent System Structure
This section provides language and concepts for describing a system comprised of multiple agents.
Although systems comprised of a single agent fit within this reference model, many agent systems
of interest incorporate several agents where the goals of the agent system are achieved through
interactions between the individual agents. Properly designed, these interactions create much more
substantial functionality than that of any single agent.

3.5.1 Dimensions of Multi-Agent System Complexity
The primary dimensions for classifying multi-agent systems are shown in Figure 3.84. These axes
position systems based on the number of agent instantiations they include, the internal complexity

2http://www.w3.org/TR/REC-xml/
3http://www.w3.org/TR/owl-ref/
4This figure adapted from the DARPA TASK and DAML Program briefings.

Version 1.0a 34 November 20, 2006

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/owl-ref/

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 3.8: Dimensions of multi-agent system complexity.

Label Heterogeneity Number of Agents Internal Complexity
Monolithic System – Single High

Median System Mid Mid Mid
Swarm System Low High Low

Figure 3.9: Labels for common types of multi-agent systems.

of those agents, and the number of different types of agents. Classifications of internal agent
complexity are discussed in Section 3.4. Based on these dimensions, the following terms are
defined to describe common types of multi-agent systems. A tabular view of their positions on the
axes of Figure 3.8 is given in Figure 3.9.

• Monolithic System. An agent system consisting of a single agent of high internal complex-
ity. Such systems are close to traditional software, but incorporate notions of agent software
such as autonomy, proactivity, and continuity. Many are based on applications of artificial
intelligence topics such as machine learning, and logical or probabilistic deduction. Proxy
agents that conduct tasks for the user such as scanning the World Wide Web for prices and
making purchases to fill given specifications often fall under this category.

• Median System. Many multi-agent systems contain a set of moderately complex and hetero-
geneous agents. This approach to constructing agent systems is common in many domains
such as robotics, command and control, and personal assistants. Although it is not required,
these systems often employ mechanisms to facilitate coordination, cooperation, and resource
sharing that enable efficient and robust goal achievement.

• Swarm System. A multi-agent system comprised of many agents, often of a single or several
highly similar types, and frequently of low complexity. Individual swarm agents typically
act in very simple ways, with interesting overall system behaviors arising as the aggregate of
many repeated interactions through the large number of agents present. Swarms provide for
robustness and scalability due to a large degree of redundancy and the ability to introduce
more agents as necessary with relative ease.

Version 1.0a 35 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3.5.2 Structured Groups of Agents
A set of agents is collectively referred to as a group. In addition, a set of groups may also be
referred to as a group. The term multi-agent system is used to denote a group of agents plus
their supporting frameworks and infrastructure. A multi-agent system may consist of multiple
frameworks, executing across multiple hosts and each deploying multiple agents, each of which
may have different internal agent architectures of varying complexity.

The following terms are specializations of the generic group concept, based on the relationship
between the goals and behaviors of agents and groups of agents:

• A team is a group with a single or small number of common goals. Frequently, each agent or
group plays a particular role in solving a larger problem. These may include leadership and
manager roles. However, such structure is not necessary. For example, a team may also be a
swarm of homogeneous agents, each contributing in similar ways to the larger functionality.

• An organization is a group that interacts according to some structure, such as a hierarchy.
Each agent or group has a goal that may be independent of but not in conflict with the goals
of other agents and groups. Frequently the organization has a common overall goal, with
each member working to achieve subgoals of it.

• A society is a group that has a common set of laws, rules, policies, or conventions that
constrains behavior. Agents and groups contained therein do not necessarily have any goals
in common and may have goals in conflict.

• An agency is a group that specializes in providing expertise or enabling a service in a given
domain. There may be constraining policies, e.g. access control mechanisms or resource
scaling, and these agents and groups may be competing.

Typically these terms also have implication on the quantity of agents in the group. For example,
teams are often groups within an organization and organizations groups within a society.

3.5.3 Communication in Multi-Agent System Layers
Multi-agent systems are comprised of several communication and interaction layers corresponding
to the layers described in Section 3.2, as shown in Figure 3.10. Physical resources in the environ-
ment layer, such as cables, wireless signals, and network cards, allow devices in the host layer,
the dashed ovals, to exchange network traffic. This is abstracted at the platform layer by operating
system and network software as routing tables. At the framework layer, each platform may have
one or more executing frameworks, denoted by smaller solid ovals. Typically these instantiations
may pass messages between each other, as shown by the lines between framework instantiations.
Some agent systems may be equipped with framework gateways allowing the sharing of infor-
mation between instantiations of different frameworks. In turn, these inter- and intra-framework
links provide for agents within framework instantiations to communicate.

Version 1.0a 36 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 3.10: Communication may occur at multiple layers within an agent system. At each pro-
gressive layer, communication is rooted on and abstracts that of the underlying layers.

Version 1.0a 37 November 20, 2006

Chapter 4

Functional Concepts

This chapter presents a view of an agent system as a set of abstract functional concepts that support
overall system execution. For example, security and mobility are two abstract functional concepts
(among others) described. However before beginning, two comments are in order. First, our
use of the rather abstract term “concept” here is deliberate. The more concrete (and perhaps more
familiar) term “component” could be used, but this term is somewhat misleading because a function
often does not correspond directly to what engineers might think of as a component, i.e., a clearly
delineated piece of the system. Instead, a functional concept is something that emerges out of
complex interactions between pieces of software and hardware located in different layers of the
agent system.

Second, this chapter makes few prescriptions about whether and how each functional concept
is implemented. The way in which functional concepts are instantiated may vary significantly in
structure, complexity and sophistication across different agent system implementations. Indeed,
some agent systems may not even possess some of the functional concepts described. The aim
here is to describe what the function is in abstract terms so that one can determine if the function
exists in a given system, or to verify its existence if it is claimed to exist within a given system.

4.1 Agent Administration
Definition: Agent administration functionality a) facilitates and enables supervisory command
and control of agents and/or agent populations and b) allocates system resources to agents. Com-
mand and control involves instantiating agents, terminating agents, and inspecting agent state. Al-
locating system resources includes providing access control to CPUs, user interfaces, bandwidth
resources, etc.

Agent administration functionality may be implemented in various ways. For example, the
framework may perform all the administration functions directly, or there may be (multiple) agent(s)
in the agent layer that perform agent administration functions by commanding and controlling
other agents, or there may be elements of both approaches in a given system. For convenience of
exposition below, the term “administrator” encapsulates all the administration functions although
administration functions may not necessarily implemented with a single administrator.

To further facilitate the exposition of the following process model, consider as an example a
hypothetical system that uses agents to monitor message traffic on a communication network. The

38

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

number of agents required to perform adequate monitoring may be contingent upon the complexity
of the network topology or the priority of monitoring relative to other system goals. As both
the network topology and priority changes, an administrator is employed to manage the network
monitoring agents.
Process Model: Agent administration functionality is described by the following set of processes:

• Agent Creation. The act of instantiating or causing the creation of agents. In the example
above, the administrator may determine that there are too few network monitoring agents
to adequately maintain a minimum level of security. Therefore, new network monitoring
agents should be created.

• Agent Management. The process by which an agent is given an instruction or order. The
instructions or orders could come from human operators, or from other agents. For example,
if it is determined that the greatest security threat is over HTTP traffic, the administrator may
request that the network monitoring agents focus their analysis on HTTP traffic.

• Resource Control. The process by which an agent’s access to system resources is controlled.
For example, the administrator may determine that security is of less priority than CPU
usage. Therefore, it can reduce the available CPU time of the network monitoring agents.

• Agent Termination. The process by which agents are terminated (i.e., their execution is
permanently halted). For example, the administrator might determine that there are too many
network monitoring agents and decide to remove those in saturated regions of the network.

4.2 Security and Survivability
Definition: The purpose of security functionality is to prevent execution of undesirable actions by
entities from either within or outside the agent system while at the same time allowing execution of
desirable actions. The goal is for the system to be useful while remaining dependable in the face
of malice, error or accident.
Process Model: Security functionality is described by the following processes:

• Authentication. A process for identifying the entity requesting an action. Common exam-
ples include username/password credentials and use of public/private keys for digital signa-
tures.

• Authorization. A process for deciding whether the entity should be granted permission to
perform the requested action. A common example in file system security is maintenance of
a permission list for each file that specifies the allowable actions for a given user. Another
example includes a web server denying a request to to view a page, due to the user whose
credentials were used having insufficient permission.

• Enforcement. A process or mechanism for preventing the entity from executing the re-
quested action if authorization is denied, or for enabling such execution if authorization is
granted. A common example for preventing access to information is to encrypt it. Permission

Version 1.0a 39 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

to access the information is granted by providing the entity a decrypted copy or providing
the entity the means to decrypt it, e.g., the encryption key.

Some general technologies for achieving security include authorization models and mecha-
nisms; auditing and intrusion detection; cryptographic algorithms, protocols, services, and in-
frastructure; recovery and survivable operation; risk analysis; assurance including cryptanalysis
and formal methods; penetration technologies including viruses, Trojan horses, spoofing, sniffing,
cracking, and covert channels.

4.3 Mobility

M
ob

ile

C
om

pu
ta

tio
n

Mobile Code

Weak Mobility

Strong MobilityProcess
Migration

Agent Data
Migration

Figure 4.1: Axis of mobility features, adapted from [63].

Definition: Mobility functionality facilitates and enables migration of agents among frame-
work instances typically, though not necessarily, on different hosts. The goal is for the system to
utilize mobility to make the system more effective, efficient and robust.

Mobility functionality is useful if for example, the power level is low on a particular host and
an agent may wish to migrate to another host to stay alive. Or, an agent may need to communicate
at length with an agent on another host, and so it would more bandwidth-efficient for the agent to
migrate hosts rather than to send the communications over the network.

Version 1.0a 40 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

As shown in figure 4.1, mobility capabilities exist along three axis. The mobile state axis
represents the capability of the state of execution (such as the instruction counter) to migrate with
the agent. The mobile code axis represents the capability of code (byte code or platform specific)
to migrate with the agent. The mobile computation axis represents the capability of the state of
data members to migrate with the agent.

The four rounded corners in the figure represent how a framework can be classified, based on
the mobility support it provides. Process migration refers to the mobile state and mobile computa-
tion support, weak mobility refers to mobile code and mobile computation support, strong mobility
refers to mobile code, mobile state and mobile computation support. All classifications include
mobile computation support. Agent data migration refers to support only for mobile computation
support, and is the classification most contemporary agent frameworks.

Process Model: Mobility functionality is described by the following processes.

• Decision Procedure for Migration. A process for determining whether or not a migration
should occur. The decision procedure can be passive or active. Passive mobility occurs when
the decision to migrate is made outside the agent. For example, another agent, framework,
host, or management service may determine when and where the agent shall migrate. An
example of passive mobility is the Mobility Service provided by the Cougaar agent frame-
work. By contrast, Active Mobility occurs when the agent is in control of its own mobility,
and independently decides when and where it migrates. An example of Active Mobility is
the internal agent mobility functionality provided by Jade. In either case, it is decided that
the agent shall migrate, and a suitable destination is chosen.

• De-register, Halt, Serialize. Once an agent decides (or is notified) that it is migrating, it
must de-register from all of the directory services on the framework instantiation with which
it is registered. Then, it halts execution, and is serialized.

The serialization process involves persisting the agent’s data and/or state into a data structure.
This data structure is converted to packets or written to a buffer to prepare the agent for
migration. In an object-oriented language, the data that must be stored is the data members
of the object. Some frameworks may support storing other information, such as the point at
which execution stopped.

• Migrate. The process by which the serialized, non-executing agent leaves the source frame-
work instance and arrives at a destination framework instance. This does not necessarily
imply that the agent leaves the host; instead, the agent is changing the framework instance
on which it is executing. Recall that a host and platform may be housing multiple framework
instances, allowing for migration within a particular host. According to [73], mobility is also
recognized as an atomic function. As a result, agents in a mobile state are not executing and
cannot act until the agent resumes its behavior at the destination.

There is no requirement that an agent’s destination framework instance is different from
its source framework instance. That is, an agent could serialize and “migrate” to itself.
However, an agent system as a whole possesses mobility functionality if and only if it allows
agents to migrate among different framework instances.

Version 1.0a 41 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Deserialize, Re-Register and Resume. Corollary to serialization is the process by which
the agent, having arrived at its destination, is converted from its serialized state into the data
structure that it existed as on the sending host. The agent re-registers with the appropriate
directory services in use by this framework and resumes execution. As noted in the mo-
bility description, the agent can either resume execution where it stopped on the sending
framework instantiation or restart from the beginning, depending on the support given by the
framework.

Throughout the mobility process, exceptions can occur causing the mobility to fail. For exam-
ple, during the migration process, the target host may refuse the agent, or network communication
with the destination host may go down. Handling a failed migration is implementation specific. It
is left to the system implementation to handle and recover from such exceptions.

4.4 Conflict Management

Definition: Conflict management functionality facilitates and enables the management of interde-
pendencies between agents activities and decisions. The goal is to avoid incoherent and incompat-
ible activities, and system states in which resource contention or deadlock occur.

As an example, a framework may allow designation of superior/subordinate relationships be-
tween agents and provide generic conflict resolution services based on these relationships. The
Cougaar framework does this. Similarly, a framework may provide a multi-agent task planning
language, such as TAEMS [53], that can be used to reason about the interactions between agent
actions and to detect plan conflicts.

Process Model: Conflict management functionality is described by the following processes:

• Conflict avoidance A process or mechanism for preventing conflicts. Examples of such
processes include multi-agent planning algorithms (both on-line and off-line) that take care
to produce action plans that do not have conflicts.

• Conflict detection The process of determining when a conflict occurs or has occurred. One
example includes a plan execution monitoring algorithm that is able to sense when the ac-
tions of agents are in conflict. Another example includes performing logical inference over
different agents beliefs to determine when they are inconsistent with one another.

• Conflict resolution The process through which conflicts between agent activities are han-
dled. Negotiation, mediation and arbitration are common mechanisms for facilitating con-
flict resolution.

Some general technologies for conflict management in agent systems include argumentation
and negotiation, distributed constraint reasoning, game theory and mechanism design, multi-agent
planning, norms, social laws and teamwork models.

Version 1.0a 42 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.5 Messaging

Definition: Messaging functionality facilitates and enables information transfer among agents in
the system.

This concept is associated specifically with the mechanisms and processes involved in exchang-
ing information between agents. Although information exchange via messages can and often does
occur between other parts of the system—for example between an agent and its framework, be-
tween frameworks, between a host and its platform, etc.—such information transfer is not included
because it is in a sense at a lower level. The concept of messaging used here is at a higher level
than that associated with network traffic or inter-process communications.

Messaging involves a source, a channel and a message. Optionally, a receiver may be des-
ignated, models in which messages do not have a specific intended receiver are acceptable. For
example, signaling in the environment like smoke signaling, a light flashing Morse code, etc, are
examples of messaging where there is no designated receiver. Many other functional concepts such
as conflict management and logging may utilize messaging as a primitive building block. Other
functionality in support of concepts such as semantic interoperability and resource management
may be necessary to practically or effectively conduct messaging. However, messaging is defined
here as a stand-alone concept of its own right.

Process Model: The functionality is described by the following processes.

• Message Construction. The process through which a message is created, once a source
agent determines it wishes to deliver a particular message chosen from a finite or infinite set
of messages. No commitments are made here in regard to the form, structure or content of
a message. For the purposes of this model it is sufficient to discuss messages as an abstract
object. The information to be delivered is simply the fact that a particular message was
chosen from the set of all possible messages.

• Naming and Addressing. A mechanism for labeling the message with its intended desti-
nation or route. Directory white page services are a common mechanism to facilitate this
function. Broadcast, multicast and group messaging also all fit within this model.

• Transmission. The actual transport of the message over the channel. This may be a one-
shot transmission or a continuous stream. One common model is messaging an agent on
another host by going through the platform to the host’s network hardware, then out into the
environment (via wire or air), and back in symmetrically to the receiver.

• Receiving. The process for acquiring the transmitted information so that is usable by the
receiver. This may be as simple as pulling the message off of a queue or more elaborate,
e.g., going through a translator.

Some other areas of interest in messaging functionality include notions of best effort delivery,
QoS and guaranteed delivery/timeliness.

Version 1.0a 43 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.6 Logging
Definition: Logging functionality facilitates and enables information about events that occur dur-
ing agent system execution to be retained for subsequent inspection. This includes but does not
imply persistent long-term storage.

Logging is a supporting service providing informational, debugging or management informa-
tion about the agent system as it executes. It can be a centralized service or distributed amongst the
agents (wherein each agent performs its own logging). Logging services are often used to make
note of system-wide information or warnings produced by the agent or the agent system.
Process Model: Logging functionality is described by the following processes.

• Log Entry Generation The process by which logging information is created. For example,
a log entry may be a note of immediate importance regarding the system: for instance, a
damaged sensor or low battery life. The entry could be generated whenever an agent enters
a particular state or generated regularly to aid system status monitoring. While these entries
have different meanings and priorities, they can be generated in the same manner. Log entries
often include type (informational, warning, critical, among others) or priority (for instance,
priority 1 through 5). The entry and any attributes are packaged into a data structure for
writing.

• Storing Log Entry Log entries are stored in a variety of ways at the choosing of the im-
plementation of the agent system. For example, log entries can be written to a disk file on
a host, written to a network stream destined for another agent, simply stored in memory
for debugging purposes, or written to a generic stream with a defined destination. The log
message is optionally formatted, often into a textual description or a database format such as
XML.

• Accessing Log Entry The logging functionality must provide a mechanism for a human
user or agent to access the generated log entries. If the entry contained any attributes, such
as priority or type, they are also accessible. For example, if the agent is in a critical state, an
agent system management service or human intervention may be alerted to this by accessing
the log information. A log filter may also be available for facilitating listing and reading the
log entries.

4.7 Directory Services
Definition: Directory Services functionality facilitates and enables locating and accessing of
shared resources.

A directory is an abstraction allowing the naming and registration of resources enabling subse-
quent locating of and access to the resources. Examples of shared resources located and accessed
through a directory service include other agents or services. Directory services are often used to
locate agents and services with specific characteristics.
Process Model: Directory Services functionality is described by the following processes:

Version 1.0a 44 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Naming. The process by which resources are assigned identifiers so that they may be in-
dexed and located. This process can be fairly complex by supporting group names, transport
addresses, dynamic name resolution, and other complex features [72].

• Notification. The process by which new resources are added to and deleted from the di-
rectory. As resources dynamically become available and unavailable, the directory is kept
up-to-date via this notification process to maintain an accurate picture of the resources avail-
able in the system. When a new resource is added, the process often includes recording a
description or characteristics of the resource and a method for accessing it.

• Query Matching. The process by which resources are looked up in the directory. This
process often occurs in response to external requests for a resource and returns information
about how to access the requested resource. Queries can be specified in terms of the name
of the service (e.g., white pages directory) or by a service description (e.g., yellow pages
directory) [64].

Version 1.0a 45 November 20, 2006

Chapter 5

Software Engineering Methodology for
Creating a Reference Model

5.1 Creating the Reference Model
The traditional method for creating a reference model consists of three large phases:

• Capturing the essence of the abstracted system via concepts and components;
• Identifying software modules and grouping them into the concepts and components; and,
• Identifying or creating an implementation-specific design of the abstracted system

Reverse engineering and software analysis methods were employed to create the ASRM. By ap-
plying these methods, the process of creating a reference model is reversed. It is helpful and
informative to employ reverse engineering techniques as a means of performing “software foren-
sics” on existing (open-source and proprietary) agent systems and frameworks, due to the number
of such agent systems currently available. By performing some analysis, one obtains the software
modules that comprise the subject systems. Data is produced allowing the documentation and un-
derstanding of legacy software systems and for verification of existing software documentation.
This data is further abstracted to obtain this abstract “essence” of the systems. By grouping, ab-
stracting and querying this data in different ways, information is gleaned that simple observation
may not find.

Reverse engineering techniques determine both the structural and behavioral makeup of soft-
ware systems, including agent systems. The static analysis of the software system yields the struc-
tural components existing in the system, and the dynamic (behavioral) analysis shows how and
when these components are instantiated and used. Moreover, behavioral analysis shows the run-
time interactions between the components found during static analysis.

Reverse engineering techniques allow not only for identification of components within the
reference model, but also to identify both structural and behavioral similarity to the reference
model. Agent systems can be automatically observed at runtime and analyzed to find exactly
which components correlate with particular features offered by the agent framework. For example,
through dynamic analysis it is possible to show only those components that are related to agent
communication or migration. The result is a set of components that are mappable directly to the
reference model, validating its relevance to existing agent systems.

46

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5.2 Documenting the Reference Model: The 4+1 Model
According to [50], a comprehensive software architecture document provides a description of the
software system using various views. Views are architecture descriptions of a software system
in a particular context that is relevant to a group of stakeholders. Stakeholders may include de-
velopers, business-persons, customers, etc. Views illustrate system functional and non-functional
requirements from various perspectives, and may overlap with one another.

The 4+1 Model realizes the various types of component relationships that exist in software
systems. For example, an inheritance relationship between components is not the same as a data
flow or call graph relationship between components. Depending on the stakeholder, different rela-
tionships carry different weights and significance. For some, certain relationships are meaningless
and can be disregarded.

The views presented by the 4+1 Model are:

• Development View: the package or development layout of the system;
• Process View: runtime behavior of the system, including concurrency relationships and

ordered tasks carried out by components of the system;
• Physical View: the platform level view of a system, including servers and hardware require-

ments; and,
• Logical View: the static structural layout of the software system, including its object ori-

ented design.

Because these views may overlap or be somewhat disjoint, there exists a view that summarizes
all the other views in a cohesive way. This represents the “+1” view, called Scenarios. Scenarios
use UML use cases to represent the interactions between the 4 views, and cross cuts them to
aggregate the views into a software architecture. The remaining views are described in parallel
with the use cases, and are depicted using other UML notations described in Section 2.2.

This model allows for streamlined documentation of the software architecture, and standardizes
the metrics for measuring adherence to the architecture from various perspectives. Using the 4+1
model, Chapter 6 concentrates on analyzing systems from an aggregation and abstraction of these
views.

5.2.1 Reference Model, Reference Architecture, Design and Implementa-
tion Hierarchy

In the use case diagram described in Figure 5.1, dependency arrows show that the implementation
of a model derives from its design that derives from its reference architecture and that ultimately
derives from our reference model. Actors show how they relate in the various stages of software de-
velopment. A single reference model created by the agent systems community may drive software
architects to create multiple reference architectures. In turn, one of these architectures may cause
designers to create multiple system designs, each of which could have multiple implementations
created by computer programmers.

Because the ASRM describes agent systems on the whole, and not specific implementation
of agent systems, it is not appropriate to describe each of these four views independently of each

Version 1.0a 47 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Community

Architect

Designer

Programmer

Reference Model

Reference Architecture

Design

Implementation

<<derive>>

<<derive>>

<<derive>>

Figure 5.1: Hierarchy of Reference Model Abstraction

Version 1.0a 48 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

other. This is because the individual views describe specific systems at the implementation level,
and not at the level of abstraction of a reference model. Instead, Chapter 6 uses aggregate views
called “Structural Descriptions” (consisting of the Development View and the Physical View) and
“Behavioral Descriptions” (consisting of the Logical View, the Process View, and the “+1” Sce-
narios View).

5.3 Reverse Engineering Techniques for Informing a Reference
Model

Reverse Engineering (RE) is the analysis of software systems by extracting artifacts and func-
tionality from an existing system. Using Reverse Engineering techniques, one extracts software
components and their relationships through automated analysis of a system’s source code or run-
time behavior. Software components are basic software entities such as classes, collections of
classes, and packages. Relationships between components are one or more interactions that exist
between software components.

For example, two components might interact via a method call, by sharing data, or by aggregat-
ing one another through class inheritance or implementation; these are all examples of component
relationships. Components and relationships are often depicted using an entity-relationship (ER)
graph, in which components are referred to as entities or nodes and relationships are referred to as
edges between components.

One can further extract these inter-relationships by identifying the level of coupling (the amount
of relationships) and the type of relationships existing between components. It is often the case in
software systems that components are relatively loosely coupled, but are locally tightly coupled. In
other words, most components do not depend directly on one another on the whole, while related
components interact to achieve their common functionality.

For example, an Operating System might contain a collection of components for handling
graphical display, and a collection of components for handling disk operations. It is evident that
these collections tend to inter-operate strongly amongst themselves, yet little interaction takes place
between the collections themselves. Relationships that exist within a particular collection of com-
ponents are called internal relationships. On the other hand, relationships that exist between
collections of components are referred to as external relationships.

Collections of relationships, called clusters, are formed by grouping those components with a
high degree of coupling. This process may be repeated any number of times by further grouping
entire clusters based on their coupling. Software analysis tools exist to extract and to abstract data
from systems in this way. The end result is usually a hierarchical depiction of the software system,
in which clusters of clusters of components are shown.

This data may be static components such as classes and call graphs or it may be dynamic
components such as instantiation and data flow. In either case, the hierarchical result is ideal for
identifying subsystems that exist within a software system, such as disk access and graphic display,
as well as layers (collections of subsystems, or clusters of clusters) that comprise the system’s
architecture. For example, disk access and RAM access might be combined as part of a larger
memory management layer, and so on. By appropriately abstracting these layers, one uses Reverse
Engineering techniques to make a good hypothesis as to a generic architecture (called a reference

Version 1.0a 49 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

architecture) that comprises a class of software systems, such as Operating Systems. In addition,
RE validates and identifies discrepancies between that reference architecture and existing systems.

5.3.1 Static Analysis
Static analysis is the analysis of software using its source code as the primary artifact. The system
needs not be executing in order to obtain the appropriate data. Instead, source code or intermediate
code is inspected to find the software modules, data structures, data flow, methods and metrics
appropriate to the system.

This type of analysis yields many benefits, such as code-rewriting, vulnerability detection,
finite state machine verification, and abstracting a data repository for source code. For purposes
of the reference model, the primary goal is to use static analysis to produce a data repository from
code that can be queried to find the primary software subsystems. This facilitates the transition
from analyzing subject systems to identifying software modules that might fit the overall abstract
system defined by the reference architecture.

5.3.2 Dynamic Analysis
Dynamic analysis also collects data on software systems, but it does so by inspecting that system
during execution. This analysis varies widely by implementation, but one approach is to build a
data repository of program behavior. This repository holds information on data flow, object instan-
tiation, the call graph, interprocess communication, network or filesystem I/O activity, and so on.
This analysis assists the production of the reference model by providing more sophisticated justifi-
cation than is provided from static analysis alone. For example, static analysis relies somewhat on
the software architecture of the subject system. If the system contains a lot of “dead code” or other
obfuscated constructs, the static analysis results can be inaccurate and deficient in describing the
true structure of the system. Dynamic analysis inspects the system as it is running and often breaks
the system down into “features.” These features can be analogous to the relevant subsystems found
during static analysis. Moreover, dynamic analysis can obtain data on behavior-specific aspects of
the system such as threading and I/O, that could not otherwise be found simply using static analy-
sis techniques. Finally, dynamic analysis can assist in cases where source code is not available for
static analysis to be performed.

Version 1.0a 50 November 20, 2006

Chapter 6

Structural and Behavioral UML
Documentation of the Reference Model

This chapter illustrates the design, components, concepts and use cases associated with an “ide-
alized agent framework,” in which all common agent system components are implemented at the
framework layer. While this is not an ASRM requirement for agent systems, it provides a simpli-
fied baseline for discussion. This idealized framework is depicted via a formal UML description
of the reference model as a whole, using the UML subset described in Section 2.2. This example is
called an “idealized” agent framework to highlight these assumptions for purposes of discussion,
and to further illustrate that component implementation at any particular layer is not a requirement
of the ASRM.

The goal of the idealized agent framework is to describe components and functionality that
connects the agent(s) and the infrastructure. However, the ASRM does not preclude the imple-
mentation of those and other components within other layers of the system. In addition, it is
possible that layers of the agent system, including the framework, are arbitrarily small or even
non-existent.

6.1 Structural Descriptions: the Development View and the
Physical View

The Development and Physical Views comprise this structural UML description of the ASRM.
These descriptions use more abstract UML descriptions that traditional 4+1 structural descriptions
to match the appropriate level of abstraction found in a reference model. These descriptions do
not prescribe conformance to the ASRM; instead, an idealized example is provided including all
functionality defined by the reference model, implemented at the framework layer.

6.1.1 Development View
Figure 6.1 and 6.2 illustrate a structural breakdown of components and subsystems to implement
the functional concepts outlined in the ASRM. As mentioned, the ASRM does not prescribe actual
object-level implementation detail of these components; for example, one may implement Security

51

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Enforcement using RSA encryption, while another may take advantage of the operating system’s
file permissions structure. In this case, the ASRM does not even dictate the layer in which these
components are implemented; moreover, a particular agent system may be a superset or a subset
of these components. For the sake of discussion in a reference model, the implementation of these
components is idealized and placed at the framework layer.

Version 1.0a 52 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

<<Layer>>
Agent

<<Layer>>
Framework

Logging

Directory Services

Messaging

Conflict ManagementMobility

Security and Survivability

Effector

Sensor

Agent Administration

<<Layer>>
Infrastructure

Controller

<<access>>

<<access>>

Figure 6.1: MAS Packages

Version 1.0a 53 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Conflict Management

<<component>>
Conflict Resolution

<<component>>
Conflict Avoidance

Mediation Arbitration Negotiation

<<component>>
Conflict Detection

Logging

<<component>>
Accessing Log Entry

<<component>>
Log Entry Generation

<<component>>
Storing Log Entry

Messaging

<<component>>
Naming and Addressing

<<component>>
Receiving

<<component>>
Transmission

<<component>>
Message Construction

Mobility

<<component>>
De-Register, Halt and Serialize

<<component>>
Migrate

Security and Survivability

<<component>>
Enforcement

<<component>>
Decision Procedure for Migration

<<component>>
Authentication

<<component>>
Deserialize, Re-Register and Resume

<<component>>
Authorization

Agent Administration

<<component>>
Agent Creation

Directory Services

<<component>>
Notification

<<component>>
Naming

<<component>>
Agent Management

<<component>>
Agent Termination

<<component>>
Resource Control

<<component>>
Query Matching

Figure 6.2: Framework Packages

Version 1.0a 54 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

6.1.2 Physical View
Whereas the Development View describes the functional concepts in an agent system, the Physical
View describes the deployment layers also described in the ASRM. A functional description of
these layers is given in Figure 6.1, and their deployment is shown in Figure 6.3. These layers are
described in the ASRM, and allow for a heterogeneous suite of agents to exist in a physical envi-
ronment. In this diagram, agents are grouped by their framework but may be physically scattered
throughout a network.

<<component>>
Agent

<<component>>
Agent

<<component>>
Agent Framework

<<component>>
Agent Framework

<<component>>
Platform

<<component>>
Platform

<<component>>
Host

<<component>>
Host

Hosts exist in the physical world

1

*

*

1

*

1

**

1

*

1

*

1

*

Figure 6.3: Agent System Layers

6.2 Behavioral Descriptions: the Logical View, Process View,
and Use Case Scenarios

Complex computer systems require a standard method of documenting their purpose and design.
UML provides such standard methods for describing this functionality from different perspectives

Version 1.0a 55 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

and levels of detail, including use cases, activity diagrams, and sequence diagrams. These three
diagrams make up the UML behavioral descriptions, covering a coherent unit of functionality de-
scribing the interaction between an actor and a service provider. An actor is a human, computer, or
another object. A service provider is one or more systems, subsystems, components, or actors. The
purpose of these diagrams is to define a piece of behavior without revealing the internal structure
of the behavior’s implementation to various extents.

Use cases define the problem to be solved. These use cases are referred to as scenarios. Ac-
cording to [36], “a scenario is a sequence of steps describing an interaction between a user (the
actor and a system.” Actors are not just the users but also the roles that the user(s) take on. The
system is the collective of components and concepts that exist therein. Activity and sequence dia-
grams define what is expected of the actors, a timeline of the actions taken and responses received,
and any error conditions that may exist. Interactions between behaviors within the system are
primarily illustrated as messages passed or relationships between the behavior and the actors.

Our scenarios are described through the following UML descriptions:

• Use Case. Use cases are diagrams that show high level processes that the system’s function-
ality encompasses. They show interactions within the system and between users (“actors”)
and the system.

• Activity Diagram. Activity diagrams show system functionality as a business process
model. Activity diagrams contain or elaborate use cases by assigning “swimlanes” to the
actors. They show how the functionality of different system entities is related through deci-
sion cycles. Essentially, activity diagrams show interactions among the use cases.

• Sequence Diagram. A sequence diagram depicts system interactions in a more detailed way.
Often, sequence diagrams illustrate the system at the object and method level; however, for
purposes of the reference model, sequence diagrams elaborate upon the activity diagram.

For more information and a legend, see Section 2.2.
In the context of a multi-agent system, actors are not limited to human users, but the agents

themselves. As a result, these use cases serve as a mapping between concepts within an agent
system and the layers in which they might exist. As the ASRM does not mandate bindings be-
tween specific concepts and layers, many use cases may exist for the same function. These use
cases present hypothetical and representative scenarios exercising the major concepts of an agent
system in a particular way. The ASRM emphasizes for discussion the situation in which agent
functionality is located at the framework layer; therefore, many of the use cases here illustrates
this model.

6.2.1 Agent Society
As defined in section 3.5.2, a group of agents is any collection of agents. A number of terms
describe groups of agents with particular properties. An agent society is a cultural grouping of
agents based on a common set of laws, rules or policies. An agency is a more fine-grained group
of agents that specializes in expertise or enabling a service in a given domain. An agent team is a
group of agents that share a common goal or goals.

Each of the processes described in subsection 7.2.2 is an agency consisting of similar agents
interoperating towards their objective. Each agency contains other agencies that comprise the

Version 1.0a 56 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

phases of the subprocess they represent. The agents are fully interoperable within the agency and
across agencies.

These processes are abstracted to generic interoperable agencies to illustrate how these pro-
cesses can be implemented by a multiagent system within the context of the ASRM.

6.2.2 Initializing an Agent System

Form
Connect

Transition
Locate

Storm
Federate
Deploy
Adapt

Norm
Collaborate

Employ
Adapt

Perform
Operate
Engage

Use

People
Systems
Operations
Information

Turn on and
initialize host
and platform

Figure 6.4: Flow of Teams, Systems and Mission with Data.

Interactions within an agent system follow the Tuckman and Jensen[66] “Form, Storm, Norm,
Perform” paradigm for team development (Figure 6.4). The original Tuckman paradigm contains
four stages, as follows:

1. Form stage: the group begins to take hold but is generally in a state of initialization.
2. Storm stage: the group operates without an agreeable protocol and conflicts generally need

to be resolved.
3. Norm stage: the protocols are established and a plan is made based on the group’s abilities.
4. Perform stage: full operation takes place.

A fifth stage, the Adjourn stage, was later added to illustrate the normal termination of the
group’s operation and/or existence.

Following this paradigm, and as illustrated in Figure 6.5: the host and platform are invoked, the
framework is instantiated, and the framework instantiates and initializes the agents. Once this is
complete, any number of agents are spawned and grouped into teams based on their goals, agencies
based on their function or societies based on their observance of a common protocol. At least one
human is part of this process for purposes of overseeing the activity, and inputting or modifying the

Version 1.0a 57 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

mission for the agents. Once the mission is given, the agents can further divide into other groups
and begin their decision cycles and information exchange to work towards their goals.

Messaging

Mobility

Planning / Conflict
Management

Sense / Effect Decision
Cycle

Other Framework
Service

Terminate Agent
and / or

Agent System

Initialize Host
and Platform

Receive mission Generate Initial
Plan

Perform Stage

Norm StageStorm StageForm Stage

Figure 6.5: Initialization of an Agent System.

Version 1.0a 58 November 20, 2006

Chapter 7

Mapping Existing Systems to the Reference
Model: Case Studies

7.1 Agent Framework Mappings to the Idealized Framework

7.1.1 Scenario
Ideally, all existing agent frameworks map directly to the reference model from an architectural
perspective. Because of the number of diverse frameworks in existence, each with its own func-
tional goals and architecture, it is not feasible to compare all of the existing frameworks to the
reference model; however, an analysis of a representative subset is presented in this section. The
following is the general behavior that is used to exercise the individual frameworks. Any modifi-
cations are noted appropriately.

Two static agents, s1 and s2 are created. One of those static agents, s1, creates a mobile
agent m. It is the responsibility of m to deliver a message from s1 to s2. Mobile agent
m then migrates from the framework instantiation that s1 resides on to the framework
instantiation in which s2 exists. Once the message is delivered, m returns to s1 and s2
is terminated. Upon arriving back at s1, m is terminated, and finally s1 is terminated.

This behavior tests the migration and message passing aspects of several agent frameworks.
Typically, these components also exercise the other components described in the reference model.
For example, migration requires a search of the directory service, has security concerns, needs to
deal with agent management functions, and involves coordination. Likewise, the message passing
aspect generally exercises communications and security. A brief overview of the scenario from a
dynamic analysis is presented first, followed by an in-depth analysis highlighting components and
tracing execution.

Execution of this behavior is traced using the EJP tool. From these traces, one draws con-
clusions about the framework’s architecture and make mappings to a reference architecture (and,
thus, to the reference model). Several figures are included in the next few analysis sections. These
figures show the raw output of EJP. The run-time trace is clearly recognized in the tree structure
depicted. Every node represents a function call that was performed by the parent. The percentage
of total time spent executing a particular call is shown as a percentage after the function name.

59

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Nodes are colored using a red spectrum where the brighter reds indicate more time spent execut-
ing that particular function. Some of the calls are removed for the sake of clarity. These include
the standard Java library calls. Lastly, equivalent and consecutive calls are commonly grouped
together as a single method invocation.

7.1.2 A-Globe
This A-Globe analysis is broken up into two behaviors for depth of analysis. One part involved
message passing and the other involved migration—thus deviating from the general scenario. Com-
bining these results in the generic behavior depicted for framework analysis.

Overview

An analysis of an agent frameworks begins with the instantiation of the framework itself. A-Globe
uses the Platform class as the root of its framework. The Platform class controls Containers
that are for all intents and purposes agents. In Figure 7.1, the Platform is instantiated followed
by an AgentContainer. The AgentContainer acts as the interface between local agents
and the framework instantiation. Its main job is to provide agent-specific resources such as a
MessageTransport services. An AgentManager is used to manage the agents and is seen in
the following figures for the specific agents.

The migrating agent before migration is seen in Figure 7.2. The general procedure for a migrat-
ing agent seems to be to run (in this case, the migrating agent does nothing) and then migrate using
the agentFinished function. It migrates to the second instantiation of the agent framework and
appears as in Figure 7.3. Again, the agent does nothing and is cleaned up by the agent framework
instantiation in the agentFinished function.

With regard to message passing, it is assumed there are two agents on the same framework
instantiation. The first agent is created as in Figure 7.4. Similarly, the receiving agent, is depicted
in Figure 7.4. Looking closely, one sees the where the message is created; however it is not evident
where it is received. This is explained in the following Mapping section.

Version 1.0a 60 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (3.00 s)

0.0% aglobe.platform.Platform.<clinit>(...) (0.00 ns)

96.9% aglobe.platform.Platform.main(...) (3.00 s)

1.7% aglobe.platform.Platform.<init>(...) (60.00 ms)

95.2% aglobe.platform.Platform.run(...) (3.00 s)

0.8% aglobe.platform.StartingServer.<init>(...) (30.00 ms)

88.1% aglobe.platform.Platform.startNewContainer(...) (3.00 s)

0.0% aglobe.container.AgentContainer.<clinit>(...) (0.00 ns)

86.4% aglobe.container.AgentContainer.<init>(...) (3.00 s)

0.0% aglobe.container.sharedobjects.SharedObjectsManager.<init>(...) (0.00 ns)

0.0% aglobe.platform.Platform.getPlatformThreadGroup(...) (0.00 ns)

0.0% aglobe.container.library.LibraryManager.<clinit>(...) (0.00 ns)

0.6% aglobe.container.library.LibraryManager.<init>(...) (20.00 ms)

0.0% aglobe.container.ClassFinder.<clinit>(...) (0.00 ns)

0.3% aglobe.container.ClassFinder.<init>(...) (10.00 ms)

2.3% aglobe.container.transport.MessageTransport.<init>(...) (80.00 ms)

0.3% aglobe.container.transport.MessageTransport.afterInit(...) (10.00 ms)

0.0% aglobe.container.AgentContainer$CommandService.<init>(...) (0.00 ns)

0.3% aglobe.container.library.LibraryManager$LibraryDir.<init>(...) (10.00 ms)

0.3% aglobe.container.sysservice.DeployService.<init>(...) (10.00 ms)

0.0% aglobe.container.service.ServiceManager.<init>(...) (0.00 ns)

0.3% aglobe.container.agent.AgentManager.<init>(...) (10.00 ms)

0.6% aglobe.container.library.LibraryManager.aferContainerInit(...) (20.00 ms)

2.0% aglobe.container.service.ServiceManager.aferContainerInit(...) (70.00 ms)

0.0% aglobe.container.sysservice.directory.DirectoryService.<init>(...) (0.00 ns)

0.0% aglobe.container.service.ServiceManager.startService(...) (0.00 ns)

0.0% aglobe.container.transport.MessageTransport.afterServicesInit(...) (0.00 ns)

0.0% aglobe.container.sysservice.directory.DirectoryService.afterMTvisibilitySubscription(...) (0.00 ns)

0.0% aglobe.container.agent.AgentManager.afterContainerInit(...) (0.00 ns)

73.9% aglobe.container.AgentContainer.showGUI(...) (2.00 s)

0.0% aglobe.container.transport.Address.getLocalContainerAddress(...) (0.00 ns)

0.0% aglobe.platform.Platform.waitForFinish(...) (0.00 ns)

Figure 7.1: A-Globe framework dynamic analysis data. This diagram illustrates the initialization
of the A-Globe framework and instantiation of a sample agent. Initialization of the A-Globe com-
munications library, Agent Manager, and Directory Service are shown here. Note that A-Globe
refers to itself as the “platform,” whereas the ASRM considers this to be the “framework.” This is
a difference in nomenclature only.

Version 1.0a 61 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (2.00 s)

100.0% aglobe.container.agent.AgentRunner.run(...) (2.00 s)

2.1% aglobe.container.agent.Agent.run(...) (50.00 ms)

0.0% aglobe.container.agent.Agent.hideGUI(...) (0.00 ns)

0.0% examples.agent.migrating.MigratingAgent.finish(...) (0.00 ns)

97.9% aglobe.container.agent.AgentManager.agentFinished(...) (2.00 s)

0.0% aglobe.container.transport.Address.getLocalContainerAddress(...) (0.00 ns)

0.0% aglobe.container.transport.Address.isSameContainer(...) (0.00 ns)

0.0% aglobe.container.agent.AgentFilter.getNameFilter(...) (0.00 ns)

0.0% aglobe.container.agent.AgentFilter.equals(...) (0.00 ns)

0.9% aglobe.util.AglobeXMLtools.cloneSerializable(...) (20.00 ms)

0.0% aglobe.container.agent.Agent.writeObject(...) (0.00 ns)

17.4% aglobe.util.base64.Base64.encodeBytes(...) (410.00 ms)

0.0% aglobe.ontology.AgentInfo.setSerialized(...) (0.00 ns)

0.0% aglobe.container.AgentContainer.getAgentStore(...) (0.00 ns)

0.0% aglobe.container.Store.zip(...) (0.00 ns)

0.0% aglobe.ontology.TravelHistory.setStop(...) (0.00 ns)

48.5% aglobe.container.sysservice.AgentMoverService.moveAgent(...) (1.00 s)

48.5% aglobe.container.sysservice.AgentMoverService$AgentMoverTask.<init>(...) (1.00 s)

0.0% aglobe.container.task.TimeoutTask.<init>(...) (0.00 ns)

0.0% aglobe.container.transport.Address.deriveServiceAddress(...) (0.00 ns)

0.0% aglobe.container.service.Service.getAddress(...) (0.00 ns)

0.0% aglobe.ontology.Message.<init>(...) (0.00 ns)

0.0% aglobe.ontology.Message.setContent(...) (0.00 ns)

48.5% aglobe.container.task.Task.sendMessage(...) (1.00 s)

0.0% aglobe.container.agent.AgentManager.fireAgentListChanged(...) (0.00 ns)

Figure 7.2: A-Globe migrating agent, m, before migration. A-Globe agents migrate using a proce-
dure consistent with the ASRM mobility functional concept.

100.0% <root> (60.00 ms)

100.0% aglobe.container.agent.AgentRunner.run(...) (60.00 ms)

50.0% aglobe.container.agent.Agent.run(...) (30.00 ms)

50.0% aglobe.container.agent.AgentManager$5.run(...) (30.00 ms)

50.0% examples.agent.migrating.MigratingAgent.init(...) (30.00 ms)

0.0% aglobe.container.agent.Agent$1.run(...) (0.00 ns)

0.0% aglobe.container.agent.Agent.hideGUI(...) (0.00 ns)

0.0% examples.agent.migrating.MigratingAgent.finish(...) (0.00 ns)

50.0% aglobe.container.agent.AgentManager.agentFinished(...) (30.00 ms)

50.0% aglobe.container.agent.AgentManager.deleteAgent(...) (30.00 ms)

0.0% aglobe.container.library.LibraryManager.deregisterClassOwner(...) (0.00 ns)

0.0% aglobe.container.agent.AgentManager.fireAgentListChanged(...) (0.00 ns)

0.0% aglobe.container.agent.AgentManager.getInternalAgentInfo(...) (0.00 ns)

0.0% javax.xml.bind.PredicatedLists$PredicatedCollection.remove(...) (0.00 ns)

0.0% aglobe.container.AgentContainer.getGlobalStore(...) (0.00 ns)

16.7% aglobe.container.Store.putXML(...) (10.00 ms)

0.0% javax.xml.bind.PredicatedLists$PredicatedCollection.toArray(...) (0.00 ns)

33.3% aglobe.container.library.LibraryManager.deregisterAgent(...) (20.00 ms)

0.0% aglobe.container.agent.AgentManager.fireAgentListChanged(...) (0.00 ns)

Figure 7.3: A-Globe migrating agent, m, after migration. As seen here, in A-Globe the serialized
agent is de-registered from the source framework instance after the agent is deserialized on the
destination host.

Version 1.0a 62 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (1.00 s)

100.0% aglobe.container.agent.AgentRunner.run(...) (1.00 s)

98.5% aglobe.container.agent.Agent.run(...) (1.00 s)

97.8% aglobe.container.agent.AgentManager$1.run(...) (1.00 s)

97.8% examples.agent.send.SendAgent.init(...) (1.00 s)

(a) The Sender Agent (s1) Initialization

100.0% <root> (1.00 s)

100.0% aglobe.container.agent.AgentRunner.run(...) (1.00 s)

98.5% aglobe.container.agent.Agent.run(...) (1.00 s)

97.8% aglobe.container.agent.AgentManager$1.run(...) (1.00 s)

0.0% aglobe.container.agent.Agent$1.run(...) (0.00 ns)

0.7% examples.agent.send.SendAgent.handleIncomingMessage(...) (10.00 ms)

1.5% aglobe.container.agent.Agent.hideGUI(...) (20.00 ms)

0.0% aglobe.container.agent.Agent.finish(...) (0.00 ns)

0.0% aglobe.container.agent.AgentManager.agentFinished(...) (0.00 ns)

(b) The Receiver Agent (s2)Initialization

Figure 7.4: A-Globe sending agent s1 and receiving agent s2 dynamic analysis data.

Version 1.0a 63 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Mapping to Idealized Agent Framework

An examination of the A-Globe figures reveals the manner in which the architecture of A-Globe
maps to the idealized agent framework. First and foremost, the physical world and infrastructure
are implicit. The Java Virtual Machine is the only visible sign of a platform. It occupies the root
nodes through any Thread instantiations in the trees.

The framework is represented by the Platform class and its corresponding AgentContainer.
The framework is always used for the agent to access system or physical world resources. As
shown in Figure 7.1, the Platform’s Agent Container provides shared objects, a message transport
service, a directory service, a logger (not shown), and various other resources to the agents. An
AgentManager manages the agents on the local instantiation of the framework. It takes care of
the migration aspect.

The agents also act in accordance with the idealized agent framework. To begin, consider the
migrating agent. It was not implemented to perform any task on the local host besides migration
so the run method does very little. When it is time to migrate, the agentFinished function is
called. This function uses XML to serialize the data and sends it via the AgentMoverService

that is part of the AgentContainer. This is shown in Figure 7.2. When the migration agent
arrives at the second framework instantiation, it is re-created by the AgentManager and executed.
Again, it does nothing and is then deregistered from the directory terminated.

The creation of the message is not shown in Figure 7.4 because of the abundance of noise gen-
erated by the GUI combined with unsuccessful attempts at filtering it. There is strong evidence that
there exists a MessageTransport service within the framework that oversees message passing.
This MessageTransport service registers possible message receivers and then calls a function
similar to the handleMessage function that is shown in Figure 7.4. This experiment also exer-
cised the logger because the message was properly displayed on the logger of the receiving agent.

Overall, migration and message passing are the same as in the idealized agent framework. In
a combination of these experiments, s1 generates a message and gives it to the framework to give
to m. Migrating agent m then receives the message and migrates to the instantiation of the frame-
work where s2 resides. After arriving, m passes the message along to s2. Finally, all framework
instantiations and agents are terminated. The framework also makes available all of the important
components mentioned in the reference model in addition to the migration, communication, and
logging components exercised in these experiments.

7.1.3 Jade
The Jade agents implement the messaging and migration scenario by using a TerminatorAgent
that is responsible for creating agents and terminating the platform upon completion. The
TerminatorAgent creates two static agents on one host that send a message to each other. Thus,
there exists s1 and s2 on the first host. The TerminatorAgent is the mobile agent, m, and travels
to the second host where it performs the same task on new static agents s3 and s4.

Overview

The Jade framework is composed of several classes, including Boot and the entirejade.core
package. In particular, Figure 7.5 uses containers similar to A-globe. The AgentContainer is

Version 1.0a 64 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

used as an interface between the agents and the framework. Additionally, resources are delegated
through the framework by way of a ServiceManager. Analysis of the static agents in Jade
shows the control flow for message passing. All of the static agents are the same and appear as in
Figure 7.6.

Before and after snapshots of the migrating agent are shown in Figures 7.7 and 7.8, respectively.
In the before snapshot, the static agents are created (TerminatorAgent.setup) and the agent
is then cloned and sent to the other host. The after snapshot shows how the agent is regenerated
and creates the two static agents.

Version 1.0a 65 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (2.00 s)

93.4% jade.Boot.main(...) (2.00 s)

93.4% jade.Boot.<init>(...) (2.00 s)

0.0% jade.Boot.prepareArgs(...) (0.00 ns)

2.6% jade.BootProfileImpl.<init>(...) (70.00 ms)

0.4% jade.util.BasicProperties.getBooleanProperty(...) (10.00 ms)

0.0% jade.util.BasicProperties.getProperty(...) (0.00 ns)

0.0% jade.util.BasicProperties.setProperty(...) (0.00 ns)

0.0% jade.Boot.check(...) (0.00 ns)

0.4% jade.core.Runtime.<clinit>(...) (10.00 ms)

0.0% jade.core.Runtime.instance(...) (0.00 ns)

0.0% jade.core.Runtime.setCloseVM(...) (0.00 ns)

0.0% jade.core.ProfileImpl.getBooleanProperty(...) (0.00 ns)

87.9% jade.core.Runtime.createMainContainer(...) (2.00 s)

0.0% jade.core.ProfileImpl.setParameter(...) (0.00 ns)

0.4% jade.core.AgentContainerImpl.<init>(...) (10.00 ms)

8.8% jade.core.Runtime.beginContainer(...) (240.00 ms)

74.0% jade.core.AgentContainerImpl.joinPlatform(...) (2.00 s)

0.0% jade.core.ProfileImpl.getParameter(...) (0.00 ns)

31.1% jade.core.AgentContainerImpl.init(...) (851.00 ms)

37.7% jade.core.AgentContainerImpl.startNode(...) (1.00 s)

0.0% jade.util.leap.ArrayList.<init>(...) (0.00 ns)

5.5% jade.core.AgentContainerImpl.startService(...) (150.00 ms)

0.0% jade.core.management.AgentManagementService.<clinit>(...) (0.00 ns)

0.7% jade.core.management.AgentManagementService.<init>(...) (20.00 ms)

0.4% jade.core.management.AgentManagementService.init(...) (10.00 ms)

0.0% jade.core.management.AgentManagementService.getName(...) (0.00 ns)

0.0% jade.core.ServiceDescriptor.<init>(...) (0.00 ns)

0.0% jade.core.messaging.MessagingService.<clinit>(...) (0.00 ns)

1.5% jade.core.messaging.MessagingService.<init>(...) (40.00 ms)

1.5% jade.core.messaging.MessagingService.init(...) (40.00 ms)

0.0% jade.core.messaging.MessagingService.getName(...) (0.00 ns)

0.0% jade.util.leap.ArrayList.add(...) (0.00 ns)

0.0% jade.core.ProfileImpl.getSpecifiers(...) (0.00 ns)

0.0% jade.core.ProfileImpl.setSpecifiers(...) (0.00 ns)

0.4% jade.util.leap.ArrayList.iterator(...) (10.00 ms)

0.0% jade.util.leap.ArrayList$1.hasNext(...) (0.00 ns)

0.0% jade.util.leap.ArrayList$1.next(...) (0.00 ns)

0.0% jade.util.leap.ArrayList.size(...) (0.00 ns)

0.0% jade.util.leap.ArrayList.get(...) (0.00 ns)

1.1% jade.core.ServiceManagerImpl.addNode(...) (30.00 ms)

4.8% jade.core.messaging.MessagingService.boot(...) (130.00 ms)

0.0% jade.core.ProfileImpl.getParameter(...) (0.00 ns)

26.0% jade.core.MainContainerImpl.initSystemAgents(...) (711.00 ms)

0.0% jade.domain.ams.<clinit>(...) (0.00 ns)

11.7% jade.domain.ams.<init>(...) (320.00 ms)

0.7% jade.core.MainContainerImpl.fireAddedContainer(...) (20.00 ms)

0.7% jade.domain.df.<init>(...) (20.00 ms)

2.2% jade.core.MainContainerImpl.startSystemAgents(...) (60.00 ms)

2.6% jade.core.AgentContainerImpl.startAdditionalServices(...) (70.00 ms)

0.0% jade.core.ProfileImpl.getSpecifiers(...) (0.00 ns)

0.0% jade.util.leap.ArrayList.iterator(...) (0.00 ns)

0.0% jade.util.leap.ArrayList$1.hasNext(...) (0.00 ns)

0.0% jade.util.leap.ArrayList$1.next(...) (0.00 ns)

2.6% jade.core.AgentContainerImpl.startService(...) (70.00 ms)

0.0% jade.core.mobility.AgentMobilityService.<clinit>(...) (0.00 ns)

0.7% jade.core.mobility.AgentMobilityService.<init>(...) (20.00 ms)

0.4% jade.core.mobility.AgentMobilityService.init(...) (10.00 ms)

0.0% jade.core.mobility.AgentMobilityService.getName(...) (0.00 ns)

0.0% jade.core.ServiceDescriptor.<init>(...) (0.00 ns)

0.0% jade.core.ServiceManagerImpl.activateService(...) (0.00 ns)

0.0% jade.core.event.NotificationService.<clinit>(...) (0.00 ns)

0.7% jade.core.event.NotificationService.<init>(...) (20.00 ms)

0.4% jade.core.event.NotificationService.init(...) (10.00 ms)

0.0% jade.core.event.NotificationService.getName(...) (0.00 ns)

1.5% jade.core.AgentContainerImpl.startBootstrapAgents(...) (40.00 ms)

0.0% jade.core.ContainerID.toString(...) (0.00 ns)

0.4% jade.core.AgentContainerImpl.getContainerController(...) (10.00 ms)

Figure 7.5: Jade framework dynamic analysis data. Here, the AgentManager, Messaging Service,
and Mobility Services are instantiated as a part of the framework.

Version 1.0a 66 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (420.00 ms)

100.0% jade.core.Agent.run(...) (420.00 ms)

0.0% jade.core.Agent$ActiveLifeCycle.init(...) (0.00 ns)

0.0% jade.core.LifeCycle.alive(...) (0.00 ns)

100.0% jade.core.Agent$ActiveLifeCycle.execute(...) (420.00 ms)

0.0% jade.core.Scheduler.schedule(...) (0.00 ns)

100.0% jade.core.behaviours.Behaviour.actionWrapper(...) (420.00 ms)

0.0% jade.core.Agent.notifyChangeBehaviourState(...) (0.00 ns)

100.0% JadeCommunicationsAgent$1.action(...) (420.00 ms)

0.0% jade.domain.FIPAAgentManagement.SearchConstraints.<init>(...) (0.00 ns)

0.0% jade.domain.FIPAAgentManagement.SearchConstraints.setMaxResults(...) (0.00 ns)

0.0% jade.domain.FIPAAgentManagement.AMSAgentDescription.<init>(...) (0.00 ns)

92.9% jade.domain.AMSService.search(...) (390.00 ms)

0.0% jade.lang.acl.ACLMessage.<init>(...) (0.00 ns)

0.0% jade.lang.acl.ACLMessage.setLanguage(...) (0.00 ns)

0.0% jade.lang.acl.ACLMessage.setContent(...) (0.00 ns)

0.0% jade.lang.acl.ACLMessage.setSender(...) (0.00 ns)

0.0% jade.core.AID.equals(...) (0.00 ns)

0.0% jade.core.Agent.getAMS(...) (0.00 ns)

0.0% jade.core.Agent.getDefaultDF(...) (0.00 ns)

0.0% jade.core.AID.getLocalName(...) (0.00 ns)

0.0% JadeCommunicationsAgent.access$000(...) (0.00 ns)

0.0% jade.lang.acl.ACLMessage.addReceiver(...) (0.00 ns)

0.0% jade.core.Agent.send(...) (0.00 ns)

0.0% JadeCommunicationsAgent$2.action(...) (0.00 ns)

0.0% JadeCommunicationsAgent$3.action(...) (0.00 ns)

0.0% jade.core.behaviours.OneShotBehaviour.done(...) (0.00 ns)

0.0% jade.core.behaviours.Behaviour.onEnd(...) (0.00 ns)

0.0% jade.core.Scheduler.remove(...) (0.00 ns)

0.0% jade.core.behaviours.CyclicBehaviour.done(...) (0.00 ns)

0.0% jade.core.Agent$DeletedLifeCycle.alive(...) (0.00 ns)

0.0% jade.core.Agent$DeletedLifeCycle.end(...) (0.00 ns)

Figure 7.6: Jade static agents dynamic analysis data. Here, the agent is initialized and run by the
framework.

100.0% <root> (5.00 s)

100.0% jade.core.Agent.run(...) (5.00 s)

6.9% jade.core.Agent$ActiveLifeCycle.init(...) (400.00 ms)

0.0% jade.core.LifeCycle.alive(...) (0.00 ns)

66.8% jade.core.Agent$ActiveLifeCycle.execute(...) (3.00 s)

0.0% jade.core.Scheduler.schedule(...) (0.00 ns)

66.8% jade.core.behaviours.Behaviour.actionWrapper(...) (3.00 s)

0.0% jade.core.behaviours.CyclicBehaviour.done(...) (0.00 ns)

0.0% jade.core.behaviours.Behaviour.onEnd(...) (0.00 ns)

0.0% jade.core.Scheduler.remove(...) (0.00 ns)

26.3% jade.core.mobility.AgentMobilityService$CopyLifeCycle.execute(...) (1.00 s)

0.0% jade.core.Agent$1.beforeClone(...) (0.00 ns)

26.3% jade.core.mobility.AgentMobilityService$CopyLifeCycle.informCloned(...) (1.00 s)

0.0% jade.core.Agent.restoreBufferedState(...) (0.00 ns)

Figure 7.7: Jade migrating agent m, before migration, dynamic analysis data. The agent is cloned,
copied to its destination, and restored.

Version 1.0a 67 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

100.0% <root> (3.00 s)

100.0% jade.core.Agent.run(...) (3.00 s)

1.2% jade.core.mobility.AgentMobilityService$CopyLifeCycle.init(...) (40.00 ms)

0.0% jade.core.Agent.restoreBufferedState(...) (0.00 ns)

1.2% jade.core.Agent$1.afterClone(...) (40.00 ms)

1.2% TravelingTerminatorAgent.afterClone(...) (40.00 ms)

1.2% TravelingTerminatorAgent.setup(...) (40.00 ms)

0.0% jade.core.LifeCycle.alive(...) (0.00 ns)

98.8% jade.core.Agent$ActiveLifeCycle.execute(...) (3.00 s)

0.0% jade.core.Scheduler.schedule(...) (0.00 ns)

98.8% jade.core.behaviours.Behaviour.actionWrapper(...) (3.00 s)

0.0% jade.core.behaviours.CyclicBehaviour.done(...) (0.00 ns)

0.0% jade.core.behaviours.Behaviour.onEnd(...) (0.00 ns)

0.0% jade.core.Scheduler.remove(...) (0.00 ns)

Figure 7.8: Jade migrating agent m, after migration, dynamic analysis data. This analysis provides
more detail about the restoration process when the agent is deserialized.

Version 1.0a 68 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Mapping to the Idealized Agent Framework

In Jade, the environment and host layers are implicit while the JVM represents a portion of the
platform. When the Jade framework is started, a AgentContainer is created that interfaces the
framework with all local agents. Inside the AgentContainer, the other agents are started. The
Jade framework also contains an AgentManagementService, a MessagingService with a
well-defined and FIPA compliant ACL, an AgentMobilityService class that oversees mobil-
ity, and a ServiceManager that manages local resources. A directory service is hidden in the
jade.domain.ams package that is expanded in Figure 7.5.

First, message passing is examined in detail. Two JadeCommunicationAgents are created
that send messages to each other and then terminate. In Figure 7.6, the static agents take ad-
vantage of Jade’s planning language that includes Behaviours that are defined to occur once
or be cyclic. The agent sends a message by creating an ACLMessage, contacting the directory
service with the getAMS function call, and using the communication service to send. This is a
OneShotBehaviour and occurs only once per lifetime. A CyclicBehaviour attempts to re-
ceive messages and terminate, but is left unexpanded in the figure. Thus, message sending and
receiving are made clear in the static agent figure.

The migrating agent exhibits some interesting properties both before and after migration. First,
in Figure 7.7, the agent creates the static agents and then attempts to clone itself. Migration is
processed through the AgentMobilityService. The directory service is certainly contacted in
this process. In Figure 7.8, the after snapshot is available. The first function call regenerates the
agent and it proceeds in a similar fashion by creating the communication agents.

Jade contains a framework consisting of all of the ASRM components. Agents are given the
freedom to operate autonomously, but are monitored through an AgentManager. The other com-
ponents are also present explicitly; security is the only exception that is not obvious in the dynamic
analysis, though it is implicit through the JVM and the API.

7.2 Case Studies

7.2.1 Command and Control (C2)
The Command and Control Battle Command Information Exchange model is an example imple-
mentation of multi-agent agencies and societies.

Agencies within a society share a common objective, even if their individual goals or means
are different. The information received is often the same or similar, and represents the high level
objective. The agencies asynchronously digest this information and internalize it.

In the Command and Control Information Exchange context, information is first located during
the form stage. It is not processed or interpreted, but simply acquired. It is stored for processing
during the storm stage, and then adapted to meet the group’s needs during the norm stage. Once
this is established, the information is used, aggregated and turned into knowledge, experience, and
action during the perform stage.

This process occurs in cycles in the context of several Battle Command processes (agencies).
The communications process of Connect, Federate, Collaborate, and Operate follows the Tuck-
man paradigm (see Figure 6.4). Each process performs this cycle asynchronously, applying and

Version 1.0a 69 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

sharing aggregated information as needed. These domains include: Intelligence Preparation of
the Battlefield (IPB) for analyzing the enemy and logistical information such as weather and ter-
rain, Command and Control (C2) for administration of the operation, Decision Making (DM) for
planning and management functions, Targeting (TGT) for operational control, and an omnipresent
Information Exchange (IE) that supports all the domains with common objective information. See
Figure 7.9.

TGT

Information Exchange

DM

Each line implements
Information Exchange (IE)

IPB

C2

IPB DM

TGT

DecideObserve

Act

Detect

Decide Deliver

AssessDefine

Monitor

Evaluate

Plan

Describe

IE

Determine

Federate

Collaborate Operate

Figure 7.9: Battle Command Information Exchange.

In each of these agencies, the goal is to turn raw data obtained during the form stage into
experience and action in the perform stage. This information is often shared with other agencies in
an aggregated form. As shown in Figure 7.9, the asynchronous “output” of one agency might be
an input for another. The aggregation and domain specific processing of this data adds value and
efficiency to the society (see Figure 7.10).

In Figure 7.9, each subprocess of C2 is a process itself. These subprocesses are interconnected
and interoperable. For example, the C2 process is made up of “Observe,” “Decide,” and “Act,” and
each of these corresponds to Intelligence Preparation for the Battlefield (IPB), Decision Making
(DM), and Targeting (TGT), respectively.

These Command and Control processes represent specific implementation possibilities for
agent communities within the ASRM. However, a more flexible and intelligent design allows for

Version 1.0a 70 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Collected individual fields that have the
potential of being organized into information.

A collection of data points that are organized,
ordered, and grouped to provide the
situation: facts, context, conclusions.

Incrementally improves quality of
information to the point of anticipating
events, generating alerts and
recommending actions:

What is happening?
What may happen?
What should be done?

Learning over time of what the user wants,
what works, and the ability to predict.

Experience

Data

Information

Knowledge

Increasing Usefulness

Increasing Usefulness

Increasing Usefulness

Figure 7.10: Hierarchy of Domain Resources.

a more generic and abstract agent implementation that is independent of the domain process being
conducted.

For example, the X2 Intelligence officer manages the IPB process previously described. Gen-
erally, each officer has a process to manage. Regardless of the process, there exist behaviors (like
the Information Exchange process) that dictate how these officers and their processes interact.

These processes are described as a case study for a possible implementation of agent societies
and agencies within the context of the ASRM.

Version 1.0a 71 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Intelligence Preparation for the Battlefield. Intelligence Preparation for the Battlefield (IPB)
is an implementation of the Operational Net Awareness (ONA) process. Its product is a document
of knowledge and intelligence that an X2 officer gives to an X3. The subprocesses within IPB
show how intelligence officers think about actionable intelligence.

The C2 Observe process delegates to and oversees the operation of the IPB subprocess. The
IPB phases (subprocesses) of “Define,” “Describe,” “Determine,” and “Evaluate“ also interoperate
with one another to produce their result.

Decision Making. Similarly, the Decide subprocess of C2 oversees the Decision Making (DM)
subprocess. This subprocess includes phases “Assess,” “Plan,” and “Monitor.” As before, all
subprocesses interoperate and produce a plan under the supervision of the X3 officer.

Targeting. The Act subprocess of C2 corresponds to the Targeting (TGT) subprocess. The TGT
subprocess consists of the “Detect,” “Decide,” and “Deliver” phases that interoperate with one
another.

This process is a good illustration of the modularity of the C2 subprocesses, because it is clear
that this Act subprocess is not necessarily implemented by Targeting. Instead, any actionable
process is used as long as it accepts a plan from the Decision Making process and collaborates
with the IPB process.

Information Exchange. As seen in Figure 7.9, the processes, subprocesses and phases of Com-
mand and Control “interoperate.” In fact, this is accomplished through information exchange and
is illustrated by the Information Exchange (IE) subprocess.

However, as in human communications, this is not a simple matter of sending information;
a protocol must be followed to establish a conversation and send the information in an orderly
and expected way. Moreover, effective information exchange must take into account both the IE
Requirements and IE Desirements of the recipient.

The ISO OSI Reference Model provides the process by which this information exchange oc-
curs. C2 implements this process via the Tuckman paradigm and is consistent with the Messaging
component of the ASRM. C2 Information Exchange includes the following phases:

• Federate (Connect). This represents the low level ISO communication layers in which a
connection is established between the communicating parties. No data is exchanged, but the
communication channels are simply opened. This process is independent of the environ-
ment or medium to be used for communication; this information exchange can occur over
telephone wires, a network, written correspondence, etc. This Federate phase corresponds
to the Tuckman form stage.

• Federate (Initialize). This represents the higher level ISO communication layers in which
a protocol is chosen and the communications channels are prepared for high level message
passing. This Federate phase corresponds to the Tuckman storm stage.

• Collaborate. Data is exchanged but no action is taken. The exchanging parties must dis-
cuss and interpret the exchanged information before taking action on the information. The
Collaborate phase corresponds to the Tuckman norm stage.

Version 1.0a 72 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Operate. Finally, action is taken and the exchanging parties interoperate based on the infor-
mation shared. The Operate stage corresponds to the Tuckman perform stage.

The IE subprocess is omnipresent and domain-independent. As such, this process is used by
all the other processes within C2.

7.2.2 Mapping the C2 Domain to the Civilian Domain
The C2 domain described is mappable to the generic civilian domain by investigating civilian
business operations. As shown in Figure 7.11, teams for accomplishing a mission are broken down
into three categories:

• Organization: The organization is responsible for carrying out the broad mission that re-
flects what the entire organization is primarily responsible for. Civilian businesses describe
this in a mission statement; the military describes this in terms of broad national defense
goals.

• Support: Support units provide specialized improvements to the process of accomplishing
the mission. For example, a better assembly line and the manufacturing of parts are exam-
ples of civilian support units. Artillery or air units are examples of military support; they
are specialized and have specific goals towards making the mission easier to accomplish;
however, members of the organization are responsible for ultimately achieving the mission.

• Service Support: Service support units are similar to support units except that they provide
logistical support. Fuel, facilities and transportation services are examples of service support
units in both domains.

These are called “Lines” in the civilian domain and “Combat” in the C2 domain, but their
functionality is similar. It is important to note that these terms are defined loosely and are relative
to the domain. For example, an organization that provides business facilities are considered a
Service Support unit to the businesses that utilize those facilities. However, employees of that
provider are considered units within the Organization. The goal is to assign agents to assist and
adapt to each of these groups to aid in the production and execution of Business Products.

Version 1.0a 73 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

The Line Organization is "the front line" and
is responsible for carrying out the mission.
Their mission statement is broad: "build
cars" or "defeat the enemy"

Line Support provides direct and
specialized support to the mission, but the
mission cannot be completed with Support
units alone. Manufacturing of auto parts or a
military artillary unit are examples.

Service Support units provide logistical
support to the mission, including
maintenance, fuel and facilities.

Combat Service SupportService Support

Line Organization

Line Support Combat Support

Combat

Figure 7.11: Correlation Between C2 and Civilian Domains

Version 1.0a 74 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Abstract Workflow Processes. As an example, consider an agent framework “toolkit” providing
basic functionality to support the Command and Control process. This toolkit is described in
Figure 7.12.

In this toolkit, agents are responsible for these processes, under the direction of other agents
and human intervention. Processes are modular and adaptable to each tactical scenario. Also, the
agents depicted in this abstract workflow toolkit and in the example case studies that instantiate it
refer to either software agents, hardware agents, or human actors. Regardless of the exact behavior
of the process, the agents that control the process are able to intercommunicate and interoperate.
It is important to note that no prescription is made as to the exact implementation of these agents,
nor that they even share a common framework. If the heterogeneous agents refer to a similar
high-level protocol for communications and interoperability, as is described by the ASRM func-
tional concepts, this interprocess communication is possible. This makes the agents reusable and
extendible.

C2 Products: Business Objects. As in the civilian model, Command and Control processes
produce products or business objects through the hierarchy of command. See Figure 7.12.

In the C2 domain, these business objects include Orders and other Reports conducive to in-
formation exchange among the users and processes. At a higher level, the military joint Com-
mand, Control, Communications, Computers, Intelligence, Sensors and Reconnaissance (C4ISR)
exchanges different but similar pieces of information both within and between branches of the
military (for example, the Army and the Navy).

Through the ASRM, it is possible to establish teams of agents that are highly modular via the
workflow toolkit described in Figure 7.12. However, it is ideal if the business products produced
were also modular according to a common schema such as XML. This promotes ontology shar-
ing and information exchange between societies – in this case, between branches of the military.
Such a schema and a discussion concerning its benefits towards a C2 product-centric information
exchange process is found in [55]

In the abstract case, a product might be described in an XML schema including the top level
product containing a number of topics. Each of these topics contains components comprised of
facts. A fact is a statement in the form of a “W6H” tuple (“who does what to whom, when, where,
why, and how”). This structure parallels that of a book or other document, containing chapters,
paragraphs and sentences. By modeling facts as W6H tuples, it is clear that they are similar in
nature to a standard sentence.

These products contain information in an aggregate form relevant to the goals and mission of
higher level command. In the C2 context, they convey TTP (Tactics, Techniques, and Procedures
from Doctrine and Experience) data, information, and knowledge (see Figure 7.10). Depending on
the context and source, however, this product may take on slightly different forms. Therefore, it
is imperative to have a common schema that allows agents of any agency to interpret products of
another agency; this allows for complete modularity not only of the agents but of their products as
well.

Example C2 Business Object: OPORD. An example of such a product is the C2 OpOrder
(OPORD). The OPORD is a product containing the following topics and some example compo-
nents within them:

Version 1.0a 75 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Xi User

Xi User

Pi Process

Pi.j Subprocess

<<Business Object Product>>

Pi.j.k Subprocess

Pi.j Agents

<<Information Exchange>>

Pi.j.k Agents

<<Information Exchange>>

<<Information Exchange>>

<<Business Object Product>>

Pi Process

*

Pi.j Subprocess

Pi.j.k Subprocess

Pi.j Agents

*

Pi.j.k Agents

*

*

*

*

Figure 7.12: Abstract Workflow Process

Version 1.0a 76 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. Header
2. Situation

(a) Enemy
(b) Friendly
(c) Civilians
(d) Terrain
(e) Weather

3. Mission
4. Execution

(a) Cdr Intent
(b) Ops Concept
(c) CbtTasks
(d) CbtSptTasks

5. ServiceSpt
6. C3

A. TaskOrg Annex
B. Intel Annex
C. OpsOverlay Annex

Each paragraph and annex of the OPORD represents a specific group of individuals as de-
scribed in the C2 and business domains. The Situation, for example, represents the Organizations
mission statement. The Intelligence analyzed and placed here are forms of Line Support. Via the
ASRM, agents can assist in the production of such Situation reports from the available intelligence.

Within the Situation section are subsections for Enemy, Friendly, and so on. These sections
are produced via the efforts of Xi officers specific to the C2 domain, described in the Abstract
Workflow Toolkit in Section 7.2.2. In particular, an S2 officer is responsible for Enemy, Civilian,
Terrain, and Weather, while an S3 officer is responsible for the Friendly section. In fact, each
section of this document is produced in this way. It has been discussed that agents can provide
support to Xi officers producing Business Products.

This breakdown further introduces a chain of command in which agents could assist and inter-
operate. Annex A describes the TaskOrg Annex and discusses the types of personnel available,
what they do, whom they support, and which other personnel they can interact with if their current
commander is busy, etc. This type of activity is domain specific but agent systems could assist a
human in the decision process.

7.2.3 Agent Society Example: Integrated Process Team (IPT) Structure
The System of Systems Integration (SoSI) serves as a society with a number of agencies special-
izing in particular domains. Other examples of societies might be CERDEC or Tank Command.
Their objectives are broad and can be subdivided into agency level goals. They are cultural in
nature, sharing common objectives, while the agencies are functional partitions of the societies,
sharing common ontologies.

Version 1.0a 77 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

In this example, the agencies within the SoSI society include the Integrated Process Team
(IPT). The IPT is a functional group adapted from the industry context to achieve consensus within
a domain. This group is made up of members of government, industry, and academia. IPTs are or-
ganized in a hierarchical fashion such that some IPTs have subIPTs. For example, the Networking
IPT is the parent of the Intelligent Agents subIPT that contributed greatly to this document.

Interaction and information exchange between the subIPTs, their parent IPTs and the SoSI
society mirrors the information exchange paradigm described in Section 7.2.1.

7.2.4 Situated Agent Example: Robot Soccer
Agents are typically situated within an environment and are able to interact amongst themselves
and with that environment through its appropriate framework and infrastructure. An example is a
model of agents represented by robots, whose goal it is to play soccer in a league. The agents in
this case vary by size and complexity, and may have storage constraints based on the rules of the
particular league. This example is an analysis of the potential behavioral interactions of situated
agents such as robots in the context of the ASRM concepts and agent system layers.

Messaging

Scenario. A typical agent messaging scenario in the robot soccer domain is a situation in which
an agent senses a condition that merits communicating. In this example, the agent senses that it
has successfully acquired the ball. This is critical information to pass along to the team to inform
them of the condition and begin the planning process of making a play. In addition, it is possible
that some agents have lost sight of the ball and may have become disoriented on the field; an
informative message from a teammate is also helpful in this situation. In either case, it is possible
to both send a message to a single agent or to a set of agents. See Figures 7.13, 7.14 and 7.15.

I have the ball Agent X has
the ball

Sense Condition

Agent X Receiving Agent(s)

Receive Message

Send Message

<<Include>>

Address Message

<<Include>>

Transport Message

Figure 7.13: Robot Messaging Use Case.

Version 1.0a 78 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Receiving Agent(s)

Senses condition
and

Decides to send message

Generate Message

Sending Agent

Address Message
To Recipient(s)

Read Message
and

Effect

Send Message Receive Message

Figure 7.14: Messaging Activity Diagram.

Message Construction Naming and Addressing

Agent

Transmission Receiving

Agent(s)

4: Message moves across the environment

5: Agent acquires the information from a queue or through a facilitating service via an interrupt

3: Message is transported to the other agent
2: Agent labels message with intended destination or route, perhaps via directory

1: Agent creates message and decides to send it to agent(s)

Figure 7.15: Messaging Sequence Diagram.

Version 1.0a 79 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Sending Agent. The sending agent senses a condition that merits sending a message. In this
case, the Agent X “has the ball.” The agent decides to send a message to its teammates to this
effect.

Sending Framework. The sending framework API is called for sending a message. The mes-
sage body is constructed and wrapped in an envelope containing logistical information such as
addressing. In this case, the body of the message is “Agent X has the ball” and the address is that
of each of Agent X’s teammates.

Sending Platform. The operating system and network driver receive a low-level request to build
a message that is identical to the above. The message is broken up into packets that are sent
individually.

Sending Host. The network card physically transmits the packets through the network pins or
over the wireless antenna.

Environment. The environment in this scenario is the actual network – the Ethernet cables or
Wi-Fi radio range. The packets are transmitted over the medium.

At this point the process is reversed and the message is received.

Receiving Host(s). The network card physically receives the packets from the network or via the
wireless antenna.

Receiving Platform(s). The packets are received by the operating system and network driver,
and the packets are combined into a low-level message.

Receiving Framework(s). The framework call is initiated by the Agent and contains an API
to check with the network interface to determine if a message is incoming. This could also be
achieved via an interrupt.

Receiving Agent(s). The agent receives the message via the framework API call and interprets
it according to its decision cycles. In this case, the agent learns that Agent X “has the ball.”

Conflict Management

Scenario. There are a number of possible scenarios even in the context of robot soccer where
conflict resolution becomes necessary. Moreover, there are a number of ways to resolve such a
conflict, and the appropriate method is usually a decision made by the agents as part of their plan
and decision cycles.

Particularly, conflict resolution falls into two categories: centralized and decentralized. In
centralized conflict resolution, there exists a management agent (coach in this context) that “sees”
the entire field and has a plan for the entire team. In this case the manager simply makes a decision

Version 1.0a 80 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

and dictates/suggests the next actions for the team. More often, however, agent conflict resolution
is decentralized and it is up to the agents in conflict to come to a resolution.

From the Command and Control context, the process of conflict resolution is broken into es-
calating stages: negotiation, mediation, arbitration, litigation, and confrontation. This scenario
concentrates on the first three stages as an ongoing process.

In this scenario, two teammates are “fighting” over possession of the ball. Clearly this is
detrimental to their own goals and therefore a decision must be quickly made in a decentralized
way. It is assumed that there is no “coach” to help them, but if there was the resolution would be a
decision process by the coach followed by message passing to the agents in conflict.

See Figures 7.16, 7.17 and 7.18.

Agent X

Agent Y

Enter Conflicting
State

Execute Plan Resolve Conflict Execute Revised
Plan

Negotiation Mediation Arbitration Litigation Confrontation

Figure 7.16: Robot Conflict Management Use Case.

Version 1.0a 81 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Conflicting state
is detected

Plan to avoid
conflict

Negotiate
for

resolution

Alter plan
to avoid
conflict

Seek mediation

Conflict Resolved Seek arbitration

Seek litigation

Confrontation

Figure 7.17: Conflict Management Activity Diagram.

Version 1.0a 82 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

In this situation, the two agents have entered a conflicting state because they are both fighting
for the ball. If the two agents are teammates, then they share a common goal. In this case, it
is unlikely that the agents wish to continue “fighting” for the ball or even to seek arbitration to
resolve the conflict. Instead, the two agents negotiate or collaborate with their confidence levels of
achieving that goal. If one agent feels more likely to achieve the goal, then the other agent backs
off and allows the more confident agent to take the ball. This confidence might be a confidence to
score, a higher battery life or an ability to run faster on the field. In any case, the other agent likely
re-plans and positions itself in such a way as to assist the more confident agent, because they do
indeed share a common goal.

Should negotiation result in indecision, and each agent has an equal confidence level, then the
conflict must be resolved by the team or by a coach. This could be done via a group decision such
as voting, followed by message passing to the agents in question.

Negotiation

AgentAgent

Mediation Arbitration Litigation

6:

Confrontation

5:

4:

3:

2:

1: Agent enters into conflicting state with another agent

Figure 7.18: Conflict Management Sequence Diagram.

If, however, the two agents have conflicting goals and are opponents, a different procedure is
necessary. In fact there is no negotiation or mediation in this scenario. Instead, either a referee
needs to call the play dead (a form of arbitration), or the two agents are left to fight for the ball.

Security and Survivability

Scenario. Because of the rules of the robot soccer league, security is enforced among the agents.
For example, messaging occurs over discrete frequencies and it is not permitted for agents to
“eavesdrop” on opponent’s communications nor to tamper with them. It is not legal for a robot to
“pose” as a teammate of its opponent, and so on. Therefore, security is not realistic in this model
and is appropriately omitted.

However, in similar scenarios these assumptions are clearly not appropriate. For example, if
robots are fighting on a battlefield, security could not be imposed by a league as rules. The security
concepts of authentication, authorization and enforcement (encryption, etc.) are exercised during
every agent interaction. In this way, security functionality can be “plugged in” to many of the other
use cases shown here.

Version 1.0a 83 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

As in other examples, the agent begins by deciding that it wishes to execute a particular plan
or functionality. For example, that it wishes to communicate with a group of agents or migrate
to another host. This functionality is protected through some controlling authority that could be
a group of agents acting in a decentralized way (through voting, for example) or through a more
centralized system such as a certificate authority.

Regardless, the agent authenticates itself with the controlling authority by sharing credentials
such as a username and password. This information is validated and the authentication stage
complete. If authentication is successful, an agent then enters the authorization state, in which the
controlling authority determines if the agent has the appropriate permissions or status to execute
the desired functionality. If so, authentication passes and the agent is allowed to execute. If not,
the policy is enforced and the agent is unable to execute the functionality. This can be achieved in
a number of ways, and is often effected through the use of encryption keys. See Figure 7.19. This
process is illustrated in more detail in Figures 7.20 and 7.21.

Notify sender and receiver of result

Agent
or

Agent System

Agent
or

Agent System

Authenticate

Authorize

Enforce

<<notify>>

<<notify>>

Figure 7.19: Security Use Case.

Version 1.0a 84 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Decide to
execute
particular

functionality

Authenticate
with

controlling
authority

Get authorization

Functionality
denied via

policy
enforcement

Execute functionalityAuthentication
failed

Figure 7.20: Security Activity Diagram.

Version 1.0a 85 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Authenticate Request authorization to execute Execute functionality

6: Agent is informed

Functionality disabled / denied

8: Agent is informed

1: Attempt behavior that requires authorization

7: Authorization denied and enforced through encryption or other policy

3: Authentication fails: agent tries again

Agent
2: Authorization granted

5: Authorization denied for those authentication credentials

4: Request authorization from controlling authority

Figure 7.21: Security Sequence Diagram.

Version 1.0a 86 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Mobility

Scenario. Similarly, mobile code is not often found in the robot soccer domain, but is certainly
central to many situated agent systems. In general, agents migrate by serializing their state and then
transporting to another agent framework instance, as defined by the reference model and illustrated
in Figure 7.22.

At an activity level, an agent uses its sensor and effector interfaces to determine that migration
is necessary and feasible. This could be facilitated through a mediating party or independently
through the agent’s own decision cycles. Once the decision is made to migrate, the agent is seri-
alized by the framework, transported through the network as appropriate, and deserialized at the
destination. This is illustrated in Figure 7.23 and described in detail by Figure 7.24.

Agent
or

Agent System

Migrate

Serialize

<<Include>>

Transport

<<Include>>

Figure 7.22: Mobility Use Case

Version 1.0a 87 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Decision process
to migrate

Serialize State

Migrate

Deserialize
and

Resume

Figure 7.23: Mobility Activity Diagram

Decision Procedure for Migration

Agent

Serialize Migrate Deserialize and Resume

5:

3: The serialized agent is transported from the source framework instance to the destination framework instance
4: Agent is restored to object form and either resumes or restarts execution

2: Agent is packaged in a data structure

1: Agent decides or is ordered to migrate

Figure 7.24: Mobility Sequence Diagram

Version 1.0a 88 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

7.2.5 Situated Agent Example: Secure Wireless Agent Testbed (SWAT)
The Secure Wireless Agent Testbed (SWAT) is a unique facility developed at Drexel University
to study integration, networking, and information assurance for next-generation wireless mobile
agent systems. It is the only implemented system that fully integrates:

• Mobile Agents;
• Multi-hop, Mobile Ad-hoc Wireless Networks (MANETs);
• Security and Information Assurance;

SWAT’s agent-based applications are implemented in Java and were tested with the EMAA
agent framework. This subsection details how it implements the core components of the ASRM.

Messaging

Messaging services are provided by the EMAA framework. These services are used to support
communications among application agents providing end-user tools such as a Whiteboard, Voice
over IP (VoIP), GPS tracking and other components.

Scenario. In order to accomplish the distribution of real-time GPS data, each node receiving
GPS input then securely sends this information to all other hosts on the network. In order to mini-
mize network traffic, a GPSProvider agent uses a synchronized hashtable containing hostnames
and the status of the last message sent. The GPSProvider encrypts the data before creating a
CAAgent to convey the data by migrating to the target host, as in Figure 7.25. The messaging
process is outlined in Figure 7.26.

Once the GPS data reaches the remote host, that host then decides, based on the whiteboard
parameters, how to display the data.

Mobility

Agent mobility is handled strictly through the EMAA framework services.

Scenario. In the course of transporting GPS data, the CAAgent must migrate from one host to
another. On a MANET, this implies a constantly shifting network topology. In order to maximize
the agent efficiency, the CAAgent rechecks its path at every host it passes through. Mobility is
detailed in Figure 7.27.

Security

The Security Manager is a central part of the SWAT architecture. It details group membership
management, as well as a directory service (agent lookup, group membership lookup, etc.). This
Security Manager also handles all of the encryption/decryption services. There is also a Certificate
Authority (CA) that gives out private keys and a Security Mediator (SEM) that is used for revo-
cation. In short, each host only has half of the necessary private key so it must contact the SEM
for the other half. The SEM responds unless the host was revoked. In such a way, messages can

Version 1.0a 89 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

GPSProvider

Receive New GPS Data

Send GPS Data

Encrypt Address

Recieve GPS Data

Decrypt

CAAgent

Migrate

Display GPS Data

Whiteboard

<<Include>><<Include>><<Include>>

Figure 7.25: SWAT Messaging Use Case Diagram.

Host 1 CAAgent Host 2

2: CAAgent checks current host
and migrates if not target host

4: GPS data displayed

3: Target host reached and
GPS data sent

1: GPS data is received and
CAAgent is created

Figure 7.26: SWAT Messaging Sequence Diagram.

Version 1.0a 90 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Host 1

2: CAAgent checks to see if
it has reached Host 3

Host 2 Host 3

3: CAAgent migrates to Host 3

4: CAAgent checks to see if
it has reached Host 3

5: CAAgent deposits GPS data
in appropriate DataSink

1: CAAgent migrates to Host 2

Figure 7.27: SWAT Mobility Sequence Diagram.

still be sent through revoked hosts because they can pass them along without being able to decrypt
them.

Resource Management

SWAT includes a service registry that distributes and lists available resources. This registry can be
made global such that agents can query the central registry to determine where a particular resource
is located. Items in the registry can be looked up by name or description.

SWAT implements these services directly, as they are not provided for explicitly in the agent
framework itself.

Scenario. In the course of delivering GPS data, a CAAgent must query the service registry to
find the proper target of its data once it reaches the target host. Therefore, when it is started,
the Whiteboard application’s GPSOverlayPlugin registers itself as a GPSSink. This stores a
reference to the GPSOverlayPlugin in the service registry, which can be used to call specific
methods of that class. See Figure 7.28.

Group Management. SWAT makes use of the Spread toolkit for communication services for
security and group management. In this context, it is a separate communications channel from
the EMAA agent-to-agent messaging. Spread is a fault-tolerant messaging service. As mentioned
in the Security subsection, a CA handles most group management functions by allowing and dis-
allowing members in the global group (i.e., all those on the wireless network) to join a specific
group. Each group has a unique public and private key so that intra-group communication is se-
cure. Group members can share all sorts of data: whiteboard annotations, VoIP messages, and

Version 1.0a 91 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

BootstrapServiceRegistry

GPSOverlayPlugin

Register Query

Reference
CAAgent

Figure 7.28: SWAT Resource Management Use Case Diagram.

GPS information. Due to security, intergroup communication is not possible except with the CA
for obvious reasons. Any major event, such as a join or a leave, spawns a re-keying sequence.

Routing. SWAT has used several MANET routing protocols to create network routes at OSI
layer 3. These protocols are separate from the agents, however they are necessary for agent-to-
agent communication. The Optimized Link State Routing (OLSR) protocol, for example, supports
a periodic survey of network state and the sharing of route tables with neighbors. Consequently,
each host has a relatively current global topology of the network at any given time. When messages
are sent, the shortest path—numbers of hops—is the primary factor in determining a route; other
factors, such as link quality, are secondary.

7.2.6 Example: Viruses as Agents
Computer viruses are self replicating computer programs that propagate by inserting themselves
into other executable files, usually unknown to the computer’s operator. In a sense, viruses may be
thought of as a primitive and malicious form of an agent.

Computer worms could also be thought of as a kind of agent. In fact, the original worms,
created in 1978 when computer cycles were more scarce, copied themselves to different computers
in Xerox’s lab looking for idle CPUs that could execute jobs1. Currently, the most common type of
worm a computer user encounters is a malicious worm such as the ILOVEYOU worm (commonly
known as the ILOVEYOU virus).

Both viruses and worms are:

• Situated: Situated in the infected host;

• Proactive: A human does not give them instructions, they spread on their own; and,

1The Worm Programs, Comm ACM, 25(3):172-180, 1982.

Version 1.0a 92 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Interactive: Viruses generally watch for other executing programs to find new targets, and
then infect them.

Generally these viruses simply watch for other programs to execute, and copy their machine
code to these files, infecting them. Once infected, a program loads the virus when it is executed,
and the cycle begins again.

The functional concepts discussed by the ASRM are present in computer viruses and worms as
well.

Agent Administration

This component is generally implicit in the design of the virus. Most viruses and worms will load
themselves into memory when an executable program they have infected is executed. Often, they
will also not start-up if an instance of themselves is already running.

Security

As defined in 4.2, security is the prevention of the execution of undesired actions. The main
undesired action viruses wish to prevent is their annihilation by anti-virus scanners. Many more
advanced computer viruses consisted of an encrypted form of the virus, and code for decrypting the
virus. This was an attempt to prevent anti-virus programs from locating them. Some viruses also
watch for anti-virus programs to start up, and attempt to circumvent their scanning mechanisms to
avoid detection.

In addition, worms are often stopped by scanners on e-mail servers. To make themselves harder
to detect, worms will often vary the subject and text of their messages.

Mobility

In the world of viruses, humans inadvertently facilitate the mobility of viruses. Viruses in memory
watch for other programs to execute, and they then infect these programs. If these programs are
copied to other computers, the virus has now infected a new host. The migration processes of
viruses is the low-tech transfer of files to a portable media, which is then used in a new machine.

Worms migrate to other computers over the network. In the case of the ILOVEYOU worm, the
worm e-mailed itself to addresses in the address book on the infected computer.

Directory Services

Viruses circumvent operating system calls, in order to find programs to infect. In a sense, this is a
crude form of directory services, as it is used to locate “resources” that can then be exploited.

Version 1.0a 93 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

7.3 Example Instantiation: CoABS Grid

7.3.1 Overview of the CoABS Grid
The CoABS Grid is a Java based framework that facilitates the creation of services and agents
that are discoverable and may be communicated with using either synchronous or asynchronous
means. The Grid relies on the Java Remote Method Invocation (RMI) to permit methods within
classes running on remote machines to be executed. Agents are based upon the basic construct of
services within the Grid. An agent is an extension of the service with the addition of a message
queue to permit asynchronous communication. The Grid provides registration and discovery of
services (and therefore agents) via Java Jini.

It is important to note that the Grid is not a Multiple Agent System (MAS), an agent develop-
ment tool, or even an agent framework per se. It is instead the group of classes, interfaces, and
services necessary to support agent and service interaction. It is essentially a Service Oriented
Architecture (SOA) that uses Message Oriented Middleware (MOM) to support agents. It can be
thought of more as the electrical wires running throughout the infrastructure of a building than the
appliances that plug into that electrical system.

The Grid does include agents, such as the mechanisms for registration and discovery, secu-
rity, agent mobility, and of course agent communication. The Grid is independent however on
agent capabilities and functionalities beyond these basics. There are numerous working exam-
ples demonstrating the extension of the Grid. This includes FIPA standard message compliance,
interoperability with existing agent frameworks, sensor monitoring, and even control of robotic
entities.

7.3.2 Mapping of the CoABS Grid
This section examines the functional areas defined by the reference model and map each to the
same or similar areas within the Grid. See Figure 7.29.

Command and Control

The CoABS Grid does not have explicit administration of agents, but instead provides a framework
upon which the administration can be built. Agents are instantiated as Java objects and run as
services utilizing RMI and Jini. Termination of agents is handled by explicitly calling a “terminate”
method within the agent. This method takes care of the necessary housekeeping of de-registering
agents (see Directory below), releasing acquired resources, and gracefully stopping agents.

The Grid provides a graphical interface for management of agents via a tool called the Grid
Manager. The Grid Manager permits the starting and stopping of core processes for the Grid, and
monitoring agents that are registered within the Grid.

The core processes for the Grid Manager consist of a HTTP listener, a Remote Method Invoca-
tion Daemon (RMID) service, and a Jini Look-up Service (LUS). It is necessary for each of these
components to be running on at least one machine on the local area network.

The Grid Manager does not provide a method for starting and stopping individual agents. How-
ever, it does allow the monitoring of agents by associating a user interface with the agent. This
interface can be invoked by the GridManager or other applications to monitor and control the agent.

Version 1.0a 94 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Messaging

Agent Administration

Mobility

Conflict Management

Directory Services

Logging

Grid Messages

Services

Security

Firewall Tunneling

Directory

The Grid Manager Robust (Persistent) Agents

Mobile Agents

SSL Communication
Authentication
Encryption

BasicMessage
DataMessage
FIPAMessage
EncryptedMessage
(others)

GridLogger
Log Viewer
Sequence Visualizer

Lookup Service
Discovery
Lease Management
Service Selector
(load balancing)

PubSub
Web Services
Legacy Wrapping

Messaging

Security

Logging

Figure 7.29: CoABS ASRM Mapping

Version 1.0a 95 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Agent Administration

Agents under the Grid run in a Java Virtual Machine (JVM) and thus have their resources allocated
and controlled via the JVM. Access to specific resources is controlled via the Java Policy imple-
mentation. The Grid has a default Policy File that is distributed as part of the standard Grid release.
This Java Policy File can be modified to provide specific resource access control.

Control and access of low-level resources such as CPU’s and network cards are not supported
directly by Java. Instead Java has the Java Native Interface (JNI) allowing platform specific code
to be written in a language such as C and interfaced to the JVM. The Grid has JNI wrappers for
process control, network management, and other low level functions.

Security and Survivability

The Grid has four security aspects within its architecture. The first is the Java Policy implementa-
tion discussed in the previous section. The second is encryption of messages. Third is the digital
signature of Grid agent “proxies.” Finally there is support for communications via secure sockets
within the Grid.

JVM Security. The lowest level of security within the Grid is provided by Java. Java security
consists of several layers built directly into the JVM. This includes control of memory access,
byte-code verification, and the inability to access low-level resources directly, such as the CPU
and storage devices.

Policy and Permissions are used by the Grid to fine tune access by “untrusted” classes. The
Grid does this by instantiating its own SecurityManager object and using a custom Policy
File.

Message Encryption. The Grid includes the ability to encrypt and decrypt messages sent via
the Grid. Encryption uses the classes in the CoabsGrid.security package to create keys, en-
crypt messages using one of the encryption standards, and decrypt using the selected standards.
By default, the GridSecurityService uses X509 certificates, a JKS keystore, and generates
signatures using the SHA1 hash algorithm in conjunction with the DSA encryption algorithm. Ob-
ject encryption uses the Data Encryption Standard (DES). These tools may be utilized together
or individually depending upon user’s requirements. All of the capabilities use the standard Java
security architecture and algorithms can easily be added without modifying the code.

Digitally Signed Agents. The Grid uses JINI and RMI by default to support discovery and re-
mote invocation of service methods. Agents are services containing a message queue to enable
communications. In order to send a message to an agent, it is necessary to have an “agent proxy”
in the local JVM that communicates with the actual agent running on another platform. This proxy
is downloaded from the agent’s host platform.

The Grid provides a mechanism to digitally sign these agent proxies in order to ensure that the
agent proxy downloaded is not modified or substituted during the communication process. This
authentication is provided by methods within the CoABS Grid. These methods are signProxy,
verifyProxy, getCertificateChain, and checkTrust. The

Version 1.0a 96 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

signProxy method accepts a service proxy object and return a SignatureEntry.
This SignatureEntry can be added to the advertised capabilities of the service (see the Dis-
covery section for more on advertisements). When clients locate the service they can use the
SignatureEntry to verify the signature of the service and decide whether or not to use the
proxy.

Secure Communications. The Grid features the option to use Secure Socket Layer (SSL) com-
munications via RMI to provide secure communications over the network. This is accomplished
in the Grid by simply using the SecureMessageQueue class instead of the MessageQueue

class. This forces any clients to use SSL to communicate securely with the agent. In addition to
the different message queue, the clients also need to be configured to trust the agent provider. This
is done by importing the agent provider’s certificate into the client’s keystore.

Mobility

The Grid provides code mobility via RMI as described in the Security section. However the Grid
also provides for mobility of agents. It does this by permitting one agent to send a copy of itself to
another agent via a message. The sending agent locates another agent capable of receiving agents
in a message. Next the sending agent serializes itself into a message and sends the message to a
receiving message. Finally the sending agent de-registers itself from the directory service.

The receiving agent is a specially crafted agent whose only purpose is to receive mobile agents
in messages. When it receives a message containing an agent, it re-instantiates the agent and regis-
ters it again with the directory service, communicating on a new host and socket/port as necessary.

There is also an alternative to the mobile agent technique because some users cannot permit
agents to be mobile for security reasons. The Grid has a means for agents to receive their “behav-
iors” via messages. An agent’s behavior consists of data values used to modify the way existing
agent code runs. It is important to note that no code is sent to the agent. Instead the procedures
.i.e. methods) already exist in the agent. The agent can change the way it runs those procedures
based on the values sent via messages.

Conflict Management

The CoABS Grid provides no intrinsic ability to manage conflicts between agents. However the
Grid framework is fully extensible and could be given a conflict management capability if a user
desired to add it.

Messaging

The Grid provides for asynchronous messaging with agents using a message queue system. The
default message queue is implemented using RMI calls to enable a client (a Java object) to place
messages into an agent’s queue. The agent is notified that a message was received via a listener
mechanism. This basic messaging capability provides communication between agents and from
non-agents to agents.

Version 1.0a 97 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

The messaging capability of the Grid is highly extensible. As discussed in the Security section,
there are secure message queues and the messages themselves can be encrypted. In addition to
these specialized extensions, the Grid has three basic message types.

The standard message type, BasicMessage, consists of message meta-information (i.e. an
envelope) and a raw text field containing the actual message. The meta-information has the mes-
sage identifier, performative, the time the message was sent, receiver’s name, the sender’s name,
and optionally the sender’s agent proxy. The agent receiving a BasicMessage typically examines
the text or performative of the message to determine the type of message and decide what is to be
done. This could be as simple as displaying the full message, or parsing the text of the message to
pull out key fields. Agents that receive a message that includes the sender’s agent proxy may reply
directly to that agent without looking up the agent in the directory.

The next message type is the AutoReplyMessage. This message is similar to a
BasicMessage except that the sender’s agent proxy is not optional. The receiving agent uses
the sending agent’s proxy to send a return message acknowledging receipt, so only agent may send
AutoReplyMessages.

The third basic message type is the DataMessage. This message type is the same as the
BasicMessage except that in addition to the text payload, it contains a data object. This ob-
ject can be any Java object including text, video, audio, or even the agent itself (see Mobility).
The DataMessage is the foundation for numerous message extensions in the Grid, including the
FIPAMessage, and XML based messages.

Finally the Grid provides a mechanism for reliable message delivery, called “Store-N-Forward”
(SNF). SNF attempts to ensure message delivery by actively controlling the passing of messages.
Normally sending to an agent requires an open communication channel to that agent. Under SNF,
when an agent attempts to send a message to another agent and fails, the SNF mechanism automat-
ically searches for other agents that support SNF. If such an agent is not found, the sending agent
continues to try to send the message to the receiving agent or another SNF agent. This continues
for a parameterized number of attempts. When an agent forwards a message to a SNF agent, the
sending agent ceases its attempts to send the message to the receiving agent. It has handed off
delivery responsibility to an intermediate SNF agent. The SNF agent repeatedly attempts to send
the message to the receiving agent, and failing that, to another SNF agent. This continues until the
message is delivered or the number of attempts specified was reached.

Logging

The Grid contains a built in logging mechanism that can be used to track messages to and from
agents. Messages can be explicitly logged via methods built in to the Grid, or automatically cap-
tured by the Grid Logging service. This service is started from the Grid Manager. It listens for
messages received by an agent and records them in a persistent log file. The message log file
contains serialized copies of the actual messages. Therefore, all the message information, such
as, message envelope (e.g. BasicMessage) and attached data objects (e.g. DataMessage), are
recorded. Messages logged via the logger can be viewed with the Grid Log Viewer, an application
that can be launched from the Grid Manager. The Grid Log Viewer also has a simple message
replay capability.

Finally messages can be visually displayed using the Grid Agent Sequence Visualizer. This

Version 1.0a 98 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

application registers itself as a Grid logger and dynamically displays the real-time message flow
between agents as a sequence diagram. This diagram is interactive and permits the user to view
the message contents as well as the meta-message information.

Directory Services

The Grid relies upon the Java Jini architecture for service discovery, registration, and lease man-
agement. The key service of Jini is the Look Up Service (LUS) that is used to find services based on
name, capability, or affiliation within a logical group. The Grid implementation of agents is based
upon services so the Jini capabilities can be applied to Grid agents. The Grid supports three major
functions within the aspect of directory support: Registration, Discovery, and Lease Management.

Registration. Agents may register themselves with the Grid directory services via Jini. An agent
supplies a description of itself when it registers with the Grid. This description contains a name,
a group, and a list of capabilities or advertisements. This description is used by other agents,
services, and users to locate agents.

The use of advertisements is an important feature in the Grid. For example, the Store-N-
Forward capability for message delivery relies upon the use of advertisements to identify agents
that are able and willing to take responsibility for message delivery.

The registration functionality also includes de-registration. An agent may remove itself from
the LUS without terminating itself. This permits agents to advertise themselves on the Grid for
short periods of times for example. This might be used by an agent to control the number of users
that it supports, perhaps based on CPU load or memory utilization.

Discovery. Users of agents (whether they be human, services, or other agents) find them via the
LUS if they have registered themselves as described above. The discovery process allows look
up based on filters reporting the availability of agents by name or capability. This relies on the
advertisements feature described above.

Once an agent is discovered, a representative of that agent is downloaded from the Grid en-
abling communication with the agent. This representative is referred to as the agent proxy or
“agent rep” in the Grid. The user of the agent sends messages to the agent via the proxy that in
turn communicates with the actual agent.

It is important to note that once a registered agent is located via discovery, and the agent proxy
downloaded, that communication with the agent no longer requires the use of the LUS. This is
important because even if an agent de-registers itself from the LUS, it can still receive messages
from anyone who had previously located it.

Lease Management. Given that network communication is often less then 100% reliable, it is
necessary to manage the registration of agents. This is accomplished in the Grid using leases under
Jini. When an agent registers itself with the Grid, it is given a lease on the registration for a certain
amount of time. This time is defaulted to five minutes, but it can be changed as desired. When this
lease expires, the Grid removes the registered agent from the LUS, unless the lease is renewed.
Grid agents automatically renew their leases before they expire - if they are able to. So the only
way an agent is deregistered, because of an expired lease, is if that agent is unable to communicate

Version 1.0a 99 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

with the Grid. This happens for various reasons, such as network failure, the agent terminates
unexpectedly, or if the computer hosting the agent crashes.

Additional CoABS Grid Capabilities

Services. As mentioned previously, the Grid is based on a Service Oriented Architecture. Agents
are special forms of services within the Grid. Because of this service-based design, the Grid can
support additional capabilities that are not specifically attributed to agents. One example is a
weather service consisting of an application that scrapes a weather web site for meteorological
data and makes it available via a service. An agent in the Grid can query this service to determine
the temperature and wind speed for a particular location, and then use this information as part of
its environmental awareness or “belief.”

Another aspect of Grid services is the ability to wrap legacy code in a service to make it
available via the Grid. This permits users to integrate their existing systems with the Grid to
interoperate with other systems that use the Grid.

Publisher/Subscriber. The typical model for agent communication is messaging. This messag-
ing can be implemented in a variety of ways, but in practice it results in agents actively communi-
cating with each other to share information.

Alternatively, information may be disseminated using as publisher/subscriber model. The Grid
has a built in “PubSub” capability implemented via services. An example of a Pub/Sub application
is a variation of the previously described weather service. In this case a “subscriber” locates (via
the Discovery process) a service that publishes weather information. It informs that “publisher”
that it is interested in receiving weather data for a particular location whenever there is a change
in conditions. The publisher monitors conditions and send updates to all registered subscribers
whenever there is a change.

Web Services. The Grid services were extended to support web services, including the use of
UDDI and SOAP. This is not a core piece of the Grid, but rather an extension that can be utilized
by those needing to interface web services with the Grid.

Autogenerator. The AutoGenerator is a tool that creates and compiles Java classes that wrap
existing code. In addition, script files are created that can be used to re-compile and run the gener-
ated code. The tool uses reflection to examine existing Java class or jar files to extract the available
methods. A user interface presents the discovered methods to the user and upon completion, Java
classes are created and compiled. Using this tool, the user can easily generate a Grid agent or
service without writing code.

Load Balancing. The Grid extended the basic Jini Lookup/Discovery process to add intelligent
selection of services. This was primarily to support load balancing between several services or
agents providing the same capability on different servers. It is important to understand that when a
user searches for a service or agent using the directory function, it is entirely possible for multiple
candidates to be found. Typically the LUS returns all of the matching candidates to the user and
the user usually chooses one from the list.

Version 1.0a 100 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

The Grid service selector attempts to find the best service identified during the discovery pro-
cess and return that one service to the requesting user. There are currently three algorithms imple-
mented to support this, though it is easy to add more. The first is a simple random selector that
attempts to achieve load balancing by distributing service requests evenly amongst the available
services. The second keeps track of service usage, and returns the “Least Recently Used” service.
The final implementation relies on the service to supply a “load value” to the service selector. This
load value represents the percent of resource utilization, with 100% utilization meaning the service
is fully utilized and is not available. The selector uses the load value to select the service with the
lowest resource utilization.

Agent Persistence. The Grid utilizes the RMI activation feature to create what are referred to as
“Robust Agents.” These are agents that automatically restart themselves if they crash unexpectedly,
for example because the system on which they are running is rebooted.

These agents are automatically started when the system is restored. Most importantly, any user
of the agent is able to communicate with that agent without the need to “re-discover” the agent
via the LUS. This means that while communication may be temporarily interrupted, it is restored
automatically.

Firewall Tunneling. The Grid utilizes the TCP/IP protocol by default for communication. This
can cause problems when the Grid is running on machines in different domains located behind
firewalls. The Grid Tunnel is a service that resides behind a firewall. It communicates with other
Tunnel services located on other networks that also may be behind a firewall. The Tunnel acts as a
liaison to take messages and service calls and send them through the firewall using a port that the
firewall permits to go through, such as port 80, and routes them to a corresponding Tunnel service
delivering the information to its intended recipient.

Of course security is a major concern in network communications, and tunneling through a
firewall is not done lightly. The Grid includes security features, some of which were described
earlier, that ensure the Grid Tunnel services are secure. This includes communication using SSL,
requiring that Grid Tunnel services can only communicate with Grid Tunnel peers, and the use of
a custom Java Security Manager.

Version 1.0a 101 November 20, 2006

Appendix A

Agent Standards Report

A.1 Introduction

The Agent Standards Report maps the concepts of the Agent Systems Reference Model (ASRM)
to both the Object Management Group’s Mobile Agent Facility (OMG MAF) standard and to
Foundation for Intelligent Physical Agents (FIPA) standards1 that are suitable for instantiating
them. Knowledge Interchange Format (KIF) and Knowledge Query and Manipulation Language
(KQML) are also described, but only in the messaging section, since they are not meant to be a
complete set of agent standards.

FIPA is an IEEE standards organization, whose goal in creating these standards is to promote
interoperability between heterogeneous agent systems, as well as interoperability between agent
and non-agent systems. For easy reference to the FIPA Standards all of the standards described in
this document are followed by the FIPA identification number in parenthesis.

The goal of the OMG MAF standard is to promote standard interfaces in heterogeneous agent
systems to facilitate interoperability. It was built on the foundation of the Common Object Request
Broker Architecture (CORBA). CORBA is a framework for distributed systems that specifies an
API for accessing services offered by an application, but does not prescribe how those services
must be implemented.

Please note that this document does not prescribe any standards for use in agent systems. Con-
formance to the ASRM does not require the use of the standards described in this report.

A.2 Mapping

Figure A.1 shows a mapping of the relationship between the FIPA standards and the concepts in
the ASRM. Some standards clearly map to part of a single concept, whereas other standards are
more complex and describe pieces of multiple concepts. No mapping is shown for OMG MAF,
because it is a single standard.

1Only FIPA standards classified as standard are described in this chapter.

102

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

A
ge

nt
A

dm
in

is
tr

at
io

n

Se
cu

ri
ty

M
ob

ili
ty

C
on

fli
ct

M
an

ag
em

en
t

M
es

sa
gi

ng

L
og

gi
ng

Abstract Architecture (#SC00001) x x x
SL Content Language (#SC00008) x

Nomadic Application Support (#SI00014)

Agent Management (#SC00023) x x x
Request Interaction Protocol (#SC00026) x

Query Interaction Protocol (#SC00027) x
Request When Interaction Protocol (#SC00028) x

Contract Net Interaction Protocol (#SC00029) x
Iterated Contract Net Interaction Protocol (#SC00030) x

Brokering Interaction Protocol (#SC00033) x
Recruiting Interaction Protocol (#SC00034) x
Subscribe Interaction Protocol (#SC00035) x

Propose Interaction Protocol (#SC00036) x
Communicative Act Library (#SC00037) x

ACL Message Structure (#SC00061) x
Agent Message Transport Service (#SC00067) x

ACL Message Representation in Bit-Efficient (#SC00069) x
ACL Message Representation in String (#SC00070) x
ACL Message Representation in XML (#SC00071) x

Agent Message Transport Protocol for IIOP (#SC00075) x
Agent Message Transport Protocol for HTTP (#SC00084) x

Agent Message Transport Envelope Representation in XML (#SC00085) x
Agent Message Transport Envelope Representation in Bit Efficient (#SC00088) x

Device Ontology (#SI00091)

Quality of Service (#SC00094)

Figure A.1: The FIPA ASRM Map. The rows correspond to FIPA documents, with their FIPA
identifiers in parenthesis and the columns correspond to concepts in the ASRM document.

A.2.1 Agent Administration

The ASRM describes agent administration as the facilitation and enabling of supervisory command
and control of agents and/or agent populations as well as allocating system resources for agents
by dividing agent administration into four main processes: Agent Creation, Agent Management,
Recourse Control, Agent Termination.

FIPA describes standards that relate to these processes in the Abstract Architecture Specifica-
tion (#SC00001) and the Agent Management Specification (#SC00023) documents.

Version 1.0a 103 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Agent Creation: The ASRM defines agent creation as the act of instantiating or causing the
creation of agents. This encapsulates the initial allocation of resources for the agent, as well as the
invocation of the agent (starting its execution).

FIPA describes agent creation as a two step process: creation and invocation. Creation is the
instantiation of the agent and invocation is the starting of the agent. Upon creation of an agent,
FIPA mandates that a unique identifier, AID, is given to the agent in the form of a unique name
concatenated with @ and the name of the platform on which the agent resides.

In addition, FIPA prescribes that the Agent Management Service (AMS), the supervisory ser-
vice on a platform, give a reference to a number of key services to the agent, in the form of a
service-root (see the section A.2.1 for more details). The agent then optionally registers with
one or more of these services, such as directory services.

The OMG MAF describes creating an agent as an interaction with the destination framework
and a non-agent program, an agent from a different type of framework, or an agent of the same
type of framework can create the new agent.

OMG MAF stipulates a number of steps in the process of creating an agent. First, a thread is
started for agent. Next, an object of the agent’s type is instantiated. Then, it is assigned a globally
unique identifier (GUID), which plays a similar role as the AID in FIPA. A GUID consists of the
authority, identity and system type. The authority is the entity creating the new agent. The identity
is provided by the authority, but must be unique. The system type refers to the type of framework
for which this agent was designed. Finally, the agent begins execution in its thread. Optionally, the
agent registers with the MAFFinder, a directory service.

Agent Management: The ASRM defines agent management as the process by which humans
or manager agents give orders to agents. FIPA does not have any standards prescribing agent
management, nor does OMG MAF.

Resource Control: Resource control in the ASRM encompasses allocating system resources
such as CPU and bandwidth, and providing access to resources such as user interfaces.

Services are the only method FIPA describes for accessing resources. The service-root —
pointers to which are given to agents upon creation — provides sufficient information to contact
service directory services. Agents query this resource for available services.

The OMG MAF does not prescribe any standards for resource control.

Agent Termination: Unless the MAS is meant to run forever, the agents must eventually cease
execution and free its resources.

Terminating an agent in FIPA is referred to as either destroying it or quitting. If AMS forces
an agent to terminate, it is called destroying, while if the AMS requests that an agent terminates
or the agent initiates its own termination it is referred to as quitting. Regardless of the initiator of
termination, a FIPA compliant framework requires an agent de-register with the directory facilitator
and any other previously registered directory service upon termination.

In OMG MAF, an agent is terminated by calling the agent terminate function with the
GUID of the agent to be terminated. If the caller has appropriate permissions, the agent is termi-

Version 1.0a 104 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

nated. The entity that calls this function should also unregister the terminated agent, to prevent
errors.

The system terminates an agent by providing the information in its GUID. The framework is
also responsible for unregistering an agent, to prevent errors. An agent that wishes to terminate
itself calls the same function, with its own GUID.

A.2.2 Security

The ASRM defines security as the preventing the execution of undesirable actions by entities from
either within or outside the agent system while at the same time allowing execution of desirable
actions. The goal is for the system to remain useful and dependable in the face of malice, error, or
accident.

None of the FIPA standards prescribe specific security standards. However, section 11 of the
FIPA Abstract Architecture Specification (#SC00001) briefly describes security features that the
architects of concrete agent system must consider: Agent identity, access permissions, content
validity (software code and messages), and content privacy.

The specification states that it is purposefully vague, because security issues are tightly coupled
to implementation and the designer of the system must address them. An example is given in
section 4.7 of using 3-DES to encrypt a message payload. Additional attributes are added to the
envelope that name the encryption algorithm used and the key.

Authentication: Authentication is a process for identifying the entity requesting an action.
OMG MAF describes authentication in detail. It states that an agent must authenticate itself

before performing communications with another system, or migrating to another system. Authen-
tication cannot be done with public key cryptography, because mobile agents cannot securely carry
private keys with them. Instead, the framework receiving the request or the migratory agent must
authenticate the sending framework, using a method such as public key cryptography.

Authorization: Authorization is a process for deciding whether the entity should be granted
permission to perform the requested action.

In OMG MAF, if the sender is authenticated using the scheme described above, then the agent
is given the same authorization on the receiver that it enjoyed on the sender.

Enforcement: Enforcement is a process or mechanism for preventing the entity from executing
the re- quested action if authorization is denied, or for enabling such execution if authorization is
granted.

Enforcement of a security policy is not described by the OMG MAF.

A.2.3 Mobility

ASRM describes mobility as the services required to support the migration of agents between
different framework instances.

Version 1.0a 105 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FIPA’s Agent Management Specification (#SC00023) describes all the mobility processes in the
ASRM except for serialization. Section 2.3 of the Abstract Architecture Specification (#SC00001)
describes the rational for not describing certain features, including mobility.

Decision Procedure for Migration: The ASRM states that a platform supporting mobility sup-
ports active mobility, passive mobility, or possibly both. A platform supports active mobility when
the agents are responsible for deciding to migrate. However, a platform supports passive mobility
when the framework is responsible for deciding when agents migrate. If the decision to migrate
is made by the framework, another agent or a management service, the platform supports passive
mobility.

FIPA prescribes that an agent platform support active mobility, therefore agents in a FIPA
compliant system initiate the move to another host. After initiating the move, the AMS places the
agent into the transit state. Optionally, the agent also de-registers or modifies its entry in directory
services.

The OMG MAF also describes the agent as deciding to move to a remote location, although
not quite as decisively as FIPA, indicating active mobility and does not mention passive mobility.

Serialize: As described in the ASRM, serialization involves persisting the agent’s data and/or
state into a data structure. This data structure is converted to packets or written to a buffer to
prepare the agent for migration.

Serialization, in this case, is the transformation of an agent into a format suitable for transmis-
sion across a communications channel. Upon transmission, the remote platform must have enough
information to recreate the agent and invoke it.

Serialization is not described by a FIPA standard because it is highly dependent on the imple-
mentation details of the agent framework. For example, if the agent was written in Java or C, the
implementation of serialize requires vastly different efforts. While Java only requires agents to im-
plement the Serializable interface and transmit the serialized object across a network socket,
a framework written in C requires a custom solution.

The OMG MAF standard describes serialization as representing the agent in a form from which
the agent can be fully reconstructed. It does not describe an exact method, since this is too imple-
mentation dependent.

Migrate: Migration, which refers to the transmission of the serialized agent over a communi-
cations channel to the migration destination, is not described by a FIPA standard. The method of
transmission depends on how the agent was serialized. Since serialization is not covered by a FIPA
standard, migration is not covered either.

In OMG MAF, when initiating a migration, the migrating agent specifies a minimum QoS re-
quired for the migration to occur. If this is met, the agent is transmitted across the communications
channel.

De-serialize, Re-Register and Resume: After the agent arrives on a host platform and is de-
serialized (the specifics of which are not part of a FIPA standard), the AMS executes the agent,

Version 1.0a 106 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

at which point it resumes execution. This is analogous to invoking the agent after it is created.
Optionally, the agent re-registers with the directory facilitator and other services.

When migrating, there are two options for the agent to resume its execution. The first method,
called weak mobility, occurs when a migrating agent’s data and code arrives on a new host and it
begins execution from a fixed point. The second, called strong mobility, occurs when a migrating
agent resumes execution from the point that it paused execution before migration. The OMG
MAF standard explicitly states that both weak and strong mobility fall under their classification of
mobility.

A.2.4 Conflict Management

Conflict Management is defined by the ASRM as managing interdependencies between agents.
FIPA has a collection of nine interaction protocols that are suitable for the conflict avoidance

and conflict resolution processes. These nine protocols were not written solely to address conflict
management, but can be used in such a way as to facilitate handling these situations.

The OMG MAF standard does not prescribe any standards for conflict management.

Conflict Avoidance: The ASRM defines conflict avoidance as preventing conflicts. One way
agents can avoid conflict is by coordinating their individual actions to not conflict with actions
taken by other agents.

To prevent conflict, it is possible to use some of the FIPA interaction protocols that allow
an agent to make requests to another agent that its behavior conforms to some standard. For
example, if there is a configuration file that many agents are allowed to read from and write to, care
must be taken to ensure that one does not read while another is writing, as this could potentially
cause inconsistent data to be read. The reader exchanges messages, conforming to the Request
Interaction Protocol (#SC00026), with the agent in charge of the file, requesting that it grant the
reader permission to read it. The agent in charge of the file then waits until the file is not being
written to grant permission.

Conflict Detection: Conflict detection is defined as determining if a conflict is occurring or has
occurred. Conflict detection is not described by any FIPA standards. In general, detecting conflicts
depends on the implementation of the system.

Conflict Resolution: The ASRM defines conflict resolution as the process through which con-
flicts between agents’ actions are resolved. The interaction protocols are ideal for negotiation in
certain cases. For example, if there is a host whose CPU is being throttled, a manager agent may
decide to actively manage access to the CPU so that critical applications are not delayed. This man-
agement agent sends out a call for proposal, conforming with the Iterated Contract Net Interaction
Protocol (#SC00030), to all the agents that are eligible to schedule time on the CPU.

Interested agents respond with the quality of the tasks they are able to perform and the amount
of CPU time required. Negotiation then continues until the management agent sends an accept
proposal to the agents allowed to use the CPU.

Version 1.0a 107 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

A.2.5 Messaging

The ASRM defines messaging as the exchange of information between agents. It states that al-
though the exchange of information between other entities, such as agents and the framework, can
occur, it is not included in the messaging concept.

FIPA has many different standards involving many parts of messaging. Standards exist for en-
coding a message, looking up an agent to receive it, addressing it and transmitting it. Furthermore,
standards exist for doing these actions in different ways, depending on the environment in which
the agents are situated.

Messaging is not addressed by the OMG MAF specification. However, the specification sug-
gests using CORBA’s object communication standards for agent communication.

Message Construction: The ASRM defines message construction as the process through which
a message is created, once the message has been decided upon. FIPA messages, described be the
ACL Message Structure Standard (#SC00061) consist of a performative representing the purpose
of the message, the message content (ie: the actual message), and meta-information such as the
sender and receiver. Additionally, optional conversational control parameters can be included, such
as the interaction protocol being used (if any) and an identifying name for the conversation.

The Communicative Library Specification (#SC00037) lists types of messages that can be con-
structed, which is to say it is a list of valid performatives. Ideally all of the communicative acts
specified in this standard are supported, although, to comply, an agent is only required to imple-
ment the not-understood message.

The SL Content Language Specification (#SC00008) describes syntax for the content portion
of the ACL message. This is the actual message; the information being communicated.

After the message is constructed from these components, a representation is chosen. Three
standards, ACL Message Representation in Bit-Efficient Specification (#SC00069), ACL Message
Representation in XML Specification (#SC00071), and ACL Message Representation in String
Specification (#SC00070) describe how to represent a message in a specific format. Different
representations are used in different environments. For example, in a bandwidth constrained envi-
ronment, a bit-efficient representation makes more sense than an XML representation.

Another way of constructing messages is to use the Knowledge Query and Manipulation Lan-
guage (KQML), a standard that came out of the DARPA Knowledge Sharing Effort (KSE). Like
the FIPA ACL Message Structure Standard, KQML has a number of parameters such as sender and
receiver, as well as a performative and some content (ie: the actual message). Another standard
that came out of KSE, Knowledge Interchange Format (KIF) can be used to encode the content of
KQML messages.

Naming and Addressing: The ASRM describes the naming and addressing process as the mech-
anism for labeling a message with its intended destination or route. Services that facilitate this
labeling, such as directory white page services (to search for agents to send messages to), are
considered part of this process.

A directory service such as the directory facilitator (DF) described in the Agent Management
Specification (#SC00023) is the standard method of searching for agents. The

Version 1.0a 108 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

agent-directory-service (ADS) described in the Abstract Architecture Standard Specifica-
tion (#SC00001) is slightly different from the DF, but performs a similar task. Please refer to the
primary sources for more information.

The message constructed in the previous processes is then attached to an envelope, as described
in the Agent Message Transport Service Specification (#SC00067). The envelope contains the
information that is required to deliver the message successfully, which is the sender, the receiver,
a timestamp, and a description of the acl-representation used to encode the message. (The latter
is so that the recipient properly decodes the message.) Optional envelope parameters can also be
included, as well as custom envelope parameters. The latter parameters must have “X-” prepended
to their names.

Transmission: The reference model defines transmission as the actual transport of the message
over a communications channel. There are two ways of transmitting messages described by FIPA
standards in the Agent Message Transport Service Specification (#SC00067), both of which use
an agent communications channel (ACC). An ACC is an abstract entity that transmits messages
between different physical hosts across a communications link. In the first method, the sending
agent gives its message to its local ACC, who transmits it to the ACC on the remote host where the
recipient agent is located. In second method, the sending agent sends its message directly to the
ACC on the remote host.

When using the first method of transmission, ACCs on different host send messages using
a message transmission protocol (MTP). There are two standards describing MTPs, the Agent
Message Transport Protocol for IIOP Specification (#SC00075) and the Agent Message Transport
Protocol for HTTP Specification (#SC00084). An ACC, when sending a message, queries the
remote ACC to determine which protocol to use.

Another way of of transmitting messages, which the FIPA standards specifically do not exclude,
is agents sending messages directly to other agents. Although this method is not prohibited, it is
also not described by the standards and the decision to use it is deferred to the implementers.

Receiving: Assuming one of the two methods described in the standard was used to send a
message, it is delivered to the recipient by the ACC local to it. FIPA does not specify how this
is done (e.g.: inserted into message queue, etc). It does specify that both the envelope and the
message are delivered to the recipient, which is to say that the recipient has full access to the
envelope of all messages sent to it.

A.2.6 Logging
Logging is described by the ASRM as the enabling of information about events that occur during
agent system execution to be retained for subsequent inspection. Neither the OMG MAF standard
nor any of the FIPA standards describe logging.

Version 1.0a 109 November 20, 2006

Appendix B

Survey of Surveys

B.1 Introduction

This reference model is a reflection of a wide variety of research. Information was gathered from
many sources including: journals, magazine articles, conference proceedings, textbooks, white
papers, and manuals for agent frameworks. In addition to these static sources, experts in the agent
field provided input.

Due to the breadth of subjects classified under “agent research,” classifying survey papers is not
trivial; however, a few works stand out that effectively summarize the history—past, present, and
future—of agents, analyze the benefits or lack thereof for using agents, or outline the way agent
research should be conducted. These are regarded as surveys and usually give a brief overview of
other works that exist in some category. They are helpful resources because they create a single
location where a person researching a certain subject can find more references. What happens
when numerous areas of research need to be considered? The creation of the reference model
presented such a problem. Our solution was to create a survey of surveys that alleviates some of
the overhead involved in finding works in a wide variety of fields.

This document sorts surveys that categorize works in a particular field. It is organized by
subject where the actual categories are purposely broad and the scope of each is the entire agent
world. This is necessary because survey papers tend to make some sort of assertion about a field.
For example, a survey paper that just categorizes papers on Agent Security is not very meaningful.
A better survey paper would be “Current Trends in Agent Security.” All survey papers presented
do comment on a field as whole and they are categorized based on how they comment on that field.

An objective of this survey is not to make a universal observation about the agent field or any
particular subset. In the design of the reference model, the entire field was taken into account and
made no attempt to draw conclusions about an individual one. The applicability of this survey is
twofold. First, and most obviously, it is possible to obtain references that describe a certain field
in a certain way. A person writing a survey paper often needs sources describing a specific field.
A quick look into some (or possibly all) categories provides a detailed overview. A second use of
this survey allows greater generalizations to be drawn regarding agents as a whole. By seeing how
agent research has progressed, trends are identified and, most importantly, the amount of research
in a particular field is evident. This information then allows for the comparison of fields.

110

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

B.2 Categories

Survey papers are categorized by the way in which they comment on a particular field. In such a
way, the categories span all fields at once. The entirety of the categories summarizes agent research
as a whole. Comparing two different categories does not make much sense since the categories are
all quite different from each other. Two works within one category can be compared in a variety of
ways. For example, if two works are related to different fields, it is possible to address similarities
in their histories.

Following is a list of categories with brief definitions. It is important to note that the categories
are not mutually exclusive; however they do not overlap. That is, their definitions are specific and
exclude other categories, but surveys are often more general and comment on multiple aspects of
a field so are included in multiple categories.

Analysis of the Agent Programming Paradigm Surveys of this type comment on the usefulness
of agent frameworks or architectures. Applications are sometimes provided as evidence and
comparisons are usually made with other programming paradigms.

Research Methodology These surveys explain how to conduct agent research and how the results
can be applied to the real world.

Status of Research Surveys that fall into one of three sub-categories can be found here: historical
overview, present trends, or predictions for the future.

Textbooks Textbooks in the typical context. They may serve a variety of purposes so they are
included in their own category.

B.3 Results

The following chart summarizes each paper by its primary and possibly its secondary categoriza-
tion. In some cases, papers are very specific to a category and thus only listed once in normal
typeface. In other cases, there is a primary categorization, but an overlap with another category.
These papers are listed twice: first in standard typeface for the primary category and in italics for
the secondary category.

Version 1.0a 111 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

CATEGORY WORKS

Analysis of Paradigm Chess (1995)
Etzioni (1995)
Ghezzi (1997)
Fugetta (1998)
Huhns (1998)
Gray (2000)
Wooldridge (2000)
Kotz (2002)

Research Methodology Hanks (1993)
Fonseca (2002)
Fugetta (1998)
Jennings (1998)

Status Nwana (1996)
Hagen (1998)
Jennings (1998)
Sycara (1998)
Milojicic (2000)
Huhns (2000)
Fonseca (2002)

Textbooks Russell (2003)
Vigna (1999)
Weiss (2001)
D’Inverno (2001)
Wooldridge (2002)

B.4 Summaries
This section provides the categorized works in a greater detail. Included is a brief summary of
each work. This further directs the readers as to the appropriateness of a certain work, especially
when searching for a paper from a certain field.

B.4.1 Analysis of the Agent Paradigm
Chess (1995) [5]. Chess details the life-cycle of an agent and how it migrates internally through
the API and externally through the network between nodes. Benefits of using agents for certain
tasks, such as supporting mobile clients, interacting between client and server, and removing a
consistent state requirement are assessed with particular attention paid to viewing agents from
an economic perspective. Chess concludes that mobile agents are of greatest advantage in large
networks or smaller networks where communication is uncertain. In such environments, agents
reduce the need to preserve state between client and server, eliminate the need for multiple com-
munications/transactions thereby reducing bandwidth, and enable a large amount of scalability.
Agent’s largest disadvantage is the need for heightened security. Servers must be able to authenti-
cate agents, authorize them to perform tasks using system resources, and detect malicious agents.

Version 1.0a 112 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Etzioni (1995) [8]. Etzioni attempts to formally define an agent by listing some desirable char-
acteristics: it should be autonomous, exhibit temporal continuity, have its own character, be able to
communicate, be adaptive, and be able to migrate. Many information agents exhibit these charac-
teristics and Etzioni analyzes SoftBot as an example.. The SoftBot is similar to a hotel concierge
and must be able to notify, enforce constraints, and locate and manipulate objects. Goal speci-
fications are defined, the architecture is mapped out, and various other properties are examined
in depth. The definition of an agent is never settled upon, but the SoftBot example exemplifies a
typical agent and subjects future creators to ponder some of the challenges facing agent implemen-
tations.

Ghezzi (1997) [39]. Ghezzi shows benefits of using agent technologies by comparing and con-
trasting separate implementations. In particular, he highlights the differences by comparing some
implementations with the client-server model and a remove evaluation design. The common task
is to design a Database Management System (DBMS) with a search engine. This database is as-
sumed distributed across a network. The three categories used to compare the implementations
are message-based transmissions, strong mobility, and weak mobility. No solid conclusion is for-
mulated in the paper and the author allows the reader to decide which implementation is most
advantageous.

Fugetta (1998) [37]. In this work, Fugetta explains mobile code and its applicability to the sci-
ences. At the time of publication, not much work was done in the area of mobile code. The authors
present a framework for understanding such mobile code and give a wide range of example im-
plementations. The various design paradigms for the implementations are inspected which include
client-server, code-on-demand, and the agent model among others. A main goal of the paper is
to provide a guideline for developers that is to be used when deciding whether or not to use mo-
bile code in an implementation. Fugetta concludes with a case study involving the development
of network management software. The process is examined with the classifications previously
mentioned being highlighted.

Huhns (1998) [46]. Huhns and Singh, who are among the leading researching in Distributed Ar-
tificial Intelligence and Multi-Agent Systems, put together a collection of documents highlighting:
key characteristics of agent thinking, emerging applications, architectures and infrastructures, and
theoretical models. These documents are by various authors and from various sources, but repre-
sent the “best synthesis of current thinking.” Aside from the documents, the authors give a good
overview of agent-related terms: agents, systems, frameworks, environments, and autonomity.

Gray (2000) [40]. Gray establishes the major advantages for using agents. He admits that for
every program implemented using agents, there is a better alternative; however, agents provide
enough generalization to be decent solutions to a wide range of problems—and this is their pri-
mary benefit. All too often, this sacrifice is worthwhile. Using agents renders the following ad-
vantages: conserved bandwidth, reduction of completion time when executing across a network,
reduction in latency across a network, provide more efficient and disconnected operations, provid-
ing “automatic” load balancing, and allowing for dynamic deployment of code. This flexibility is

Version 1.0a 113 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

what makes agent programming so appealing and useful. Two simple examples, an information
acquiring agent using distributed databases and a military operation that requires software that is
not pre-installed on mobile computing devices, illustrate the benefits of using agents versus other
methods. No other implementation combines the six attributes quite like agents.

Wooldridge (2000) [70]. Wooldridge explores the forum of rational agents: those that are capa-
ble of performing independent and autonomous actions using “good” decision-making. He intro-
duces the belief-desire-intention (BDI) model of rational decision-making. Wooldridge then turns
his attention to LORA, or the Logic of Rational Agents. This framework is then use to highlight
teamwork, communication, and cooperative problem solving with regard to rational agents.

Kotz (2002) [49]. Kotz analyzes the many barriers that agent research must overcome before
it can be differentiated from mobile code. The existing difference is slight. An agent requires a
large architecture and framework in which to operate, while mobile code simply takes advantage
of schemes already included in the architecture (such as RPCs). When using agents, programmers
are forced to tailor their code to a specific framework. If standards were established, such as a
reference model, then the agent code could be more generic and universal. In that regard, the
focus should be on extracting the major components from the “monolithic systems” and creating
an abstract representation that generalizes most agent frameworks. An approach like such would
significantly reduce the overhead required to program agents. The reference model allows the
agent field to establish itself as a major part of AI.

B.4.2 Research Methodology
Hanks (1993) [43]. Hanks describes common problems stemming from the way research is
conducted using AI planning-oriented implementations of agent testbeds. In particular, Hanks
promotes that researchers need to realize that they are working in a controlled environment and
experiments merely produce comparisons between environment parameters and how the agent re-
acts; benchmarks and testbeds are empirical tools so should be used with caution in the theoretical
realm. Results obtained in this manner do not comment on theory; instead these results should be
used to compare performances.

Fonseca (2002) [10]. Fonseca recognizes the existence of hundreds of agent system implemen-
tations that are all quite similar in operation. As the interest in agent research evolves, researchers
are restricting their focus to developing their own implementations from the ground up. Fonseca
believes this approach is awry. A better solution is to improve upon the existing agent systems. In
particular, JADE and ZEUS are examined with their similarities extracted and combined in order
to produce a second generation MAS.

B.4.3 Status of Agent Research
Nwana (1996) [58]. Nwana explores the definition of an agent. She presents a Ven Diagram
consisting of cooperation, learning, and autonomous in order to define an agent. Within each of

Version 1.0a 114 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

these possible classifications, there are sub-classifications defined such as Collaborative Agents,
Interface Agents, and so on. Each of these categorizations is described with a hypothesis, goal,
motivation, benefits and role, criticism of work in that field, and some challenges facing imple-
mentation. These qualities give rise to the future direction of agent research.

Hagen (1998) [42]. Hagen discusses the impact of agents on various mobile object middlewares,
such as CORBA. Further, the article describes how certain mobile agent platforms are applied to
different environments—focusing on telecommunications. Mobile agent solutions are being de-
veloped for a handful of fields within telecommunications: business, network, virtual home, and
personal communication. The next step is to formalize this agent work and build solid platforms
that these agents can use to conduct their business. Agents have a great potential in the telecom-
munications world and, if standardized and implemented correctly, will be of great benefit.

Jennings (1998) [48]. Jennings paper attempts to provide “order and coherence” to the field of
agent technologies. He begins with a brief overview of agents, highlighting his definition of an
agent: “an entity that acquires information, reasons, and reacts.” A history of agents is detailed
followed by a status report on various fields within agent research, including Human-Computer
Interaction, Distributed AI, and Constraint-Based Problem Solving. An overview of agent-based
systems is presented that leads into a discussion about previous implementations, future implemen-
tations, and the applications of these systems. The applications are examined at length and include
air-traffic control, auctioning, video games, medical technologies, and more. Jennings concludes
by noting that agent-based research is a new field with great potential that will find a variety of
applications upon its maturity.

Sycara (1998) [65]. Based on a definition of MASS that involve limited viewpoints, no global
control, decentralized data, and asynchronous computation, Sycara puts forth several problems
that currently face and will face developers of such agent frameworks. At a lower level, agents
in MASs must contain the ability to reason, organize themselves, and share the workload in order
to operate efficiently. These issues are addressed using several types of planning and modeling to
enhance effectiveness. There exist many different MAS that have been already developed includ-
ing, but not limited to, RETSINA. Sycara concludes by examining RETSINA and highlighting the
aforementioned lower-level properties.

Milojicic (2000) [57]. Milojicic’s book is a survey on mobility with a domain that extends to not
only agents, but processes and computers as well. It presents a distinguished set of papers from
years of research. The survey begins with a collection of papers on mobility. It includes process
migration, user-space migration, and an assortment of migration policies. The survey then shifts
gears and focuses on mobile computing—for example, using laptops. Finally, the authors switch
gears to mobile agents and their applicability to communications, such as the Internet. Overall, the
book proves that these three areas are quite similar and hints at the future directions for each.

Version 1.0a 115 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

B.4.4 Textbooks

Vigna (1999) [68]. This is work is part of the Lecture Notes in Computer Science series. It is
intended to be an overview of MASs with a focus on the security aspects. The author begins
by differentiated agents from remote procedure calls and describes applications where both are
advantageous. The rest of the book is a collection of papers that deals with security aspects of
agency. Each paper is written by different authors who are experts in their respective fields: David
Chess, Giovanni Vigna, James Riordan, to name a few. Different security mechanisms are first
analyzed and compared. Then, actual implementations are inspected for the security measures
they provide.

D’Inverno (2001) [7]. This textbook is a standard introduction to agent technologies. It gives an
in depth overview of agents and agent frameworks by examining the SMART agent framework.
This agent framework is used to describe various aspects of agency, such as relationships, interac-
tions, and types of agents. The definitions presented are quite formal and there exists a plethora
of mathematical notation throughout the book. The book concludes with an application of the
SMART framework entitled actSMART.

Weiss (2001) [69]. Weiss’ main objective for creating this book was to provide a textbook for a
field that lacked them. Hence, he created an MAS textbook that focuses on Distributed Artificial
Intelligence. Each chapter is written by different leaders in the agent field. Authors include:
Michael Wooldridge, Michael Huhns, Edmund Durfee, and Munindar Singh among others. A
general definition in the first chapter leads to the discussion concerning agent systems and societies
of agents. The author then focuses on societies of agents and describes types of interactions. For
example, distributed problem solving and planning is examined as well as learning and logic-based
reasoning. This textbook is not as formal in regard to its definitions, except where it needs to be (i.e.
the Logic-Based Representation and Reasoning chapter). It does offer an algorithmic approach to
many common agent procedures by providing pseudo-code.

Wooldridge (2002) [71]. Wooldridge wrote this textbook as an introductory text to agents and
multi-agent systems. A brief history is followed by an exposition concerning individual agents.
The usual, broad definition of agents is given and then reasoning and reacting is examined. The
remainder of the book explores collections of agents. In these environments, agents interact in
order to solve problems. They can each work independently by solving parts of a problem or work
together as a unified group. Specific examples are cited in order to strengthen this notion. Thus,
this textbook gives a good overview of agents, agent systems, and applications of agent systems.

Russell (2003) [61]. The Russell & Norvig textbook on Artificial Intelligence is one of the most
popular textbooks for AI courses. It is not specific to agents, but it takes an agent approach to
describing the basics. Topics that are covered include problem solving, knowledge and reasoning,
and planning. The book progresses into the more advanced topics of reasoning and learning. The
textbook concludes with an in-depth discussion of agents and their applications in the real world
as robots.

Version 1.0a 116 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

B.5 Conclusion
This paper looks at works from various fields in the agent community: software agents, intelligent
agent design, multiagent systems, and DAI to name a few. Though interrelated, each subject area
has a well-defined research track. Instead of focusing on a particular subset of agents research, the
agent community in its entirety is considered and a practical resource to aid in finding works that
describe a field in a particular way or finding works to use in comparing different fields is provided.

The evolution of agent research, as a whole, is made quite obvious by these documents. For
instance, an early trend was to define agents [58, 8]. This proved to be near impossible and cur-
rent works tend to accept and work with the abstract definition that includes sensing, reasoning,
and acting. Security was mentioned as a major problem that agent research would face in Chess’s
work [5]. There now exist several works, such as [68], that show how agent security has become a
primary focus in all aspects of the agent world. Then there are the problems that remain unsolved,
such as how to precisely define intelligent and how to make agents that exhibit such characteris-
tics [70].

Agent research has come a long way in the past decade. It began, as most sciences do, with
discussions and arguments over what agents are and how they are applicable. Soon afterwards,
theory was developed with empirical evidence to back it up. Now, agent research thrives at the
forefront of artificial intelligence—at the forefront of technology in the new millennium.

Version 1.0a 117 November 20, 2006

Bibliography

[1] Dublin core metadata initiative, November 2006. http://dublincore.org/.

[2] Tony Andrews, Farncisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva
Weerawarana. Business process execution language for web services, May 2003.

[3] David Beckett. Rdf/xml syntax specification (revised), February 2004.

[4] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. Extensible
markup language (xml) 1.0 (third edition), February 2004.

[5] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents: Are they a good
idea? Technical Report RC-19887, IBM, Yorktown Heights, NY, December 1994.

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web ser-
vices description language (wsdl) 1.1, March 2001.

[7] Mark D’Inverno. Understanding Agent Systems. Springer-Verlag, New York, NY, 2001.

[8] O. Etzioni and D. S. Weld. Intelligent Agents on the Internet: Fact, Fiction, and Forecast.
IEEE Expert, 10(4):44–49, August 1995.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext transfer protocol – http/1.1. RFC 2616 (Best Current Practice), June 1999.

[10] Steven P. Fonseca, Martin L. Griss, and Reed Letsinger. Agent behavior architectures a MAS
framework comparison. In Maria Gini, Toru Ishida, Cristiano Castelfranchi, and W. Lewis
Johnson, editors, Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’02), pages 86–87. ACM Press, July 2002.

[11] Foundation for Intelligent Physical Agents. Abstract architecture, December 2002.
http://www.fipa.org/specs/fipa00001/.

[12] Foundation for Intelligent Physical Agents. Acl message representation in bit-efficient en-
coding, December 2002. http://www.fipa.org/specs/fipa00069/.

[13] Foundation for Intelligent Physical Agents. Acl message structure specification, December
2002. http://www.fipa.org/specs/fipa00061/.

118

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[14] Foundation for Intelligent Physical Agents. Agent message transport protocol for http, De-
cember 2002. http://www.fipa.org/specs/fipa00084/.

[15] Foundation for Intelligent Physical Agents. Brokering interaction protocol specification, De-
cember 2002. http://www.fipa.org/specs/fipa00033/.

[16] Foundation for Intelligent Physical Agents. Contract net interaction protocol specification,
December 2002. http://www.fipa.org/specs/fipa00029/.

[17] Foundation for Intelligent Physical Agents. Device ontology specification, December 2002.
http://www.fipa.org/specs/fipa00094/.

[18] Foundation for Intelligent Physical Agents. Fipa acl message representation in string specifi-
cation, December 2002. http://www.fipa.org/specs/fipa00070/.

[19] Foundation for Intelligent Physical Agents. Fipa acl message representation in xml specifi-
cation, December 2002. http://www.fipa.org/specs/fipa00071/.

[20] Foundation for Intelligent Physical Agents. Fipa agent management specification, March
2002. http://www.fipa.org/specs/fipa00023/.

[21] Foundation for Intelligent Physical Agents. Fipa agent message transport envelope represen-
tation in bit efficient specification, December 2002. http://www.fipa.org/specs/fipa00088/.

[22] Foundation for Intelligent Physical Agents. Fipa agent message transport envelope represen-
tation in xml specification, December 2002. http://www.fipa.org/specs/fipa00085/.

[23] Foundation for Intelligent Physical Agents. Fipa agent message transport protocol for iiop
specification, December 2002. http://www.fipa.org/specs/fipa00075/.

[24] Foundation for Intelligent Physical Agents. Fipa communicative act library specification,
December 2002. http://www.fipa.org/specs/fipa00037/.

[25] Foundation for Intelligent Physical Agents. Fipa device ontology specification, December
2002. http://www.fipa.org/specs/fipa00091/.

[26] Foundation for Intelligent Physical Agents. Fipa query interaction protocol specification,
December 2002. http://www.fipa.org/specs/fipa00027/.

[27] Foundation for Intelligent Physical Agents. Fipa sl content language specification, December
2002. http://www.fipa.org/specs/fipa00008/.

[28] Foundation for Intelligent Physical Agents. Iterated contract net interaction protocol specifi-
cation, December 2002. http://www.fipa.org/specs/fipa00030/.

[29] Foundation for Intelligent Physical Agents. Message transport service specification, Decem-
ber 2002. http://www.fipa.org/specs/fipa00067/.

[30] Foundation for Intelligent Physical Agents. Nomadic application support specification, De-
cember 2002. http://www.fipa.org/specs/fipa00014/.

Version 1.0a 119 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[31] Foundation for Intelligent Physical Agents. Propose interaction protocol specification, De-
cember 2002. http://www.fipa.org/specs/fipa00036/.

[32] Foundation for Intelligent Physical Agents. Recruiting interaction protocol specification,
December 2002. http://www.fipa.org/specs/fipa00034/.

[33] Foundation for Intelligent Physical Agents. Request interaction protocol specification, De-
cember 2002. http://www.fipa.org/specs/fipa00026/.

[34] Foundation for Intelligent Physical Agents. Request when interaction protocol specification,
December 2002. http://www.fipa.org/specs/fipa00028/.

[35] Foundation for Intelligent Physical Agents. Subscribe interaction protocol specification, De-
cember 2002. http://www.fipa.org/specs/fipa00035/.

[36] Martin Fowler and Kendall Scott. UML distilled (2nd ed.): a brief guide to the standard
object modeling language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[37] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code Mobility.
IEEE Transactions on Software Engineering, 24(5):342–361, May 1998.

[38] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0 Reference
Manual. Technical Report Logic-92-1, Computer Science Department, Stanford University,
Stanford, CA, USA, June 1992.

[39] Carlo Ghezzi and Giovanni Vigna. Mobile code paradigms and technologies: A case study.
In Proceedings of the First International Workshop on Mobile Agents, Berlin, Germany, April
1997.

[40] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. Mobile agents: Motivations
and state-of-the-art systems. Technical Report TR2000-365, Dartmouth College, Hanover,
NH, 2000.

[41] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk
Nielsen. Soap version 1.2 specification, June 2003.

[42] L. Hagen, M. Breugst, and T. Magedanz. Impacts of Mobile Agent Technology on Mobile
Communications System Evolution. IEEE Personal Communications, 5(4), August 1998.

[43] Steve Hanks, Martha E. Pollack, and Paul R. Cohen. Benchmarks, testbeds, controlled ex-
perimentation, and the design of agent architectures. AI Magazine, 14(4):17–42, 1993.

[44] Patrick Hayes. Rdf semantics, February 2004.

[45] Marc-Philippe Huget. Agent uml notation for multiagent system design. IEEE Internet
Computing, 8(4):63–71, 2004.

Version 1.0a 120 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[46] Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents. Morgan Kauffman
Publishers, San Francisco, CA, 1998.

[47] IEEE. Standard upper ontology working group, November 2006. http://suo.ieee.org/.

[48] Nicholas R. Jennings, Katia Sycara, and Michael Woolridge. A roadmap of agent research
and development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

[49] David Kotz, Robert Gray, and Daniela Rus. Future directions for mobile-agent research.
Technical Report TR-2002-415, Dartmouth, Hanover, NH, Januray 2002.

[50] Philippe Kruchten. Architectural blueprints—The “4+1” view model of software architec-
ture. IEEE Software, 12(6):42–50, November 1995.

[51] Yannis Labrou and Tim Finin. A Proposal for a new KQML Specification. Technical Re-
port TR CS-97-03, Computer Science and Electrical Engineering Department, University of
Maryland Baltimore County, Baltimore, MD, USA, February 1997.

[52] Alberto Leon-Garcia and Indra Widjaja. Communication Networks, chapter 5, page 267.
McGraw Hill, 2000.

[53] Victor R. Lesser. Evolution of the GPGP/TæMS domain-independent coordination frame-
work. In Maria Gini, Toru Ishida, Cristiano Castelfranchi, and W. Lewis Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS’02), pages 1–2. ACM Press, July 2002.

[54] Raphael Malveau and Thomas J. Mowbray. Software Architect Bootcamp. Prentice Hall,
2001.

[55] Dr. Israel Mayk and Bernard Goren. C2 product-centric approach to transforming current
c4isr information architectures.

[56] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language, February
2004.

[57] Dejan Milojicic, Frederick Douglis, and Richard Wheelter. Mobility: Processes, Computers,
and Agents. Addison-Wesley, 1999.

[58] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering Review,
11(3):1–40, September 1996.

[59] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[60] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated by
RFC 3168.

[61] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Upper Saddle River, NJ, 2 edition, 2003.

Version 1.0a 121 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[62] Alberto Rodrigues Silva, Arthur Romao, Dwight Deugo, and Miguel Mira Da Silva. Towards
a reference model for surveying mobile agent systems. In Autonomous Agents and Multi-
Agent Systems, pages 187 – 231, 2001.

[63] Niranjan Suri. Nomads and agile computing. Presentation at IPT Meeting.

[64] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Dynamic service matchmaking among agents in
open information environments. In Journal ACM SIGMOD Record, Special Issue on Seman-
tic Interoperability in Global Information Systems, 1999.

[65] Katia P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, Summer 1998.

[66] Mary Ann C. Tuckman, Bruce W.; Jensen. Stages of small group development revisited.
Group and Organization Studies, 2:419–426, December, 1977.

[67] International Telecomm Union and the International Organization for Standardization. Draft:
Common logic (cl) – a framework for a family of logic-based languages, September 2005.

[68] Giovanni Vigna, editor. Mobile Agents and Security. Lecture Notes in Computer Science.
Springer-Verlag, New York, NY, 1999.

[69] Gerhard Weiss. Multiagent Systems: A Modern Approach to Distsributed Artificial Intelli-
gence. MIT Press, Boston, MA, 2001.

[70] Michael Wooldridge. Reasoning about Rational Agents. MIT Press, Boston, MA, 2000.

[71] Michael Wooldridge. Introduction to Multi-Agent Systems. Wiley & Sons, New York, NY,
2002.

[72] Todd Wright. Naming services in multi-agent systems: A design for agent-based white pages.
In Proceedings of Third International Joint Conference on Autonomous Agents and Multia-
gent Systems, 2004.

[73] Dianxiang Xu, Jianwen Yin, Yi Deng, and Junhua Ding. A formal architectural model for
logical agent mobility. IEEE Trans. Softw. Eng., 29(1):31–45, 2003.

[74] Herbert Zimmerman. OSI reference model—the ISO model of architecture for open system
interconnection. IEEE Transactions on Communications, 28(4):425–432, April 1980.

Version 1.0a 122 November 20, 2006

Index

Symbols
4+1 Model 47

A
ACIN . . . see Applied Communication and

Information Networking
ACT-R 3
action 10
adversarial 26
agency 36
agent 27
agent system 27, 31
agent systemlayers 25
agent systemmodel 25
agent-based system 26, 28
agent-based systemlayers 26, 36
agentadministration 38
agentadversary 10
agentagent-based system 11
agentarchitecture 10
agentcomplexity 10
agentcreation 39
agentdefinition 2, 25
agentdefinition of 10
agenteffector interface 12
agentframework 10, 12
agentframework architecture 11
agentfusion/control 33
agentgroup 11
agenthuman interface 34
agentinfrastructure 11
agentinstantiation 38
agentintelligent 13
agentlogical 33
agentmessaging 11
agentmobile 14
agentmodel 25

agentmodel-based 33
agentorganization 11
agentperception 15
agentphysical 33
agentplatform 15
agentproperties 25–26
agentreasoner 12
agentreasoning 33
agentself-interested 15
agentsemantic 34
agentsense/effect 33
agentsensor interface 16
agentsoftware agents 16, 25
agentsyntactic 34
agentsystem 11
agentsystem architecture 11
agenttask 33
agentteam 11
agenttermination 39
analysisdynamic 12
analysisstatic 16
API . . . see Application Program Interfaces
Appletalk 5
Application Program Interface 4
Application Program Interface 1
Applied Communication and Information Net-

working ii
architecture 1, 4, 11
authentication 39
authorization 39
autonomous 25
autonomy 11

B
belief 11
BNF 11

123

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

C
class 11
COBOL 3
cognitive model 3
communication 11, 28, 36, 37
complexity 12
component 22
composition 12
concept 12
conflict management 42
conformance 5
continuous 12, 26
control 12
cooperative 12, 26

D
decide 12
deserialization 42
desire 12
deterministic 12
directory service 44–45

E
effector interface 25
encryption 12
enforcement 39
environment 10, 12, 25, 27, 36

F
Federal Enterprise Architecture 1
FIPA see Foundation for Intelligent Physical

Agents
Foundation for Intelligent Physical Agents 6
Foundation for Intelligent Physical Agents 6–9
framework 2, 4, 27, 36
framework gateway 36
frameworkconformance 5
functional decomposition 13

G
goal 13
group 36

H
heterogeneous 13
hierarchy 13

homogeneous 13
host 13, 27, 36

I
inference 13
infrastructure 27
intent 13
interact 13
interactive 13, 26
internal agent complexity 32
International Standards Organization . . . 1
ISO see International Standards Organization
itinerary 13

J
Java 3

K
KIF . . see Knowledge Interchange Format
knowledge base 13
Knowledge Interchange Format 6
Knowledge Interchange Format 7
KQML 6, 7

L
layer 13, 22
legacy software 13
logging 44

M
management 39
matchmaker 13
matchmaking 13
median system 35
mediator 14
message 14
messaging 43
migrate 26
migration 14, 41
mobile 26
mobile ad-hoc network 14
mobility 38, 40, 42
module 14
monolithic system 35
multi-agent system 14, 27, 36
multi-agent systemcomplexity 34

Version 1.0a 124 November 20, 2006

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

N
network 14
NOMAD 3

O
OAIS see Open Archival Information System
observability 14
observabilitypartial observability 14
Open System Interconnection 31
Open Archival Information System . . . 2
Open Systems Interconnection 2, 28
Open Systems Interconnectionreference model5
operating system 14
operational abstraction 14, 32
organization 36
OSI . . . see Open Systems Interconnection

P
package 14
packet 14
partial order 15
percepts 25
permissions manager 15
physical world 15
plan 15
planner 15
platform 27, 36
proactive 26
proactivity 15

Q
Quality of Servicedefinition of 15

R
reference architecture 4
resource control 39
Reverse Engineering 15, 49
routing 15

S
security 3, 15, 38, 39
self-interested 26
semantics 15
sensor interface 25
serialization 41, 42
service 16, 26

servicesemantic web services 16
serviceweb service 16
situated 16, 25
social 26
society 36
socket 16
software component 16
stigmergy 31
stochastic 16
stream 16
subsystem 22
swarm system 35
syntax 16
system 2

T
task 16
TCP/IP see Transmission Control

Protocol/Internet Protocol
team 36
terminology 10
Transmission Control Protocol/Internet Protocol

5

U
UML . see Unified Modeling Language, see

Unified Modeling Language
Unified Modeling Language . . . 4, 16, 17

V
view 16

W
W3C 6
workflow 17
wrapper 17

X
XML 34

Version 1.0a 125 November 20, 2006

	Authority
	Statement of Intent
	Document Control
	Introduction
	Purpose and Scope
	Basis
	Approach
	Applicability
	Rationale
	Conformance
	Related Efforts

	Terminology
	Definitions and Acronyms
	UML Graphical Notation
	Use Case
	Activity Diagram
	Sequence Diagram
	Component Diagram
	Component
	Example Implementation
	Subsystem
	Layer
	Miscellaneous Diagrams
	Agent UML

	Agent System Concepts and Layers
	What is Meant by Agent (i.e., What is an Agent?)
	Infrastructure for Building and Supporting Agents
	Communication Among Agents
	Classifying Agents
	Internal Agent Complexity
	Operational Abstraction

	Multi-Agent System Structure
	Dimensions of Multi-Agent System Complexity
	Structured Groups of Agents
	Communication in Multi-Agent System Layers

	Functional Concepts
	Agent Administration
	Security and Survivability
	Mobility
	Conflict Management
	Messaging
	Logging
	Directory Services

	Software Engineering Methodology for Creating a Reference Model
	Creating the Reference Model
	Documenting the Reference Model: The 4+1 Model
	Reference Model, Reference Architecture, Design and Implementation Hierarchy

	Reverse Engineering Techniques for Informing a Reference Model
	Static Analysis
	Dynamic Analysis

	Structural and Behavioral UML Documentation of the Reference Model
	Structural Descriptions: the Development View and the Physical View
	Development View
	Physical View

	Behavioral Descriptions: the Logical View, Process View, and Use Case Scenarios
	Agent Society
	Initializing an Agent System

	Mapping Existing Systems to the Reference Model: Case Studies
	Agent Framework Mappings to the Idealized Framework
	Scenario
	A-Globe
	Jade

	Case Studies
	Command and Control (C2)
	Mapping the C2 Domain to the Civilian Domain
	Agent Society Example: Integrated Process Team (IPT) Structure
	Situated Agent Example: Robot Soccer
	Situated Agent Example: Secure Wireless Agent Testbed (SWAT)
	Example: Viruses as Agents

	Example Instantiation: CoABS Grid
	Overview of the CoABS Grid
	Mapping of the CoABS Grid

	Agent Standards Report
	Introduction
	Mapping
	Agent Administration
	Security
	Mobility
	Conflict Management
	Messaging
	Logging

	Survey of Surveys
	Introduction
	Categories
	Results
	Summaries
	Analysis of the Agent Paradigm
	Research Methodology
	Status of Agent Research
	Textbooks

	Conclusion

	Bibliography
	Index

