
An Abstract Architecture for Virtual

Organizations: The THOMAS project

GTI-IA

Departamento de sistemas informáticos y computación
Universidad Politécnica de Valencia

Camino de Vera S/N 46022 Valencia (Spain)
{critical}@dsic.upv.es

Abstract.

1 Introduction

In multi-agent system (MAS) field one of the goals is to build systems capable
of making decisions in an autonomous and flexible way. Moreover, these systems
must cooperate with other systems inside a "society". Due to the technological
advances of recent years, the term "society", in which the multi-agent system
participates, needs to meet requirements such as: distribution, constant evo-
lution, flexibility to allow members to enter or exit in the society, appropriate
management of the organizational structure that defines the society, multi-device
agent execution including devices with limited resources, and so on. All these
requirements define a set of characteristics that can be addressed through the
open system paradigm and virtual organisations.

MAS technology allows to cover a broad area of problems. Typically we are
talking about systems where there are several entities (Requesters), which may
require one or more elements or goals from other different entities (Bidders). As
an example, in the area of leisure activities and entertainment, the Requesters
would be customers/users/citizens and the Bidders would be companies or com-
pany clusters that provide leisure activities, such as cinema, theaters, museums
or restaurants. Obviously, the development of this type of systems is complex
and, therefore, it is necessary to analyse in detail the intrinsic characteristics of
these typical application environments.

The main goal of this work is to obtain a new open multi-agent system
architecture consisting of a related set of modules that are suitable for the de-
velopment of systems applied in environments such as those above raised. This
requires, as a first step, the high-level design of a related abstract architecture.
In this design will be determined, at a high-level of abstraction, all components
needed to cover all the characteristics and needs for systems of this kind. This
new architecture has been called THOMAS (MeTH ods, Techniques and Tools
for Open Multi-Agent Systems).

Over recent years have appeared several works trying to solve the problem
of integrating the multi-agent system paradigm and the service-oriented com-
puting paradigm. It is obvious, that there are many similarities among them.

2 GTI-IA

Both paradigms try to offer solutions for the development of complex and adap-
tive systems in distributed open environments. In this line, integrating these
technologies is possible to model autonomous and heterogeneous computational
entities in dynamic and open environments. Such entities may be reactive, proac-
tive and with the ability to communicate in a flexible way with other enti-
ties. One of the existing proposals works in the line to create links, as a gate-
way, between the two directions. The proposed solution tries to communicate
agents and web services in a transparent, but independent, way. This is the
line of the Agent and Web Services Interoperability (AWSI) IEEE FIPA Work-
ing Group (http://www.fipa.org/subgroups/AWSI-WG.html). Although inter-
esting, our proposal tries to go beyond, raising a total integration of both tech-
nologies. So agents can offer and invoke services in a transparent way to other
agents or entities, as well as external entities can interact with our agents through
the use of the offered services.

This paper is structured as follows: section 2 presents the proposed archi-
tecture model as well as a description of the services offered by each one of the
modules that constitute the reference model; section 3 shows an implementation
example of the new possibilities provided by this type of architecture; finally
some conclusions and future lines of work are shown in section 4.

2 Architecture Model

THOMAS architecture consists basically of a set of modular services. THOMAS
feeds initially of the FIPA architecture expanding its capabilities. The agents
have access to the infrastructure offered by THOMAS through a range of ser-
vices including on different modules or components. The main components of
THOMAS are the following (Figure 2):

– Service Facilitator (SF), this component offers simple and complex services
to the active agents and organizations. Basically, its functionality is like a
yellow page service and a service descriptor in charge of providing a green
page service.

– Organization Manager Service (OMS), it is mainly responsible of the man-
agement of the organizations and their entities. Thus, it allows the creation
and the management of any organization.

– Platform Kernel (PK), it maintains basic management services for an agent
platform.

The following sections describe in a greater detail the different components
of the THOMAS architecture.

A
n

A
b
stra

ct
A

rch
itectu

re
fo

r
V

irtu
a
l
O

rg
a
n
iza

tio
n
s:

T
h
e

T
H

O
M

A
S

p
ro

ject
3

Platform Kernel (PK)
Network Layer

OMS SF

Agent

Org

Agent

Agent

Agent

Org

Agent

Agent

AMS

Organization
Management System

•Create organization
•Destroy organization
•Org. Live cycle
•Control organization

Service Facilitator
Service Description
•Discovery
•Matchmaking
•Composition
Extended DF
•Search
•Publication

Platform entities
management

Platform Kernel
AMS
•Agent creation, destroy
•Ag. Live cycle
Network Layer
•Send Messages
•Receive Messages
•Outside Communication

External
Agents

Organization
execution

framework

F
ig

.
1
.
T

H
O

M
A

S
A

rch
itectu

re

4 GTI-IA

2.1 Service Facilitator

The SF is a mechanism and support by which the organization and agents can,
at the same time, offer and discover services. The SF provides a place in which
the autonomous entities can register service descriptions as directory entries.

The SF acts as a gateway to access the THOMAS platform. It manages this
access transparently, by means of security techniques and access rights manage-
ment. The SF can find services searching for a given service profile or searching
by the goals that can be fulfilled executing the service. This is done using the
matchmaking and service composition mechanisms that are provided by the SF.
The SF acts also as a yellow pages manager and in this way it can also find
which entities provide a given service.

A service offers some capacities, each of which to fulfil a given goal. The
service may have some pre-conditions that have to be true before the service
can be executed. It exchange one or more input and output messages. Before
a successful service execution it has some effects on its environment. Moreover,
there could be additional parameters, which are independent of the service func-
tionality (non-functional parameters), such as quality of service, deadlines, and
security protocols among other. And finally, the service results can be enhanced
using automatic service composition mechanisms (for example, partial match-
making). To do this the SF maintains the description of the internal processes
that are executed when the service is running.

A service represents an interaction of two entities, which are modeled as com-
munications among independent processes. In our case, the Multi-agent Technol-
ogy provides us with FIPA communication protocols which are well established
mechanisms in order to standardize the interactions. In this way, every service
has an associated protocol. In those cases in which the service requires the exe-
cution of a chain of protocols, the service is marked as "complex". Taking into
account that we are working with semantic services, another important data
is the ontology used in the service. In this way, when the service description
is accessed, any entity will has all the needed information in order to interact
with the service and how to make an application that can use the service. Such
a description can also be used for pre-compiled services, in which the process
model of the service will be, instead of the internal processes of the service, the
sequence of the elementary services that will be executed.

The SF entries are service descriptions using the following structure:

<ServiceID, Providers, ServiceGoal, ServiceProfile>
Providers = <ServiceImpID, ProviderIDList, ServiceModel, Service-
Grounding> +

ProviderIDList = ProviderID +

– ServiceID is a unique service identifier.
– Providers is a set of tuples made up by a Providers identifier list (ProviderID-

List), the service process model specification, and the particular instantiation
of the service that is provided by these providers.

– ProviderIDList maintains a list of identifier of the service providers.

An Abstract Architecture for Virtual Organizations: The THOMAS project 5

– ServiceGoal is a general definition of the goal that can be fulfilled executing
the service. It provides a first abstraction level for service composition.

– ServiceProfile, specifies what the service does, in way readable for those
agents that are searching information (or matchmaking agents which act as
searching service agents). This type of representation includes: a description
of what the service fulfils, the constraints about its applicability and the qual-
ity of service, and the requirements that the clients have to satisfy in order
to use the service. The ServiceProfile is specified using the OWL-S standard
for service Profile definition augmented with the following attributes:

providerRole specifies the role of the entity which offers the service. It is
optional.

clientRole specifies the role of the entity which requires the service. It is
optional.

– ServiceModel specifies to the client how it has to use the service. The
ServiceModel details the semantic content for using the service, the situations
in which the results are obtained, and, whenever it is required, the step by
step processes to get these results. In other words, it specify how to call a
service, and what happen when the service executes. The ServiceModel is
specified using the OWL-S standard.

– ServiceGrounding specifies in details how an agent can access the ser-
vice. A grounding specifies a communication protocol, the message formats,
and other specific details of the service such as the used port to contact
the service. The ServiceGrounding is specified using the OWL-S standard
augmented with the FIPA protocols.

Besides the parcitular information about the service, all services provided by
the SF return a service status (success or error) and an error value in cased of
failure. The most general error values are

– Not-found: the specified value for the parameter (provider or service) is not
found

– Duplicate: the entry already exists
– Invalid: the structure of the parameter is not correct
– Access: the client has not privileges to invoke the service

The SF provides the following standard services:

1. RegisterProfile: it is used when an autonomous entity wants to register a
service description. To do this the following structure has to be completed
in order to provide the service description.

RegisterProfile(ServiceID ?sID, ServiceGoal ?sGoal,
ServiceProfile ?sProfile)

The results of this service can be:

6 GTI-IA

Service Specification

Name: RegisterProfile
Description: It is a meta-service and is used to register a service description in the SF.
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServiceGoal Defines the service global goal Yes String
ServiceProfile Specifies the service description Yes ServiceProfile-

Structure
Output Parameters

Name Description Mand. Type Value

Range

ServiceID Unique service identifier. It is
automatically generated by the
SF

No String

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Duplicate,
Invalid-
Struct,
Invali-
dAccess

Precondition

Pre1: ¬∃S ∈ SF |S.ServiceProfile = ServiceProfile
Postcondition

Post1: ∃S ∈ SF |S.ServiceID = ServiceID ∧ S.ServiceProfile = ServiceProfile

– ServiceID, which is automatically generated by the SF and Service-
Status indicating success when the service was successfully executed.
This result implies that the service is publicly available.

2. RegisterProcess: it is used when an agent wants to register a particular
implementation of a given service. The ID of the service provider entity has
to be specified.

RegisterProcess(ServiceID ?sID, ServiceModel ?sModel,
ServiceGrounding ?sGrounding, EntityID ?ProviderID)

There could be several providers for the same service implementation. The
first time the RegisterProcess is called the Provider is specified (EntityID).
The other providers can be added or modified calling the AddProvider and
RemoveProvider services.
The results of this service can be:
– Service-status indicating success, if the service was successfully executed.

This implies that the service implementation is publicly available.

An Abstract Architecture for Virtual Organizations: The THOMAS project 7

Service Specification

Name: RegisterProcess
Description: It is a meta-service and is used to register a service particular implementation

in the SF.
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServiceID Specifies the service to which
this process corresponds to

Yes String

ServiceModel Specifies how an agent may use
the service. That is, how to re-
quest the service and what hap-
pens when the service is exe-
cuted

Yes Service-Model-
Structure

ServiceGrounding Specifies the process by which
an agent may access the ser-
vice. That is, it includes a com-
munication protocol, message
formats, communication port
ID, etc.

Yes Service-
Grounding-
Structure

ProviderID Specifies the provider entity
identification

Yes String

Output Parameters

Name Description Mand. Type Value

Range

Service-
ImplementationID

Unique identifier for the new
implementation of the service.
It is generated by the SF

No String

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Duplicate,
Invalid-
Struct,
Invali-
dAccess,
Invalid-
Servi-
ceID

Precondition

Pre1 ∃S ∈ SF |S.ServiceID = ServiceID ∧ (¬∃I ∈ S.Providers|I.ServiceModel =
ServiceModel ∧ I.ServiceGrounding = ServiceGrounding)

Postcondition

Post1 ∃S ∈ SF |S.ServiceID = ServiceID ∧ (∃I ∈ S.Providers|I.ServiceImpID =
ServiceImpID ∧ ProviderID ∈ I.ProvidersIDList ∧ I.ServiceModel =
ServiceModel ∧ I.ServiceGrouning = ServiceGrouning)

8 GTI-IA

3. DeregisterProfile: it is used to delete a service description. The following
parameters have to be completed:

DeregisterProfile(ServiceID ?sID)

The results of this service are:
– Service-status indicating success, if the service profile has been success-

fully removed.

Service Specification

Name: DeregisterProfile
Description: It is a meta-service and is used to delete from the SF a registered service
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServiceID Specifies the service that will
be deleted

Yes String

Output Parameters

Name Description Mand. Type Value

Range

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum NotFound,
Invali-
dAccess,
Invalid-
Servi-
ceID

Precondition

Pre1 ∃S ∈ SF |S.ServiceID = ServiceID
Postcondition

Post1 ∄S ∈ SF |S.ServiceID = ServiceID

An Abstract Architecture for Virtual Organizations: The THOMAS project 9

4. SearchService: it searchs a service whose description satisfies the client
request. The search process can use matchmaking, composition and other
techniques to solve complex queries. The required information for the request
is:

SearchService(ServicePurpose ?sPurpose)

where ServicePurpose is a general structure in which the request is stored.
It can be expressed as a SeviceGoal, a ServiceProfile description or a com-
bination of both.
The output of this service is:
– list of tuples <ServiceID, Ranking> and a Service-status indicating suc-

cess éxito, an appropriate service has been found. Ranking models the
matching between the service and the request.

Service Specification

Name: SearchService
Description: It is a meta-service and is used to search a service which satisfies the client

requirements
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServicePurpose Specifies the client require-
ments. The requirements may
be specified in terms of Service-
Goal-Structure, an incomplete
Service-Profile-Structure, or a
combination of both

Yes Service-Goal-
Structure /
Service-Profile-
Structure

Output Parameters

Name Description Mand. Type Value

Range

ServiceList A list of <ServiceID, Ranking>
tuplas

No Service-
RankList-
Structure

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess

Precondition

- -
Postcondition

- -

10 GTI-IA

5. SearchProvider: it is used to find a service provider for an specific service.
The following information has to be included in the user request:

SearchProvider(ServiceID ?sID)

The output of this service is:
– ProviderID list and Service-status indicating success if the provider has

been found.

Service Specification

Name: SearchProvider
Description: It is a meta-service and is used to search for the provider of a given service
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServiceID Specifies the service ID Yes String
Output Parameters

Name Description Mand. Type Value

Range

Service-

ProviderList

A list of ProviderID No Provider-IDList-
Structure

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess

Precondition

Pre1 ∃serv ∈ SF |serv.ServiceID = ServiceID
Postcondition

- -

An Abstract Architecture for Virtual Organizations: The THOMAS project 11

6. ModifyProfile: it is used to modify the description (profile) of a registered
service. The client specifies the part of the service to be modified. The service
Id will not change.

ModifyProfile(ServiceID ?sID, ServiceGoal ?Sgoal, ServiceProfile
?Sprofile)

The output of this service is:
– Service-status indicating successful, if hte service has been changed.

Service Specification

Name: ModifyProfile
Description: It is a meta-service and is used to modify the description of an already registered

service
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

ServiceID Specifies the service ID Yes String
ServiceGoal Specifies the new service Goal No String
ServiceProfile Specifies the new service profile No Service-Profile-

Structure
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess

Precondition

Pre1 ∃serv ∈ SF |serv.ServiceID = ServiceID
Postcondition

Post1 ∃serv ∈ SF |serv.ServiceID = ServiceID ∧ serv.ServiceGoal =
ServiceGoal ∧ serv.ServiceProfile = ServiceProfile

12 GTI-IA

7. ModifyProcess: it is used to modify the implementation of a registered
service. The client specifies the part of the service to be modified. The service
Id will not change.

ModifyProcess(ServiceID ?sID, ServiceModel ?Smodel,
ServiceGrounding ?Sgrounding, EntityID ?ProviderID)

If more than one provider implements the service, then the implementation
will not be modified.
The output of this service is:
– Service-status indicating successful, if the service has been changed.
– Service-status indicating error + Not-empty, there is more than one

provider for the required implementation.

Service Specification

Name: ModifyProcess
Description: It is a meta-service and is used to modify a given implementation of an already

registered service
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

Service-

ImplementationID

Specifies the service implemen-
tation ID

Yes String

ServiceModel Specifies the new service model No Service-Model-
Structure

ServiceGrounding Specifies the new service
grounding

No Service-
Grounding-
Structure

ProviderID Specifies the provider entity ID Yes String
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess,
Not
empty

Precondition

Pre1 ∃serv ∈ SF |serv.ServiceID = ServiceID ∧ ∃!prov ∈ serv.Providers ∧
prov.ProviderID = ProviderID

Postcondition

Post1 ∃prov ∈ Providers|prov.ServiceImpID = ServiceImpID ∧ ∃!prov ∈
serv.Providers ∧ prov.ProviderID = ProviderID ∧ prov.ServiceModel =
ServiceModel ∧ prov.ServiceGrouning = ServiceGrouning

An Abstract Architecture for Virtual Organizations: The THOMAS project 13

8. AddProvider: adds a new provider to an existing service implementation.

AddProvider(ServiceID ?sID, EntityID ?ProviderID)

The output of this service is:
– Service-status indicating successful, if the provider has been added.

Service Specification

Name: AddProvider
Description: It is a meta-service and is used to add a new provider to a given service imple-

mentation
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

Service-
ImplementationID

Specifies the service implemen-
tation ID

Yes String

ProviderID Specifies the new provider en-
tity ID

Yes String

Output Parameters

Name Description Mand. Type Value

Range

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess

Precondition

Pre1 ∃serv ∈ Providers|serv.ServiceImpID = ServiceImpID ∧ ProviderID /∈
serv.ProviderIDList

Postcondition

Post1 ∃serv ∈ Providers|serv.ServiceImpID = ServiceImpID ∧ ProviderID ∈
serv.ProviderIDList

14 GTI-IA

9. RemoveProvider: it deletes a provider from a service implementation.

RemoveProvider(ServiceID ?sID, EntityID ?ProviderID)

If it is the last provider, the the implementation is auomatically erased.
Furthermore, if this were the last implementation of the service, then the
provider is alerted and it can deregister the service.
The output of this service is:
– Service-status indicating success, if the prodiver has been erased.

Service Specification

Name: RemoveProvider
Description: It is a meta-service and is used to remove a provider to a given service imple-

mentation
Supplied by: SF
Required by: any role.

Input Parameters

Name Description Mand. Type Value

Range

Default

Service-
ImplementationID

Specifies the service implemen-
tation ID

Yes String

ProviderID Specifies the provider entity ID
to be deleted

Yes String

Output Parameters

Name Description Mand. Type Value

Range

Service-Status Service Result Yes Enum Ok,
Error

Error-Value Error condition No Enum Not
found,
Invalid-
Struct,
Invali-
dAccess

Precondition

Pre1 ∃serv ∈ Providers|serv.ServiceImpID = ServiceImpID ∧ ProviderID ∈
serv.ProviderIDList

Postcondition

Post1 ∃serv ∈ Providers|serv.ServiceImpID = ServiceImpID ∧ ProviderID ∈
serv.ProviderIDList

Post2 ∃serv ∈ Providers|serv.ProviderIDList = ∅ →
[ModifyProcess(serv.ServiceID, ∅, ∅, ∅)]

Post3 ∃serv ∈ SF |serv.Providers = ∅ → [Deregister(serv.ServiceID)]

An Abstract Architecture for Virtual Organizations: The THOMAS project 15

2.2 Organization Manager Service

This component is in charge of organizations life cycle management, including
specification and administration of both their structural components (roles, units
and norms) and their execution components (participant agents and the roles
they play; active units in each moment).

To carry out this management the OMS makes use of the following lists:

1. UnitList : it stores the list of existing units, together with their objectives,
type and parent unit (SuperUnit).

2. RoleList : is stores the list of roles defined in each unit and their attributes
(accessibility, visibility, position and inheritance).

3. NormList : it stores the list of norms defined in the system.
4. EntityPlayList : it stores the list of units in which each agent has been reg-

istered as a member, together with its adopted roles inside.

OMS offers all services needed for a suitable organization performance. These
services are classified as: structural services, that modify the structural and nor-
mative organization specification; and dynamical services, that allow agents to
entry or leave the organization dynamically, as well as role adoption.

By means of the publication of the structural services, OMS allows mod-
ifying, in execution time, some aspects related to the organization structure,
functionality or normativity. For example, a specific agent of the organization
could be allowed to add new norms, roles or units. This type of services should
be restricted to internal roles of the system, which have enough permission for
doing this kind of operations (i.e. supervisor role). Moreover, in some concrete
applications those services might not be published in the SF, so then agents
cannot dynamically modify the structural components.

Dynamical services manage creation of new agents in the organization, entry
or exit of unit members and role adoption. These services are always published
in the SF.

Structural services. The OMS provides a group of services for registering or
deregistering structural components, specifically roles, norms and units. Also it
offers services for informing about these components.

A role represents a position inside the unit in which it is defined. It is re-
lated to some interaction norms, imposed by the unit structure and its concrete
position inside the unit; and some behaviour norms, that specify its functional-
ity (services that needs and offers), restrict its actions (prohibition, obligations
and permissions) and establish the consequences of these norms (sanctions and
rewards).

Therefore, a norm indicates obligations, permissions and prohibitions of roles
related to service registering, requesting and fulfilment; service composition, or
quality of service results. Thus, a norm defines those restrictions that cannot be
expressed by means of service preconditions or postconditions.

16 GTI-IA

Finally, a unit represents groups of agents and establishes the topological
structure of the system. It is also a recursive concept, so units can be defined
inside others units. It enables the representation of organizative structures like
hierarchy, matrix, coalition, etc. Furthermore, it indicates which are the struc-
tural positions of the system (i.e. member, supervisor, subordinate), as well as
the relationships among these positions imposed by the structure.

OMS establishes a hierarchy of roles, so any agent that plays a specific role is
enabled to request or offer services related to superior hierarchical roles, provided
that organizational norms do not explicitly forbid it. For example, an agent
that plays “HotelCustomer” role can request directly services that are assigned
to “Customer” role. But, on the contrary, it is necessary that a “Customer”
agent requests to OMS to acquire “HotelCustomer” role before making use of
the services related to this role.

Following, register services of structural components are described:

1. RegisterRole: service used for requesting the registration of a new role in-
side a unit. As input parameters, it requires the role identifier, the unit in
which this role must be registered, its visibility (whether it is public or pri-
vate), its accessibility (internal or external), its position (whether it inherits
from “member”, “supervisor”, “subordinated”), as well as its parent role in
the role hierarchy. Only role and unit identifiers are mandatory.

RegisterRole(RoleID ?Role, UnitID ?Unit, Visibility ?Visible,
Accessibility ?Accessible, Position ?position, IsA ?SuperRole)

Service Specification

Name: RegisterRole
Description: Request registration of a new role inside a specific unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Value

Range

Default

RoleID Role identifier Yes String
Accessibility Role can be acquired No Enum. External, In-

ternal
External

Visibility Provide information of this role No Enum. Public, Pri-
vate

Public

Position Structural position No Enum. Member,
Supervisor,
Subordinate

Member

isA Inheritance of roles. Role identifier
of its direct parent in role hierarchy

No String Member

UnitID Unit Identifier Yes String

Output Parameters

Name Description Mand. Type Value Range

Service-Status Service result Yes Enum. Ok, Error
Error-Value Error Condition No Enum. Duplicate, Invalid

Precondition

Pre1: ¬∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ∃PR ∈ RoleList|PR.RoleID = isA

Postcondition

Post: ∃R ∈ RoleList|R.RoleID = RoleID ∧ R.Accessibility = Accessibility ∧
R.V isibility = V isibility ∧ R.Position = Position ∧ R.isA = isA ∧
R.UnitID = UnitID

An Abstract Architecture for Virtual Organizations: The THOMAS project 17

2. RegisterNorm: used for requesting the registration of a new norm inside
a unit. A norm definition includes which role it is addressed and which
is its content (including deontic value, conditions, actions and associated
sanctions or rewards). Optionally, it also indicates which role is in charge of
the fulfilment of the norm (issuer), who will carry out the sanction (defender)
and who is in charge of its reward (promoter).

RegisterNorm(NormID ?NID, AddressedRole ?Role, Content
?Cont, Issuer ?IssuerRole, [Defender ?DefenderRole], [Promoter

?PromoterRole])

Service Specification

Name: RegisterNorm
Description: Include a new norm inside a unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Value

Range

Default

NormID Norm identifier Yes String
AddessedRole Role identifier affected by the norm Yes String
IssuerRole Role identifier in charge of norm

fulfilment
No String

Content Deontic content of the norm Yes Deontic
Content

DefenderRole Role identifier in charge of carrying
out the sanction.

No String

PromoterRole Role identifier in charge of carrying
out the reward.

No String

Output Parameters

Name Description Mand. Type Value Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Duplicate, Invalid ,Contra-

diction

Precondition

Pre1: ¬∃N ∈ NormList|N=NormID
Pre2: ∃PR ∈ RoleList|PR.RoleID = AddessedRoleID
Pre3: ∃PR ∈ RoleList|PR.RoleID = IssuerRoleID
Pre4: ∃PR ∈ RoleList|PR.RoleID = DefenderRoleID
Pre5: ∃PR ∈ RoleList|PR.RoleID = PromoterRoleID

Postcondition

Post: ∃N ∈ NormList|N.NormID = NormID ∧ N.AddressedRole =
AddressedRole ∧ N.IssuerRole = IssuerRole ∧ N.DefenderRole =
DefenderRole ∧ N.PromoterRole = PromoterRole ∧ N.Content = Content

The Content of a norm is formed by:

<DeonticConcept, Entity, Action, ServiceName, TemporalCondi-
tion, StateCondition, Sanction, Reward>

18 GTI-IA

Deontic Content

Name Description Mand. Type Range

Deontic Concept Deontic permission of the norm Yes Enum. Obliged, Forbid-
den, Permitted

Action Action related to registering, requesting
or providing services

Yes Enum. Request, Serve,
Register

Service Identifier of affected service Yes String
StateCondition State condition for the norm activation Yes Normative

Condition
TemporalCondition Temporal condition for finishing the

norm. If satisfied and the norm has not
been performed yet, then the sanction
must be carried out. Otherwise, the re-
ward is applied.

No Integer

SanctionNormID Norm identifier. Addressed to the de-
fender role

No String

RewardNormID Norm identifier. Addressed to the pro-
moter role, for performing the reward

No String

3. RegisterUnit: used for requesting the registration of a new empty unit in
the organization, with a specific structure, goal and parent unit.

RegisterUnit(UnitID ?AID, UnitType ?Type, UnitGoal ?Goal,
[UnitParent ?UnitParent])

Service Specification

Name: RegisterUnit
Description: Request registering a new empty unit in OMS
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String
Type Type of organizative structure No Enum. Flat, Team, Hi-

erarchy
Flat

Plays Role played by the new unit inside
the superior unit

No String Member

ParentUnitID Superior unit identifier, to which
the new one belongs

No String Virtual

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Error-Value Error condition No Enum. Duplicate, Invalid

Precondition

Pre1: ¬∃U ∈ UnitList|U.UnitID = UnitID
Pre2: ∃R ∈ RoleList|R.RoleID = Plays
Pre3: ∃PU ∈ UnitList|PU.UnitID = ParentUnitID

Postcondition

Post: ∃U ∈ UnitList|U.UnitID = UnitID ∧ U.Type = Type ∧ U.Plays = Plays ∧
R.ParentUnitID = ParentUnitID

All these structural services are implemented (grounding) by means of the FIPA-
Request protocol. Thus, a client of the service sends a “Request” message, which
contains all needed information for requesting the service. Then the server replies
with an “Agree” message, if it agrees to provide the service, and later with an
“Inform-done”, with the corresponding value of service-status.

Optionally, more complex services for updating organization components can
be offered by means of composition of the above services. For example, a complex
service that offers the inclusion of a new role indicating its name, attributes and
related norms. Or a complex service for unit creation that allows the creation of
an empty unit with its associated norms and roles.

An Abstract Architecture for Virtual Organizations: The THOMAS project 19

Moreover, services for modifying component features might also be offered.
For example, a service for changing the visibility value of a specific role.

On the other hand, OMS offers services for deregistration of structural com-
ponents. These deregister services are:

1. DeregisterRole: used for requesting the deregistration of a role. There
must not be any agent playing this role nor any norm addressed to it.

DeregisterRole(RoleName ?Role, UnitID ?Unit)

Service Specification

Name: DeregisterRole
Description: Delete a role from a specific unit.
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String
UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Error-Value Error condition No Enum. Not-found, Invalid

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID ∧ R.UnitID = UnitID
Pre2: ¬∃N ∈ NormList|N.AddressedRoleID = RoleID
Pre3: ¬∃E ∈ EntityP layList|E.RoleID = RoleID

Postcondition

Post: ¬∃R ∈ RoleList|R.RoleID = RoleID

2. DeregisterNorm: used for deleting a norm. The role that requests this
service should be the issuer of the norm, that is, the controller of the norm.

DeregisterNorm(NormID ?NID)

Service Specification

Name: DeregisterNorm
Description: Eliminate a norm
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

NormID Norm identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Error-Value Error condition No Enum. Not-found, Invalid

Precondition

Pre1: ∃N ∈ NormList ∧ ∃E ∈ EntityP layList|N.NormID = NormID ∧
E.AgentID = ClientID ∧ E.RoleID = N.issuerRole

Postcondition

Post: ¬∃N ∈ NormList|R.NormID = NormID

3. DeregisterUnit: service used for deleting a unit. This unit must be com-
pletely empty, without agents, nor roles or units inside. If the UnitParent
input parameter is not given, it is assumed that the unit belongs to a “vir-
tual” unit created by the agent platform.

DeregisterUnit(UnitID ?UID, [UnitParent ?UnitParent])

20 GTI-IA

Service Specification

Name: DeregisterUnit
Description: Eliminate a unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Error-Value Error condition No Enum. Not-found, Invalid

Precondition

Pre1: ∃U ∈ UnitList|U.UnitID = UnitID
Pre2: ¬∃R ∈ RoleList|R.UnitID = UnitID

Postcondition

Post: ¬∃U ∈ UnitList|U.UnitID = UnitID

All these deregister structural services are also implemented (grounding(by
means of the FIPA-REQUEST protocol.

Information services offered by OMS provide specific information of all
components of the organization and they might be restricted to some inter-
nal roles of the system. Furthermore, if OMS is the only one which uses those
services, then they are not directly published in the SF. Following, the set of
informative services is detailed:

1. InformAgentRole: service used for requesting the list of roles and units
in which an agent is in a specific moment. This service accesses to Entity-
PlayList.

InformAgentRole(AgentId ?AID)

Service Specification

Name: InformAgentRole
Description: Request the list of roles and units in which an agent participates in a specific

moment
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

AgentID Agent identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
RoleUnitList List of units and roles played by

the agent
No List(RoleID,

UnitID)

Precondition

Pre1: ∃E ∈ EntityP layList|E.AgentID = AgentID
Postcondition

– —

2. InformMembers: used for requesting the list of entities that are members
of a specific unit. Optionally, it is possible to specify a role of this unit, so
then only members playing this role are detailed. This service accesses to
EntityPlayList.

InformMembers(UnitID ?Unit [,RoleID ?Role])

An Abstract Architecture for Virtual Organizations: The THOMAS project 21

Service Specification

Name: InformMembers
Description: Request the list of entities that are members of a specific unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String
RoleID Role identifier No String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
AgentRoleList List that contains for each item

agent and role identifiers
No List(AgentID,

RoleID)
Precondition

Pre1: ∃U ∈ UnitList|U.UnitID = UnitID
Pre2: ∃R ∈ RoleList|R.RoleID = RoleID

Postcondition

– —

3. QuantityMembers: used for requesting the number of current members
of a specific unit. Optionally, if a role is indicated then only the quantity of
members playing this role is detailed. This service accesses to EntityPlayList.

QuantityMembers(UnitID ?Unit [,RoleID ?Role])

Service Specification

Name: QuantityMembers
Description: Request the number of current members of a specific unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String
RoleID Role identifier No String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
Quantity Number of agents that are play-

ing the specified role
No Integer

Precondition

Pre1: ∃U ∈ UnitList|U.UnitID = UnitID
Pre2: ∃R ∈ RoleList|R.RoleID = RoleID

Postcondition

– —

4. InformUnit: used for requesting information about a specific unit that has
been registered in UnitList.

InformUnit(UnitID ?Unit)

Service Specification

Name: InformUnit
Description: Requests the information about a specific unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
UnitType Unit type No Enum. Flat, Team, Hierarchy
ParentID Identifier of the parent unit No String
UnitGoal Unit goals No List(ServiceID)

22 GTI-IA

Precondition

Pre1: ∃U ∈ UnitList|U.UnitID = UnitID
Postcondition

– —

5. InformRole: used for requesting the list of roles that have been registered
inside a unit. This service accesses to RoleList.

InformRole(UnitID ?Unit)

Service Specification

Name: InformRole
Description: Request the list of roles that have been registered inside a unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
RoleList Role list No List(RoleID)

Precondition

Pre1: ∃U ∈ UnitList|U.UnitID = UnitID
Postcondition

– —

6. InformProfile: used for requesting the list of profiles associated to a specific
role, according to the norms assigned to this role. Those norms specify its
functionality.

InformProfile(RoleID ?Role)

Service Specification

Name: InformProfile
Description: Requests the list of profiles associated to a specific role
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
ProfileList List of profiles assigned to the

role
No List(ProfileID)

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Postcondition

– —

7. InformNorm: used for requesting the list of norms addressed to a specific
role. This service accesses to the NormList.

InformNorm(RoleID ?Role)

Service Specification

Name: InformNorm
Description: Request the list of norms addressed to a specific role
Supplied by: OMS
Required by: ClientRole

An Abstract Architecture for Virtual Organizations: The THOMAS project 23

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes Enum. Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid
NormList Norm list No List(NormID)

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Postcondition

– —

All information services are implemented by means of the FIPA-Query protocol,
so a client sends a “Query-ref” message requesting information about a specific
concept; and the server answers with an “Inform” message containing the corre-
sponding data.

Dynamic Services. OMS offers a set of basic composed services for dynamical
role adoption and entry/exit of unit members. Most of these basic services are
not directly accessible for agents, but are combined through compound services.

Basic services for role adoption are:

1. RegisterAgentRole: used for registering a new item in EntityPlayList,
indicating that an agent plays a specific role inside a unit. This service is
not directly published in the SF.

RegisterAgentRole(AgentID ?AID, RoleId ?Role, UnitID ?UID)

Service Specification

Name: RegisterAgentRole
Description: Register that an agent plays a role inside a unit.
Supplied by: OMS
Required by: —

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String
UnitID Unit identifier Yes String
AgentID Agent identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes String Ok, Error
Service-Value Error condition No Enum. Duplicate, Invalid

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ¬∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧

E.RoleID = RoleID
Postcondition

Post1: ∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧
E.RoleID = RoleID

2. DesregisterAgentRole: used for deleting an item in EntityPlayList, so
then a specific agent does not play the role in the unit anymore. This service
is not directly published in the SF.

DesregisterAgentRole(AgentID ?AID, RoleId ?Role, UnitID
?UID)

24 GTI-IA

Service Specification

Name: DesregisterAgentRole
Description: Deregister a Agent-Role-Unit entry, so an agent does not play a specific role

inside a unit
Supplied by: OMS
Required by: —

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String
UnitID Unit identifier Yes String
AgentID Agent identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes String Ok, Error
Service-Value Error condition No Enum. Not-Found, Invalid

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧

E.RoleID = RoleID
Postcondition

Post1: ¬∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧
E.RoleID = RoleID

OMS also offers a set of compound services that can be used by agents for
adopting roles, leaving them and apply sanctions. Following, these compound
services are related:

1. AcquireRole: serviced used for acquiring a role in a specific unit.

AcquireRole(UnitID ?Unit, RoleID ?Role)

The execution of this service implies:
– Check that there is not any active norm of the client agent that forbids

the execution of this AcquireRole service.
– Check that the requested role exits inside the unit and it is accessible.
– Check that the agent is already inside the unit (plays another role there)

or it is inside its parent unit.
– Check compatibility restrictions, i.e. the requested role is not incompat-

ible with the other roles played by the agent.
– Agent is informed of the functionality restrictions of the requested role

(norms and profiles). Possible options:
• a) Inform of norms that the agent must follow and protocols at-

tached to its service profiles. The agent is in charge of managing this
information and act according to it.

• b) Establish a contract with the agent regarding its future behavior.
In this contract the agent might commit to more restrictive actions
that those indicated in the requested role.

– Register Agent - Role - Unit entry in EntityPlayList (using RegisterA-
gentRole service)

– Activate agent norms related with this requested role.
Service Specification

Name: AcquireRole
Description: Request the role acquisition inside of a specific unit.
Supplied by: OMS
Required by: ClientRole

An Abstract Architecture for Virtual Organizations: The THOMAS project 25

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String
UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes String Ok, Error
Service-Value Error condition No Enum. Duplicate, Invalid ,Incom-

patible, Not-Available

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ¬∃E ∈ EntityP layList|E.AgentID = ClientID ∧ E.UnitID = UnitID ∧

E.RoleID = RoleID
Postcondition

Post1: ∃E ∈ EntityP layList|E.AgentID = ClientID ∧ E.UnitID = UnitID ∧
E.RoleID = RoleID

2. LeaveRole: service used for leaving a role inside a specific unit.

LeaveRole((UnitID ?Unit, RoleID ?Role)

The execution of this service implies:

– Check that there is not any active norm of the client agent that forbids
the execution of this LeaveRole service.

– Check that the agent plays this role inside the unit.
– Check that the agent has not active norms due to this role.
– Deregister Agent - Role - Unit entry in EntityPlayList (using Deregis-

terAgentRole service)
Service Specification

Name: LeaveRole
Description: Request leaving a role in a specific unit
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

RoleID Role identifier Yes String
UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes String Ok, Error
Service-Value Error condition No Enum. Not-Permitted, Invalid, Not-

Available

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ∃E ∈ EntityP layList|E.AgentID = ClientID ∧ E.UnitID = UnitID ∧

E.RoleID = RoleID
Postcondition

Post1: ¬∃E ∈ EntityP layList|E.AgentID = ClientID ∧ E.UnitID = UnitID ∧
E.RoleID = RoleID

3. Expulse: service for forcing an agent to leave a specific role.

Expulse(Agent AID, UnitU, Role R)

The execution of this service implies:
– Check that there is not any active norm of the client agent that forbids

the execution of this Expulse service. The client agent must be explicitly
enabled for using this service. By default, agents are not allowed to
expulse other agents.

26 GTI-IA

– Check that the specified agent plays the indicated role inside the unit.
– Deregister Agent - Role - Unit entry in EntityPlayList (using Deregis-

terAgentRole service)
– Inform agent that it has been forced to leave this role.

Service Specification

Name: Expulse
Description: Request the expulsion of an agent. This agent is obliged to leave the specified

position
Supplied by: OMS
Required by: ClientRole

Input Parameters

Name Description Mand. Type Range Default

AgentID Agent identifier Yes String
RoleID Role identifier Yes String
UnitID Unit identifier Yes String

Output Parameters

Name Description Mand. Type Range

Service-Status Service result Yes String Ok, Error
Service-Value Error condition No Enum. Not-Permitted, Invalid, Not-

Available

Precondition

Pre1: ∃R ∈ RoleList|R.RoleID = RoleID
Pre2: ∃U ∈ UnitList|U.UnitID = UnitID
Pre3: ∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧

E.RoleID = RoleID
Postcondition

Post1: ¬∃E ∈ EntityP layList|E.AgentID = AgentID ∧ E.UnitID = UnitID ∧
E.RoleID = RoleID

An Abstract Architecture for Virtual Organizations: The THOMAS project 27

2.3 Platform Kernel

Component in charge of providing the usual services required in a multi-agent
system. Therefore, it is responsible for managing The life cycle of the agents
included in the different organizations, and also allows to have a communication
channel (incorporating different message transport mechanisms) to facilitate the
interaction among different entities. On the other hand, the PK offers a safe
connectivity and the necessary mechanisms that allow multi-device interconnec-
tivity.

A previous security mechanism is supposed for some of the services below
describe, which permits to manage who and over who can invoke each service.
For example, the responsible for an organization may have the option of creating
new agents inside its organization. For this, at kernel level of the platform at
some point it should be invoked the agent register Service.

The services offered are in most cases FIPA legacy with some modifications.
In the case of services directly related with the agent management we can find
the following:

– Register: Service invoked by an entity of the platform in order to request
an agent registration in the platform (which is equivalent to the creation of
the agent). This implies that the life-cycle management of the agent will be
managed in this platform.

register(Name ?n Address ?ad State ?s Attributes $a)

This service is invoked by the OMS because the registration of an agent is
the result of the creation of an agent in a specific organization. This creation
will be managed by the OMS, who will be responsible to inform the PK
through the invocation of the agent registration service.

Service Specification

Name: Register
Description: To invoke the register of a new agent
Supplied by: PK
Required by: OMS

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent Yes String
Address Physical address of the agent Yes URL
State Yes String A, S W 1

Attributes No Set of String
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Yes String Ok,
Error

Service-Value Error condition No String Duplicate,
Invalid,
Access

Precondition

Pre1: ¬∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.Address = Address
Pre2: ∃Ad ∈ IP_Address|Ad = Address

Pre3: State ∈ A, S, W
Postcondition

Post: ∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.Address = Address ∧
Ag.State = State

28 GTI-IA

– Deregister: an entity of the platform, for whatever reason, request to the
platform for the elimination of an agent registration. The life cycle ceases to
be controlled in this platform, which means that the agent is dead.

deregister(Name ?n)

This service is invoked by the OMS, as in the previous, case the removal of
an agent on the platform is the responsibility of the OMS which probably
transmits possible orders from the managers of an organization.

Service Specification

Name: Deregister
Description: To invoke the deregister of an agent
Supplied by: PK
Required by: OMS

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent Yes String
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Yes String Ok,
Error

Service-Value Error condition No String Invalid,
Not-
found,
Access

Precondition

Pre: ∃Ag ∈ AMS.AgentList|Ag.Name = Name

Postcondition

Post: ¬∃Ag ∈ AMS.AgentList|Ag.Name = Name

– Update register: Service that enables the modification of the information
which appears in an agent register with the exception of the agent name.

modify(Name ?n Address ?ad State ?s Attributes $a)

This service is invoked by the same agent or the OMS.
Service Specification

Name: Modify
Description: To modify the register of an specific agent previously registered
Supplied by: PK
Required by: OMS

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent Yes String
Address Physical address of the agent No URL
State No String A, S W
Attributes No Set of String

Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Yes String Ok,
Error

Service-Value Error condition No String Invalid,
Not-
found,
Access

An Abstract Architecture for Virtual Organizations: The THOMAS project 29

Precondition

Pre1: ∃Ag ∈ AMS.AgentList|Ag.Name = Name
Pre2: ∃Ad ∈ IP_Address|Ad = Address

Pre3: State ∈ A, S, W
Postcondition

Post: ∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.Address = Address ∧
Ag.State = State ∧ Ag.State = Attributes

– Agent search: Service that can be invoked by an entity to request infor-
mation from a registered agent on the platform.

search(Name ?n Address ?ad State ?s Attributes $a)

This service is public, the search in the white pages are public unless the
parameters of the registration indicate that this registration is private. In
this case the search van be only invoked by the OMS.

Service Specification

Name: Search
Description: To search an agent in the platform
Supplied by: PK
Required by: agents

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent No String
Address Physical address of the agent No URL
State No String A, S W
Attributes No Set of String

Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Si String Ok,
Error

Service-Value Error condition No String Invalid,
Not-
found,
Access

Precondition

– –
Postcondition

– –

– Suspend an agent: This service is invoked by an entity of the platform in
order to suspend the execution of an specific agent.

suspend(Name ?n)

This service can be invoked by the same agent or the OMS.
Service Specification

Name: Suspend
Description: To suspend the execution of an agent
Supplied by: PK
Required by: the own agent and OMS

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent Yes String
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Yes String Ok,
Error

Service-Value Error condition No String Invalid,
Not-
found,
Access

30 GTI-IA

Precondition

Pre: ∃Ag ∈ AMS.AgentList|Ag.Name = Name

Postcondition

Post: ∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.State = S

– Agent activation: This service is invoked by an entity of the platform to
activate the execution of an agent who currently is suspended.

resume(Name ?n)

This service can be invoked by the OMS.
Service Specification

Name: Resume
Description: To activate the execution of a suspended agent
Supplied by: PK
Required by: OMS

Input Parameters

Name Description Mand. Type Value

Range

Default

Name Name of the agent Yes String
Output Parameters

Name Description Mand. Type Value

Range

Service-Status Result of the service Yes String Ok,
Error

Service-Value Error condition No String Invalid,
Not-
found,
Access

Precondition

Pre: ∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.State = S

Postcondition

Post: ∃Ag ∈ AMS.AgentList|Ag.Name = Name ∧ Ag.State = A

There exists a service in FIPA, which allows to obtain the platform descrip-
tion. This service has been retained in THOMAS for reasons of compatibility
but it is not employed.

get-description(APName ?n)

With respect to services for the management of messages, the only service vis-
ible by the platform entities is the send message, which obviously allows sending
a message through the communication layer. As concerning with message recep-
tion, the platform distributes messages that are coming to the relevant entity,
which has a module for managing mailbox in a individualized form. The remain-
ing actions offered by FIPA at message management level, such as asking for the
type of codification are hidden in THOMAS for the entities at highest level.

The high-level description of the service for sending messages only involves an
indication of who sends and who receives the message and the own message. The
message will be encrypted according to the followed standard (it will include the
communication act and its contents). This service can be invoked by any agent
in the platform.

send(Sender ?s Receiver ?r Message ?m)

An Abstract Architecture for Virtual Organizations: The THOMAS project 31

3 Conclusions

An important aspect for the development of true open multi-agent systems is to
provide developers with methods, tools and appropiated architectures which sup-
port all the requirements for this kind of systems. This document has deepened
into this problem trying to propose an abstract architecture for the development
of virtual organizations. Moreover, the proposal tries to raise a total integration
of two promising technologies, that is, multi-agent systems and service-oriented
computing. In THOMAS architecture agents can offer and invoke services in
a transparent way to other agents or entities, as well as external entities can
interact with agents through the use of the offered services.

This architecture is the first step in order to obtain true deployed virtual
organizations. Currently, a software platform based on this proposal has being
developed and it is being applied in the development of different scenarios as
tourism, leisure activity management on a mall and health emergencies.

References

1. M. Huhns, M. Singh. Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing. Track. 9 (1) (2005)

2. M. Huhns, M. Singh, et al. Reseach Directions for Service-Oriented Multiagent Sys-
tems. IEEE Internet Computing. Service-Oriented Computing Track. 9 (6) (2005)

