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Abstract

We propose a formal semantics for the protocol diagrams (interaction patterns) of
AUML (Agent Unified Modelling Language). We connect this proposal with a general
framework for defining the semantics of ACLs (Agent Communication Languages). We
then show that protocol diagrams should be parameterised with observable commitments:
additional specification of the expected outcomes, norms and obligations resulting from
the use of the protocol. A complete axiomatisation of a contract-net protocol is given, and
animated to show how the agents comply with expected replies and respecting the norms.
We conclude that this approach to ‘socialising’ interaction between agents is important
for developing open agent systems and potentially useful in standardisation.

1 Introduction

In previous work, we defined the semantics of speech acts in an Agent Communication Lan-
guage (ACL) from two perspectives. From the external point of view, we were concerned with
performatives and protocols, and defined the semantics of a speech act as an intention to make
a reply [12]. From the internal point of view, we were concerned with the interpretation of
content and the mental attitudes motivating the (intention to) reply, which were given an op-
erational semantics through a transformation into Prolog [10]. Our primary concern was the
intentional specifications of behaviour using a BDI (Beliefs-Desires-Intentions) agent model.
We therefore used finite state diagrams in our representation of protocols, for economy of
representation, ease of understanding, and a semantics that was compatible with the general
semantic framework for ACLs.

The agent standards organization FIPA (Foundation for Intelligent Physical Agents) has
focused in its specifications on the protocols [6], and is using AUML (Agent Unified Modelling
Language [1]) for this purpose. Unfortunately, the form of graphical protocol representation
proposed does not have a formal semantics, only English descriptions. In design, the poten-
tial ambiguity can lead to inconsistency of interpretation and, at implementation, failure to
interoperate. There is also no specification of the intended decision-making processes and no
representation of the point of the protocol, i.e. what it is intended to achieve.
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In this paper, we move towards a formal semantics for AUML protocol diagrams and, in
so doing, embed these representations in our general semantic framework. In addition, we
use ideas from [9] to parameterise the specifications with the norms that govern the use of
the speech acts in the context of the protocol, and the observable commitments (outcomes
and obligations) that are produced as a result of following the protocol to a successful conclu-

sion.

The processes and parameters specified in the protocol are captured in the intentional

specifications of agent behaviour.
The argument followed in this paper is then as follows:

we start from the description of a multi-agent trading scenario and the design of an
ACL for the interactions;

the interactions are specified using AUML protocol diagrams, which are given a seman-
tics that is embedded in the general semantic framework for ACLs,

the graphical representation is then associated with intentional specifications of agent
behaviour;

the protocol diagram (interaction pattern) is parameterised with observable commit-
ments, i.e. norms that the agents should comply with;

the specification is animated to show that the agents comply with all ‘externals’, in-
cluding making the appropriate kind of reply and complying with the norms.

We conclude that this use of AUML is a potentially powerful enhancement to our general
semantic framework and ACL design methodology [10] (although we discuss some reservations
in Section 7.3. It is therefore a significant contribution to standardization efforts, but also
advances our objectives in the EU ALFEBIITE project. This is to investigate the use of
normative and norm-governed behaviour in communications between agents, in order to create
open agent societies.

2 Motivation

We share a vision of a flexible network of heterogeneous software processes (i.e. independently
designed and implemented agents) coming together to form an open agent society. By this
we mean:

open: high-level interoperability (‘public’ accessibility) and an unpredictable, non-deterministic
environment;

agent: local autonomy, adjustable behaviour and high-level communication

society: the collection of agents is regulated by the kinds of relations contractual and
normative) found in human business and social situations.

In particular we are interested in how such agent societies facilitate future commercial and
social structures, like Connected Communities and Virtual Enterprises.

To investigate these ideas, inter alia, the EU ALFEBIITE project has developed a number
of scenarios to investigate norm-governed trading in multi-agent systems. We have specified
one scenario based on an abstract producer-consumer model, in which there are a number
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of agents producing ‘goods’, a number of agents consuming goods, and transactions between
the two sorts of agent which can be broken by either side. In previous work, we analysed
quantitative representations of trust in an instance of this scenario using Intelligent Networks
[16].

A new instantiation of this scenario is based on cartography and exploration. In this case,
we specify a set of explorer agents, who can generate raw data, and a set of cartographer
agents, who want to build a complete map. (Our working example is o0il exploration, with
explorer agents getting seismographic reading and cartographer agents compiling sets of such
readings to build a complete picture to identify oil deposits). The important features of this
scenario (illustrated in figure 1) are:

e mized initiative: cartographers can use the contract-net protocol to contract a particular
explorer to search a certain region, while explorer agents can put pro-actively explored
regions up for auction. Interaction can be broadcast or multicast;

o third parties: there are many third parties involved in the above interactions, including
an auction house, bank, certification authority, rights managers, etc.;

e rights: there are issues of rights and ownership, e.g. granting of a right to explore
a region, and ownership of information (i.e. data that has been contracted for can’t
be offered at auction). Rights are specified in a contract containing a service level
agreement;

e norms: the interaction between agents follow norms and can create new ones, in the
form of permissions, obligations, powers, etc. There are also social relations involved,
for example, trust, control, and reputation;

o visualization: the interactions, contracts and social relations between agents can be
visualised to make what is conceptually relevant perceptually prominent.

In this paper, we are concerned with designing an Agent Communication Language for
this scenario. However, in related and further work, we are (will be) concerned with formal
definition of the artificial society, experiments with trade-offs between trust and control (cf.
[2]), and with investigation of issues such as scale, stability and self-regulation Note that as
outlined here, some of the agent internals (for example, the bidding and contracting strategies
to maximise financial advantage) are not of direct concern.

3 Agent UML

In this section, we briefly review the protocol diagram notation for agent interaction protocols
proposed in [1] and used in the FIPA specifications [6]. We then give an illustrative example
using the well-known contract-net protocol.

3.1 Overview of AUML

Agent Unified Modelling Language (AUML) is a proposed extension of UML for multi-agent
systems, on the grounds that agents require additional, richer, modelling techniques than
objects [1]. AUML has been adopted as part of the FIPA specifications for defining a standard
Agent Communication Language FIPA-ACL [6].

100



hetwork
cloud

1..m cartographers
sialo|dxa u

auction
house

third parties

certification 1.k rights managers
authority

Figure 1: Multi-Agent Trading Scenario

At the core of AUML is a mechanism for describing the interactions between agents us-
ing protocol diagrams. Protocol diagrams are therefore concerned with defining the allowed
sequence(s) of messages exchanged between agents for some common purpose. A graphical
notation is used, as illustrated in figure 2. The notation is very general and powerful, allow-
ing the designer to specify a wide range of complex interactions. The specification devices
supported include:

lifelines: the time period during which the agent is active in its role in the protocol;

roles: agents satisfying certain properties, performing particular actions, or capable of
specified behaviours in a protocol;

threads of interaction: showing the period during which an agent is performing some
task in reaction to a received message;

communicative acts: the type of message exchanged between agent (roles), parameters,
and other options (synchronous, asynchronous, etc.);

parallelism: and-, or-, and x-or parallelism between communicative acts;
guards: conditions on performing communicative acts;
cardinality: support for one-one, one-many, etc. interactions;

templates: allowing protocols to be parameterised to define a class of protocols.
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Figure 2: Example AUML Protocol Diagram

3.2 Contract-Net Protocol

The AUML protocol diagram notation is very descriptive, although this comes at the cost of
perspicuity. For example, a contract net protocol and an auction protocol are required in the
multi-agent trading scenario proposed in Section 2. An English auction protocol is specified
in [1]. Although this starts with a cfp performative (‘call for proposals’), presumably this
could just be re-used in our scenario. However, the specification in [1] (p210) is somewhat
confusing and seemingly at variance with the English description that follows it' A rather
more convincing specification of an English auction protocol can be found in [11].

A contract-net protocol can be found in the FIPA specifications [6], although this too
turns out to be not ideal for our requirements. Intuitively, we specify our protocol as follows:

the contractor (agent role) sends a cfp to n bidders;
contractor receives m (m < n) responses, of which:
1 are reject, which ends the protocol,
k are accept, received after a timeout, to be rejected,
j are accept, received before the timeout;
the contractor selects a winner from the set 7;
the contractor then sends:
j — 1 rejects to the unsuccessful bidders,
an accept to the contract winner;
the winner then performs the contracted task;

! Confusions include: mixing auction set-up and execution phases; mixing message types and content; revers-
ing time flows; ambiguity over message cardinality; ambiguity over message cardinality and x-or parallelism;
following a not-understood by an inform(end of auction); “as soon as 1” in the English description not captured
in the diagram; no representation of timeout to end auction; no representation of ‘silence’ or no response from
an agent.
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after performing the task it notifies the contractor.

The protocol diagram for this contract-net protocol is shown in Figure 3. Note that errors
in understanding, syntax, and the communications fabric have not been considered. Also, the
content of the messages and the decision making are also not specified. We are concerned here
only with the form and pattern of exchanged message from the external point of view. Agent
internals — intentions and interpretations — will be dealt with at the next level of specification,
as discussed in section 5.
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Figure 3: Contract-Net Protocol in AUML

4 Protocol Diagram Semantics

The AUML protocol diagram themselves do not have a formal semantics. Furthermore, the
behaviour of the agents in following the protocol is not specified: ‘the protocol says nothing
about how the reaction [reply to a received message| is implemented” [1]:p211. However,
implementation is not the issue: a specification of the decision-making is required for designers
to implement the protocol according to its intended effect. The intended achievement of the
protocol (i.e. what the agents are communicating about or for) is also not specified in the
protocol diagram.

In this section we address the the first of these three deficiencies. We briefly review our
general semantic framework for completeness (for full details, see [12, 10]. We then propose
a semantics for the AUML protocol diagram which can be linked with this framework. In

103



section 5 we show how the decision-making required in threads of interaction can be specified
using a BDI-style logical language. Finally we show how the protocol should be parameterised
by norms which condition the use of speech acts in the context of the protocol and the
obligations that follow as a result.

4.1 General Semantic Framework for ACLs

We define an ACL to be a 3-tuple < Perf, Prot, reply > where Perf is a set of performative
names, Prot is a set of protocol names, and reply is a partial function given by:

reply : Perf x Prot x NT —— P(Perf x Prot)

where N is the domain of positive integers. The reply function is then defined for each
distinct state of each protocol, identified by a unique (for each protocol) integer. This gives
for each speech act, ‘performed’ in the context of a conversation being conducted according
to a specific protocol, what performatives in which protocols are acceptable replies. The reply
function therefore specifies a finite state diagram for each protocol named in Prot.

To fully characterise the intended semantics, three further functions are required, which
are specified relative to each agent a, and state what that agent does with a message, not
how it does it. The three functions in [12] were (1) a procedure for computing the change
in an agent’s information state from the content of an incoming message; (2) a procedure
for selecting a performative from a set of performatives (valid replies), and (3) a function
conv which mapped a conversation identifier onto the current state of the protocol. For these
functions, we specify intentional (logical) descriptions of the reasons for and reactions to a
speech act. These serve as reference implementation models that agent developers could use
to implement the appropriate internal and external behaviours for their agents. Furthermore,
where the import of the the content level meaning was required, further specifications could
be supplied, and this is dependent upon the application.

An agent s then communicates with (and communicates information to) an agent r via
a speech act. This (possibly infinite) set is denoted by speech_acts, a single member sa of
which is represented by:

sa =<K s,perf(r,C,L,O, cp, ci,ts) >

This is saying that s does (communicates with) performative perf with content C in language L
using ontology O in the context of protocol (conversation policy) cp as part of a conversation
identified by ci at time of sending t;. The notation sa.perf denotes the performative of a
speech act, and so on.

The meaning of such a speech act sa from agent s to agent r is then given by:

[« s, perf(r,(C,L,O,cp,ci,ts)) >] = I, Lr,rep_sa>> s.t.
(rep_sa.perf,rep_sa.prot) € reply(perf, cp, conv,(ci))

This means that, in this framework, at the observable action level, the meaning of a speech
act is the intention to give a reply.

We next show how extend this framework based on a semantics for protocol diagrams. In
section 5, we associate the threads of interaction with intentional specifications, and integrate
observable commitments with the interaction patterns and these specifications.
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4.2 Semantics of Protocol Diagrams

The usefulness of finite state diagrams for protocol representation was that they could be given
a mathematical formulation via the reply function. At each state (stage of the conversation
between two agents), an agent had a set of possible replies. The intentional specifications
decided which of these was actually performed, and this of course was consistent with the
external meaning of a speech act.

We attempt here to give a similar formal meaning to a UAML protocol diagram. In
particular, we use the threads of interaction in the same way that states were used in finite
state diagrams.

We stipulate that all threads of interaction are either:

e a unique starting thread;

e start with receipt of a message, end with despatch of a message;

e start with receipt of a message and terminate, ending the protocol.
We then claim that a protocol diagram consists of:

e 3 finite number of distinct threads per role; and

e a finite number of sequences of messages (communicative acts) from the start thread to
a terminal thread.

We can then use the sequence of communicative acts to identify the thread of interaction
an agent is ‘in’. The thread determines the space of possible replies.

Let Perf be the set of communicative acts in an ACL, and Prot the set of protocols, as
before. Then let Rol be the set of possible agent roles, and Thrd an infinite set of thread
identifiers tq,t2,...,%,,.... Let ¥ be the domain of sequences of speech acts, i.e. for each
o€

o= < <Lsndr,perf(rcor,...,prot,...)>,

..y

L revr, perf (sndr, ..., prot,...)> >
Then define functions:
reply, : Perf X Prot X Rol x ¥ — Thrd

and:
replyy : Prot — Thrd — P(Perf x Prot)

So, for example, for our contract net protocol (c¢np), we have a reply, function which
returns values such as?:

reply, (cfp, cnp,e,<>) = 15
reply, (reject, enp,c, < ¢fp >) = 1
reply (accept, cnp,c, < c¢fp >) = tg,if before timeout

= tq,if after timeout

2We only show the performative names in each sequence.
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Note from the final value, that the value returned can take into account the deadlines, roles,
cardinalities, sequences of messages, and so on. These specifications can be arbitrarily com-
plex, and intuitively should be able account for anything that can be graphically represented
on a protocol diagram.

Given the type of the reply, function as APAt.P(t), we also have:

cfp(ts) = {(propose,cnp), (reject, cnp)}
efo(tt) = {}
cfp(ta) = {(accept,cnp), (reject, cnp)}

Having the domain of reply, as the powerset of performatives and protocols allows new
protocols to be started [11], or nested protocols [6]. For full generality, this domain should
probably be sequences of elements from this domain, to allow for multiple communicative
acts to be performed from a single thread of interaction.

From these functions, and given (1) a function (essentially a dynamic loop-up table) that
maps an agent name to its role in a conversation (conducted according to the protocol), and
(2) an adjustment to the conv function that returns sequences of communicative acts rather
than states, i.e.

convy : Cid — X

we can define the meaning of a speech act exactly as before, i.e. as an intention to reply with
allowed message type:

replys(cp)(reply (perf, cp, role(r, ci), conv,(ci)))

We have then given a semantics to UAML diagrams and integrated this semantics with
our general semantic framework for ACLs. We now proceed to give a full axiomatisation of
the contract net protocol.

5 Intentional Specifications

The purpose of intentional specifications is to give a reference implementation model of the
decision-making in the context of a protocol. This specifies which of the possible replies
should be made, and we make reference to the beliefs, desires and intentions of the agent
(although this is not mandatory for implementation).

The intentional specifications are used to state what we call triggers and tropisms [10].
The idea is that triggers are the combination of beliefs and desires that produce intentions
(to do actions), and that tropisms are the affects on beliefs and desires that results from
executing those intentions.

Notice that triggers and tropisms specified like this are local to each individual agent,
and while they may be identical between a sender and receiver agent in a closed multi-agent
system, it is possible for them not to be (for example in an open system with agents deployed
by different organizations). Therefore, we have the following categorization:
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trigger tropism
sender’s | sender’s actual motivation for sender’s belief about expected
side doing an action outcome of action on receiver’s
belief state
receiver’s receiver’s belief about motivation | actual result (receiver’s actual
side (sender’s belief state) for doing change of belief state) of doing
an action action

In this section, we give intentional specifications, in the form of triggers and tropisms,
for the contract-net protocol given above. We will then augment this specification with the
outcomes, norms, and obligations of the protocol. These, we argue, should be part of the
protocol diagram specification as ‘externals’ or observable commitments, which we hook into
our intentional specifications.

5.1 Intentional Specification Language

We follow many existing works which use beliefs, desires and intentions (BDI) to characterise
the semantics of performatives [14, 3]. The formal syntax of our language for writing trigger
and tropisms is a first-order modal logic with relativised belief, desire, and intention (to)
modalities B,, D, and Z, respectively; action formulas written < a, A> and a DONE operator
on action formulas; and parameterised action modalities [a, A] (read as “after agent a does
action A”). Once an intention to do an action is executed then DONE of the action is true:
i.e. given 7, < a, A>>, as an intention, then after execution DONE(a, A) is true. Furthermore,
if an agent did an action, then the action was done, i.e. DONE(a, A) - DONE(A); and if an
agent did an action, then we can infer that the agent brought it about that or saw to it that
the action was done, i.e.:

DONE(a, A)
£,.DONE(A)

The relativised modality £, used here is the Jones and Sergot [9] action modality used for
expressing the idea that agent x creates or establishes a state of affairs, and that z performs
designated acts. See [9] for a formal characterisation of this modality.

To give a formal specification of intentional behaviour, we want to write axioms of the
form (for any agent a):

EBop ANDotp — Iy La, A>
= la, A]¢ — x
Here, B, D and T are relativised (agent) modalities for beliefs, desires and intentions, and
[a, A] is an agent-action modality. The intuitive reading of these axioms is then firstly, that
if an agent believes ¢ and desires v, then it will form the intention to perform action A.

Secondly, that after agent a performs action A, x holds. [10] discusses a semantics for this
language and its relation to the BDI achitecture.

5.2 Preliminaries

We need the following notation for multi-cast, predicates that hold over groups, and state
variables.
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A multi-cast speech act by an agent s to a set of known receivers R is written?:

& s, multicast(perf, R, C, P)> i e;R < s, perf(r,C, P)>

r

Here, ‘;’ is the conventional operator for a sequence of actions. This notation then describes

the multi-cast of a performative perf, to a set of receivers R, with content C, in protocol P,
performed by an agent s as the composition of a sequence of individual acts to each r € R.
A predicate holding over a group (i.e. a set of agents) is defined as:

pa() € A pla)

We also need to refer to state variables [7, 11], which are global identifiers whose values are
changed by communicative acts. In this case, we need three: B, the set of bidders who
respond to a ¢fp with an accept (before the deadline), initially empty; w, the winning agent
selected from this set by the contractor, whose initial value is undefined; and timer, whose
value can be agreed when the contract net is set up or included as part of the content of the
cfp.
Access and change to a state variable svar is indicated by the following notation:
convg(i).svar = val to test the value for equality
convy(1).svar — newval  to overwrite the current value

5.3 Contract-Net: Triggers and Tropisms

The trigger for initiating a contract-net protocol to a set of potential bidders is:

D.DONE(T) A B.capable(B,T) — (1)
T, < multicast(cfp, B, T, cnp) >

This states that if a contracting agent ¢ desires a task 7' to be performed and believes that
each member b of a set B is capable of performing that task, then it will start a contract-net
protocol by multi-casting a cfp to each agent in B.

The tropisms for the multi-party contract-net protocol are formally specified (and para-
phrased) by the intentional specifications shown below, for the communicative acts received
and the thread of interaction tz (see figure 3) this causes. Note the only parameters we are
using are the receiver, the task being proposed T', and the protocol (¢np, i.e. the contract
net protocol). However, following [11] it is understood that a conversation between multiple-
agents is marked by a unique conversation identifier cid, which is a parameter to all messages.
The timeout action (an event that occurs during thread ¢2) then refers explicitly to this con-
versation. Furthermore, all reference to state variables S, are technically conv.(cid)S, etc.,
but we simplify for clarity.

3We omit the parameters for ontology, time and conversation identifier for clarity. For full details, see [11].
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t4  [c,cfp(e, T, cnp)] (2)
B.bid(T) — I, < e, propose(c, T, cnp) >
V. =Bebid(T) — I, <e,reject(c, T, cnp)>

[e, propose(c, T', cnp))] (3)
12 timer >0 — S — SU{e}
t1 vV  timer <0 — I, <c,reject(e, T, cnp) >
12 [c, timeout(cid)] (4)
select_winner(S, w)A
S — S\{w}A

Z. < e,accept(w, T, cnp) > A
I.multicast(refect, S, T, cnp))

t5 [, accept(w, T, cnp)] (5)
D,DONE(T)A
DwDONE(pay(w,T))

t3  [w,inform(c, DONE(T), cnp)] (6)

B.DONE(w,T)

When the contractor issues it’s accept, this we argue, is the point when the contract (i.e.
the point of a contract-net protocol) between the contractor and the bidder is established.
The action of agent ¢ then counts as a means of creating another state of affairs. This state
of affairs is sanctioned by some institution which will enforce the contract.

This idea of ‘counting as’ can be formalised using the Jones and Sergot [9] conditional
operator =. The reading of formulas like:

EF 2 &P

is that if, on some occasion, agent s sees to it that F' holds, then within the institution s the
state of affairs F' holds. F' is then a matter of fact, relative to institution s, i.e. what Searle
referred to an institutional fact [15]. For full formal details of this new logical operator, see
[9].

If an agent a brings it about that an accept is performed in the contract-net protocol,
then this counts as establishing a contract — according to the institution S — between the
sender and receiver to do the task 7', . Formally, we have:

E.DONE (accept(w, T, cnp)) = Escontract(c,w,T) (7)

this notion of contract, we specify the following trigger axioms. First, for the winning
bidder, we have:

ByEs contract(c,w,T) A DyDONE(T) = I, <w, T > (8)
BywEscontract(c,w, T)A
B,DONE(T) A D,y DONE(c, pay(w,T)) —
Ty L w,inform(c, DONE(T),cnp)>  (9)

and for the contractor we have:

B.Eg contract(c,w,T) AN B.DONE(w,T) —

Ze <c,pay(w, T)> (10)

Note that the receipt of the final inform causes the contractor to believe that task T has
been done by w. This discharges the original desire that initiated the contract-net protocol.

It also creates the additional intention to pay w, the execution of which will discharge w’s
outstanding desire, which is to be paid for doing the task.
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5.4 Observable Commitments

We have now seen how a protocol can create a contract, or more generally a commitment
to a state of affairs. Furthermore, there are additional constraints on the agents’ behaviour,
which are the conditions that the agents should observe when using the speech acts (in the
context of this protocol). These are the norms [9] of the agent society in which this protocol
is used.

For example, we can state (in English) that the norms to be observed by the agents in
the contract net protocol are:

e if a contractor puts a task out to tender, it should be able to pay for it (committed to
paying for it);

e if a bidder offers to perform a task, it should be able to do it (committed to doing it);

e at the end of the protocol, the winner is obliged to perform the task for the contractor;

e after the task has been performed, the contractor is obliged to pay the winner the agreed
amount.

Therefore, we extend the logical language with the following notation (cf. [4]):
Ci(F;P) it isanorm of society s that when
F' is true, then g is committed to
P being true;
O:(F;P) insociety s, when F is true, it is a
obligation of a to see to it that P
be true.
We can then formalise the four norms above as follows:

CS (DONE(< c, cfp(e, T, cnp) >>); DONE(pay (T))) (11)
CS (DONE(K e, offer(c, T, cnp) >); DONE(T)) (12)
O3 (contract(c,w,T); DONE(w, T)) (13)
DONE(w,T) — OF (contract(c,w,T); pay (w,T))  (14)

For formal completeness, each type of norm C and O above is an instance of what Jones and
Sergot [9] refer to as an institutional constraint. These are a general way of characterising
the various different conditions on an institution, of which ‘counts as’ is one sort. [9] propose
a relativised normal modality Dg as a general notion, with axioms to define the relations to
specific cases such as ‘counts as’.
We can therefore define the norms above as general institutional constraints (with Can a
practical ability operator and O deontic obligation [9]) as follows:
S def
C.)(F;P) = TDg(F — Can&,P)
d
O5(F;P) ¥ &sF - DsOE,P
This means that a commitment, so far as society S is concerned, is that (if F') a has the
practical ability to see to it that P; and a normative obligations is that if the society sees to
that F', then it is a constraint of the society that a is obliged (in the deontic sense) to see to
it that P.
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6 Animation

Two or more agents communicating with each other, using this protocol, should respect the
specified external semantics, irrespective of how they are actually implemented. This means
that they should make expected replies in response to received speech acts, and also should
respect and comply with the norms, obligations and commitments annotating the protocol
(which are also external).

To demonstrate this compliance, we animate the specification above. The logical anima-
tion in Table 1 shows the sequence of events and changes to the belief, desires and intentions
of two agents, a contractor ¢ and a bidder e. For simplicity we consider only one bidder and
so this will be the ‘winner’; it should be clear how the animation scales up in the presence of
multiple bidders.

We now show how this sequence of events complies with the four norms of section 5.4.
Notice the following derivation:

T, < c,accept(e, T, cnp)>
= DONE(c, accept(e, T, cnp) >
= &.DONE(accept(e, T, cnp)) >
= Egcontract(c,e,T) by (7)
= DsOEDONE(e,T) by (13), defn. of O

The point here is that the exchange of messages in the protocol creates the obligation
on the winner as an institutional constraint. This obligation is to see to it that task 7' is
done, which checking the animation above, it does. Thus e respects the norm (13). A similar
derivation leads to the obligation on ¢ via norm (14), and in the final line of the animation,
c respects this obligation too.

In addition, the specification or implementation of bid should evaluate to true only if the
bidder is capable of performing the task, in order to comply with norm (12). Finally, the
trigger for the contract-net protocol should have an extra condition can_pay(c,T) in order to
be sure that a contracting agent will comply with norm (11).

7 Summary and Conclusions

7.1 The Communicative Context

We started out by considering a contract-net protocol for the producer-consumer scenario
outlined in section 2. We used AUML for specifiying the protocol, but were more concerned
with analysing the interactions from a ‘social’ perspective, focussing on norms (right, permis-
sions, obligations etc.). The results have been: a proposed semantics for AUML diagrams,
integration of this proposal with our general semantic framework for ACLs, enhancement of
AUML diagrams with observable commitments (norms and outcomes), and integration of
these within the same general framework.
The significance of this is:

e our proposed methodology for designing ACLs starts with AUML protocol diagrams, a
richer and more expressive notation than before, but integrated with the method;

e we have an extra level of external behaviour for checking compliance to a standard
(respecting the norms);
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Table 1: Logical Animation of Contract-Net Specification
Assume, at time t
B.capable(e,T)
D.DONE(T)
intention generated, by trigger (1) and defn. of multicast
I, Lc,cfple, T, cnp) >
intention executed, message sent, state variables initialized
S—0
w+— L
timer — 50
message received, tropism (2) active
bid(T) evaluates to true (say)
intention generated
T, < e, propose(c, T, cnp) >
intention erecuted, message sent
message received, within timeout, so by tropism (3)

S — Su{e}

timeout, so by tropism (4)
select_winner(S,w) evaluates to true with w == e

intention generated
T, < c,accept(e, T, cnp >

intention executed, message sent, so by counts as (7)
B.Es contract(c,w,T)

message received, by tropism (5)
D.DONE(T)
D.DONE(c, pay(w,T)

and by counts as (7)
B.Escontract(c,w,T)

intention generated, by trigger (8)
I.<e, T>

intention ezecuted
B.DONE(e, T)

desire of e for DONE(T) discharged

intention generated, by trigger (9)
Z. < e,inform(c, DONE(T), cnp) >

intention executed message sent

message received, by tropism (6)
B.DONE(e, T)

desire of e for DONE(T) discharged

intention generated, by trigger (10)
I. <c,pay(e, T)>

intention erecuted, payment received by e
B.DONE(c, pay(e,T))

remaining desire of e discharged.
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e we have established a causal connection between what agents say, what they do, and
what they are committed to.

In previous work, we have been concerned with defining, through the intentional specifi-
cations, what is in ‘the mind of an agent’ when it decides to communicate. The next issue to
consider is: who is responsible for it. The EU-sponsored ALFEBIITE project® is investigating
a legal framework for normative behaviour of and between autonomous agents. In particular
we are concerned with the implications of agent communication, and the ‘social’ commitments
that arise as a result. The current work is a contribution to this research programme, and
refines the general communicative context for agent interaction (as illustrated in figure 4).

S owner = r owner

contract

}

comm. acts
commitments

s intentions r intentions
s interpretations r interpretations

Figure 4: The Communicative Context for Agents

We had previously been concerned with three levels of meaning: the action level (speech
acts and replies), the intentional level (the ‘mind of an agent’), and the content level (inter-
pretation). We argues that the first was external to the agents (and therefore amenable to
standardization), while the latter two were not. We are now defining meaning at a fourth
level, what we might call the social level, and this too is external. As such, compliance should
also be verifiable, as was demonstrated by the animation in section 6. Furthermore, based
on this external semantics, contracts (or other social relations) between agents can have con-
crete counterparts between human entities (individuals or organizations) in the ‘real’ world.
This is ultimately the relationship we want to capture in ALFEBIITE, and goes some way to
characterising responsibility and liability for autonomous agent behaviour.

“http:/ /www.alfebiite.com /
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7.2 Parameterisation of Protocols

The state variables identified in Section 5.2 are part of the contract net protocol specification.
Therefore, they should reasonably be specified in the protocol diagram, and this can be
conveniently done by detailing all such variables in an annotation to the diagram (as will
parameters). In addition, the two previous sections have shown that the outcome of the
protocol — what the agents are negotiating about — and the constraints on their behaviours
in achieving this outcome, should also be specified.

We therefore propose that the AUML protocol diagrams should represent state variables,
observed norms during the protocol, and outcomes from successfully concluding a negotiation
according to the protocol. We would suggest that AUML protocol diagrams should appear
as illustrated in Figure 5.

E.DONE (accept (w, T, cnp)) = Escontract(c,w,T)

NS (DONE(L ¢, cfp(e, T, cnp)>); can_pay(c,T))
NS (DONE(K e, offer(c, T, cnp)>>); capable (e, T'))
O3 (contract(c,w,T); DONE(w, T))

DONE(w, T) — OF (contract (¢, w, T); pay (w,T))

S—0
w— 1
timer — 50

Figure 5: Parameterised AUML Protocol Diagram

Speech acts in a protocol should respect the norms of that protocol, in addition to the
semantics specified by the ACL. This is because speech acts count as a certain type of utter-
ance, with associated conditional effects, as a result [9]. [1] insist that the semantics of the
messages in a protocol are consistent with the semantics of the individual speech acts, as for
example, documented in [5] for the FIPA ACL.

We have argued elsewhere that this is too restrictive [13]. The virtue of the current
proposal it that it makes all such specifications a a norm and a parameter of the protocol. In
this way, by specifying a norm we identify a property that should be observed and may be
punished by transgression, and as a parameter it is a condition that can be dropped when it
is not mandated.

For example, agents utterly faithful to the FIPA-ACL semantics should only send content
which they believe to be true. However, this is, in fact, a norm of a society S using FIPA-ACL
as its content language:

N3 (DONE(< s, inform(r, p, ...)>); Bsp)

This is then a norm which should be observed, but allows for non-normative behaviour (and
punishment for such), but as a parameter can be dropped if an application demands that so-
called self-interested agents are allowed to relax the ‘sincerity condition’ for their purposes.
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7.3

Evaluation of AUML

The move to a protocol-oriented semantics for FIPA-ACL is, in our opinion, a positive one,
and the proposal to embrace the highly-successful modelling technique of UML is significant,
in order to ‘mainstream’ agent-based software engineering and FIPA standards.

However, our experience of using AUML to specify the contract-net protocol in AUML
was not without difficulties. For us, this included:

7.4

limits of representation: the examples we have seen have tended to be small and effec-
tively have one successful sequence of messages, and few, quickly terminated ‘branches’.
Protocols which have many x-or decisions lead to extremely cluttered diagrams;

representation of time and exogeneous events: the agent lifeline implies a ‘flow of time’
down the diagram, and the notation supports a ‘time intensive’ message (denoted by a
downward sloping arrow). However, the length of a thread is more often for presentation
purposes and not indicative of time, and [1] have a message arrow going ‘backwards’;

representation of errors: there is little support for undelivered messages or communi-
cation errors, and care has to taken to avoid protocol ‘explosion’. For example, the
FIPA specification has FIPA-Request and FIPA-Request-when-cancellable protocols,
and similarly for contract net. This can be expanded almost indefinitely. A separation
of concerns is required;

a semantics is required. The current FIPA document [6] seems to favour form over
content (“A small dashed rectangle is superimposed on the upper right-hand corner of
the rectangle with rounded corners like defining a nested protocol.” is not atypical).
The semantics proposed here is a contribution to that effort;

focus on essential information: allowing parameterized protocols is good, but the es-
sential information needs to be included. The proposal above, focusing on norms and
outcomes, is strongly proposed for inclusion in the standard.

Further Work

We conclude this paper we some items of further work that build on the results achieved:

more protocols are being defined for the scenario; of particular interest are those pro-
tocols whose outcomes are other types of norm, for example permissions, powers, etc.;

a general agent inference engine is being implemented, which can reason directly with
the intentional specifications, underlying a general-purpose BDI architecture;

the scenario and the agent engine facilitates experimentation with formal models of
agent societies, and other social relations like delegation, trust and control (see, e.g.,

2]);

a more thorough investigation of the relationship between the content of the contract-
net, abstractly specified as T above, and service level agreements [8];

generalizing this work within a unified account of agent communication languages.

Further theoretical development of this work along these lines, together with continuing im-
plementation and experimentation, are the main focus of our current investigations.
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