
A proposal for a strongly-typed ACR framework

Stephen Cranefield, Mariusz Nowostawski and Martin Purvis
Department of Information Science

University of Otago
Dunedin, New Zealand

�scranefield, mnowostawski, mpurvis�@infoscience.otago.ac.nz

December 21, 2001

1 Introduction

This proposal briefly presents a design for an abstract content representation scheme that makes no more
commitments on the style of content language allowed than the FIPA abstract architecture and allows for
automated type-checking of content expressions.

The ACR presented here is based on UML. Class diagrams are used to define an ACL and a set of con-
tent language concepts used by the ACL. In addition, particular content languages such as SL or specialised
domain-specific ones can also have their abstract syntax defined using class diagrams. The interface be-
tween content languages and the ACL is explained using the notion of type substitution: classes in a content
language can be declared to ‘implement’ a predefined interface representing a specific type of content ex-
pression (e.g. proposition, term, action or definite description).

In this framework, a message is viewed in the abstract as a network of objects that are instances of the
classes in the ACL and content languages models, and it can be represented graphically as a UML object
diagram (see Figure 5).

To provide concrete instantiations of messages, ACR mappings need to be defined from UML to imple-
mentation languages and serialisation formats. This has been demonstrated to be possible for Java together
with a serialisation format using the XML-based Resource Description Framework [1, 2]; however, the
current version of this ACR framework includes some UML features that are not supported directly by
Java and are not yet simulated in the Java mapping (multiple inheritance, discriminators on generalization
relationships, and multiple instantiation).

2 Content language concepts

Figure 1 presents a UML diagram defining a set of interfaces representing types of content language ex-
pressions that the FIPA ACL and communicative act library refer to (we will refer to this as “the CL
package”). The ‘marker interface’ pattern [3] is used 1: the interfaces have no operations but represent
distinct (externally-defined) semantic notions.

Some dependency relationships (dashed arrows) are shown, for example, to indicate that an action
description is generally composed from a reference to an agent and a description of an act to be performed 2.
However, at this abstract level it is not appropriate to make any decisions about how the implementation
structure of these three concepts should be related.

The key content language concepts identified by the FIPA abstract architecture are Proposition,
ActionDescription and Term. DefDescription (definite description) is also required for use

1Alternatively, UML’s “type” stereotype could have been used, but the notation for types and implementation classes is more
cumbersome than that for interfaces and classes that realise them.

2The terminology used here is that an “act” is something that can be peformed by an agent and an “action” is the performance of
an act by an agent.

1

«interface»
AgentReference

«interface»
Reference

«interface»
GroundTerm

«interface»
Term

«interface»
ActionDescription

«interface»
Variable

«interface»
NonGroundTerm

«interface»
CommActDescription

«interface»
ActDescription

«interface»
AgentDefDescription

«interface»
DefDescription

«interface»
LambdaAgentRefProposition

«interface»
LambdaTermProposition

«interface»
Proposition

«interface»
CommActionDescription

«interface»
LambdaRecipientsCommActDesc

«interface»
LambdaRecipientsCommActionDesc

Figure 1: The CL package: generic content language concepts

with the FIPA query-ref communicative act. The interface Variable is included because the notion
of a variable is fundamental to the semantics of definite descriptions [4].

The diagram contains some additional interfaces representing concepts that are not explicitly mentioned
by the ACL or communicative act definitions—we believe there are advantages to explicitly modelling
these concepts.

� The notion of a reference is reified to allow a better understanding of the role that distributed ref-
erence schemes such as CORBA IORs and Web URIs can play within messages. This is further
specialised to the notion of AgentReference—a reference to an agent.

� Terms describing communicative acts (CAs) and actions are represented by the interfaces
CommActDescription and CommActionDescription.

� A number of Lambda. . . interfaces are introduced to represent the needs of communicative acts
having arguments representing propositions with missing subjects (useful in ‘call for proposal’-style
CAs) and communicative acts or actions with missing recipients (useful in proxy and propagate
CAs).

Note that no commitment is made concerning the structure of propositions. All that ACL and com-
municative act definitions require is that content that plays a particular semantic role (e.g. a proposition)
can be identified as playing that role. In particular, note that the concept of a predicate is not included in
the CL package. Although some FIPA communicative acts require propositions as parameters, the ACL
is neutral about how propositions are represented—a content language is free to represent propositions in
non-standard ways, for example as networks of objects asserting the values of the objects’ attribute values
and some relationships that hold between them.

3 Abstract models of specific content languages

Given the content language concepts model, a particular content language can be defined in an abstract way
as a class diagam, with UML realisation relationships used to indicate how particular content language
classes correspond to generic content language concepts. Provided that a class contained in a specific
content language model is declared to implement one of these interfaces, an instance of that class can be

2

Predicate

name : String
ontology : String
arity : Integer

Term

AtomicFormula

11 11

0..*

1

0..*{ordered}

1

self.term->size =
self.predicate.arity

Constant

name : String
ontology : String

Conjunction

Wff
2..*

1

2..*{ordered}

1

Variable

name : String
DefiniteDescription

1

1

1

1

11 11

CL::Variable

CL::Proposition

CL::DefDescription CL::Reference

Figure 2: A partial model of a FIPA SL style content language

included within an ACL message wherever that type of element makes sense for the particular communica-
tive act being used. This allows a strongly-typed definition of an ACL (see Section 4) while still supporting
the use of alternative domain- or community-specific content languages.

For a content language defined in this way there will be a need for an agent platform to have codecs
for the different serialisation formats required for that language. However, in principle these codecs can be
generated automatically from the UML class diagram, and in practice this has been shown to be possible
using RDF [1, 2]. Serialisations using XML directly are also possible [5], but further work is needed
to determine how best to define mappings to string-based syntaxes (extra information would need to be
provided, such as the syntax to be used for lists of items).

This section briefly presents two examples of particular content languages.
Figure 2 shows a fragment of a FIPA SL-style language. The UML ‘lollipop’ symbol is used to indicate

realisation relationships, i.e. the declaration that a class implements the interface at the round end of the
lollipop. In this case, the interfaces implemented are the general content language concepts modelled in
the CL package from Figure 1, and the notion of ‘implementation’ is that of the marker interface pattern:
the class plays the semantic role represented by the interface. A conventional content language such as this
could be recommended as a default to be included in any FIPA agent platform.

Figure 3 shows part of a ontology-specific object-oriented content language generated from an ontology
defined in UML [6]).

4 An abstract ACL syntax

Figure 4 shows a partial model of a FIPA-style agent communication language. The lower part of the dia-
gram shows how particular CA types are represented by specialisations of the notion of a message. Note
that the specialised CA message classes declare their required content types by referring to the interfaces
defined in the content language concepts model presented in Figure 1. This provides a strongly typed
account of the various numbers and types of content expression required in the body of different CAs. Ex-
pressions in any content language can be included within an ACL expression provided that they implement
the appropriate interface from the CL package. For example the Object Query Language could be used as
a form of definite description simply by defining a class OQLDescriptionwith a string-valued attribute
query and declaring it to implement CL::DefDescription.

The diagram does not show all FIPA CAs, and an explicit InformRef message type is added to

3

 name : String [0..1]

Person

Man Woman

*

father
0..1

0..2

son
*

mother
0..1

*

daughter
*

0..2

parent

*
child

0..2
{ ordered }

{ ordered }{ ordered }

AnyReference

0..1

ref *

CL::Proposition

Figure 3: Proposition classes generated from an ontology in UML

CL::Reference

<<Interface>>

InformRef

1

1

1

1

CL::DefDescription

<<Interface>>

1
1

1
1

QueryRef

1

1

1

1

CL::Proposition

<<Interface>>

Inform

1

1

1

1

CL::ActionDescription

<<Interface>>

Request

1

1

1

1

message-type

CL-type

CL::GroundTerm

<<Interface>>
Message

1..**

ontology

1..**

CL::CommActDescription

CL::CommActionDescription
Complete
Message

MessageWith
Recipients

CoreMessage

CL-type
CL::LambdaRecipients
CommActDesc

MessageWith
Sender

CL::AgentReference

<<Interface>>

1..*
*

receiver 1..*

1

*

CL::LambdaRecipients
CommActionDesc

*

CL-type

sender

1

*

Figure 4: A partial model of a FIPA-style ACL

provide a more convenient way of responding to a QueryRef message (currently in FIPA it is necessary
to send an inform message with a content proposition that equates a term with the definition description
that was sent in the original query). The model also currently omits the various additional parameters such
as conversation-id that a FIPA ACL message may optionally have.

The modelling of an ACL is complicated by the FIPA practice of reusing the ACL message syntax
to represent completely or partially specified communicative acts that can appear within the content of
messages (e.g. as one of the arguments of a proxy CA). To account for this in a strongly typed modelling
language requires the identification of the roles that variously complete forms of message can play as
content language expressions. The top half of the figure shows how different specialisations of the abstract
message class are declared to ‘implement’ different types of content language concept from the content
language concepts model.

4

To separate the two distinct type of message specialisation discussed above (different types of commu-
nicative act represented and different types of content language expression represented), the UML notion
of separate dimensions of specialisation is used. Discriminators (message-type and CL-type in the
figure) can be used to indicate a particular dimension of specialisation. An instance of a concept that is spe-
cialised in multiple dimensions must either belong to a class that multiply inherits from specialised classes
from all dimensions of specialisation or it must be ‘multiply instantiated’ (i.e. belong to more than one
class) to cover all specialisation dimensions. It would be impractical to use multiple inheritance to define
classes covering all possible combinations of different CAs and different combinations of omitted sender
and recipients links, so instances of messages in this model are required to be multiply instantiated (see
Figure 5). The use of multiple instantiation complicates the mapping to conventional OO programming
languages, but this could be simulated using delegation.

5 An example message

Figure 5 shows an object diagram representing an example message using the ontology-specific content
language presented in Figure 3. Note that the top-level message object (in the centre top of the figure) is
“multiply instantiated”, i.e. it belongs to two classes. As discussed in Section 4, this feature of UML is
used to allow a strongly-typed account of the multiple roles that message objects can play: as messages
and also as content expressions denoting communicative actions.

The figure assumes that a number of other UML models have been defined: an AMF model defining
agent descriptor structures and a BasicCL model defining primitive forms of expression such as identifiers.

The message represents a FIPA inform message making the assertion that there is a man named “Joe
Brown” identified (in Semantic Web fashion) by a particular URI, and his mother (identified by another
URI) is named “Mary Brown”.

sender

receiver

name = "FamilyCL"

 : BasicCL::Identifier
 : ACL::Inform, ACL::CompleteMessage

ontology
name = "agent1"

 : AMF::AgentDescription

name = "agent2"

 : AMF::AgentDescription

name = "Joe Brown"

 : Man

name = "Mary Brown"

 : Woman

 : URI
{ literal = "http://..." }

 : URI
{ literal = "http://..." }

mother

ref

ref

Figure 5: An example message

References

[1] S. Cranefield. Networked knowledge representation and exchange using UML and RDF. Journal of
Digital Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/Articles/v01/i08/Cranefield/.

[2] S. Cranefield. UML and the Semantic Web. In Proceedings of the International Semantic Web Working
Symposium (SWWS), 2001. http://www.semanticweb.org/SWWS/program/full/paper1.pdf.

[3] M. Grand. Patterns in Java, volume 1. Wiley, 1998.

5

[4] B. Russell. On denoting. In R. C. Marsh, editor, Logic and Knowledge: Essays, 1901-1950. Allen and
Unwin, 1956. Also at http://www.santafe.edu/˜shalizi/Russell/denoting/.

[5] M. Jeckle. Practical usage of W3C’s XML-Schema and a process for generating schema structures
from UML models. In Proceedings of the International Conference on Advances in Infrastructure for
E-Business, Science, and Education on the Internet (SSGRR 2001), 2001.

[6] S. Cranefield and M. Purvis. Generating ontology-specific content languages. In Proceedings of the
Workshop on Ontologies in Agent Systems, 5th International Conference on Autonomous Agents, 2001.
http://CEUR-WS.org/Vol-52/oas01-cranefield-2.pdf.

6

