
Towards a minimal hosting specification for open agent
systems : the lessons of IP

Cefn Hoile
Intelligent Systems Lab
BTexact Technologies

Ipswich, UK

cefn.hoile@bt.com

Erwin Bonsma
Intelligent Systems Lab
BTexact Technologies

Ipswich, UK

erwin.bonsma@bt.com

ABSTRACT
In this paper we observe that the strategies adopted by many
standards projects may unnecessarily restrict the range of
agent control, addressing and communication strategies which
can be hosted, and hence limit the adoption of conformant
hosting platforms. We argue that a minimal hosting plat-
form is required to achieve convergence to common stan-
dards. Using the example of Internet Protocol - a minimal
communication standard addressing issues common to all
supervening protocols - we hope to stimulate discussion of
a minimal hosting speci�cation, which could address issues
common to the hosting of all supervening agent strategies.
We draw the reader's attention to issues of resource con-
tention and other conicts of interest which are expected to
arise in open, heterogeneous, agent systems. An analogy is
drawn between the resource contention strategies adopted to
manage IP route conicts and the those required to manage
hosting resource conicts.
We have attempted to address some of these issues in

the core design of a lightweight platform for mobile process
control and process intercommunication known as the DIET
platform [6][3][9]. Some of the strategies adopted within the
DIET core are presented for discussion.

1. INTRODUCTION
Networks of users and devices are an archetypal case of

Brian Arthur's "increasing returns" [7]. In the last few years,
many examples of networks have arisen in which the value of
the system to each participant is a function of the degree of
participation by others: fax machines, videotape standards,
and the internet. More recently, examples have emerged in
the peer to peer application space [11]. Such cases have led
to conjectures detailing the relationship between adoption
and network value, such as Metcalfe's law, "the total value of
a network is equal to the square of the number of subscribers,
while the value to a subscriber is equal to the number of
subscribers". As Bell [1] points out "The law describes why

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

it is essential that everyone have access to a single network
instead of being subscribers on isolated networks."
Agent systems are no di�erent. The value of an agent

system to an developer or user consists in the resources and
services available in the system as a whole. A signi�cant
proportion of these resources are contributions from other
users and developers: content and data, channels for real-
time or asynchronous interaction with the user themselves,
and channels for interaction with other agents.
In the �rst section of this paper we argue that the drive for

standardisation of agent toolkits within the research com-
munity may not achieve the appropriate kind of openness;
By overspecifying for selected agent problem domains and
building in expectations regarding the scale of agent sys-
tems, communication structures and protocols, alternative
agent approaches could become excluded. The wide applica-
bility of Internet Protocol as a scalable underlying network-
ing standard for a huge variety of application-speci�c pro-
tocols is discussed. In particular, the minimal speci�cation
of IP, and the role of IP as a means of resolving contention
over shared network resources is discussed.
In the second section, the architectural implications of

this change in paradigm are noted; Adopting an open and
heterogeneous approach - in which entirely di�erent types
of agent share common resources - raises issues of resource
contention and other conicts of interest which cannot be
resolved through explicit negotiation. Similar strategies to
those adopted in IP networking are considered for the man-
agement of resources in a shared agent hosting platform.
In the third section we briey describe the speci�c coun-

termeasures which we have adopted in the development of
the DIET core - BTexact's minimal agent hosting platform
- as a basis for further discussion.

2. A COMMON HOSTING SPECIFICATION

2.1 Agents as the coordinators of networked
resources

There is a very good �t between the complex manage-
ment tasks involved in exploiting networked resources and
the strengths of agent systems. Computational resources
and services can be shared within user groups for mutual
bene�t. Where agents take responsibility for coordinating
resource access, the human user can be isolated from the
complexity of negotiation. It is possible to envisage more
and more complex interchanges taking place between many
di�erent resources and services in pursuit of users' objec-

real-audio-video

http
ftp

ftp

http

pop

smtp

telnet
rpc

Figure 1: Proliferation of IP-based protocols

through pairwise interactions

tives. Agent systems could be a key technology for the ex-
ploitation of the network. Agent interoperability, through
the determination of shared standards is vital in this con-
text, and represents a core objective for many high pro�le
projects in agent research [4][12].
In the ideal scenario all resources are shared within a

single system. However, where multiple incompatible stan-
dards exist, the global set of resources becomes subdivided
into isolated subsets, and each competing system has fewer
resources on o�er than are available in the network at large.
This has certainly taken place with the explosion in the va-
riety of Peer to Peer �le sharing systems [11], and could be
said to have also taken place in the domain of agent sys-
tems, with a survey of the web in January 2001 revealing 71
distinct agent toolkits [8].

2.2 Ubiquitous standards
The success of the internet is built upon the huge range of

interactions which can take place when arbitrary machines in
the network can pass arbitrary data between each other. Ap-
plication developers only need to determine the way in which
machines participating in the application interact. Often,
complex services are delivered through multiple machines
which do not all share a common interaction protocol, such
as the provision of web based e-mail, in which SMTP and
POP interactions are coordinated through HTTP.
To compose such services, the basic requirement is that

pairs of machines can exchange data with each other. Stan-
dards of interaction are important. However, supervening
protocols can be designed on an ad hoc basis as they are
needed by individual developers.
Where these supervening protocols are published, rati�ed,

or simply dominate through wide adoption, other develop-
ers' programs are able to bene�t from the new interactions
available, simply by writing code conforming to the protocol.
Over time, de facto standards may emerge, but this does not
have to be achieved before interoperation can commence. It
is through interoperation that these standards arise. Cru-
cially, the developers of networked software can assume the
existence of underlying layers which manage network traÆc.
If a single agent platform is to achieve dominance as a de

facto standard, it must be exible enough to support a wide
variety of agent implementation strategies, allowing vari-
ous competing developers, companies, agent based toolkits,
and standards organisations to converge on a single common
hosting platform. In addition to this exibility, it needs to
be scalable in order to permit very large numbers of agents
to interact across inde�nitely many hosts.

IP

TCP/IP

HTTPFTP

UDP
Streaming

Media
Ad hoc data
interchange

Figure 2: IP as minimal common denominator for

supervening protocols

This common hosting platform, o�ering minimal services,
could be extended as necessary, for example to support spe-
ci�c agent control and coordination strategies, communica-
tion languages, naming and directory schemes. Convergence
by all developers to a speci�c set of agent control strategies,
agent communication conventions, interaction protocols and
host services may follow. However, as in the case of inter-
networking, this is not a necessary precursor for large scale
interoperability to arise. Perhaps no single set of standards
can be asserted in these areas for all possible agent-based
strategies. However, where a common hosting platform is
available, supporting the minimal subset of all agents host-
ing requirements, pairwise interactions may be formed on
an ad hoc basis between agents.
Since, in this scenario, the host's computational resources

may be the only thing which all di�erent forms of agents
share, managing contention for these resources is a key as-
pect for a minimal hosting speci�cation to address.

3. THE LESSONS OF IP
Internet Protocol, or IP, o�ers a good example of the the

way in which interoperability can be catalysed by a minimal
set of standards. Application-speci�c protocols for the inter-
net are predicated upon the ability for machines to address
each other and pass data. Many interaction protocols can
share this underlying transport system, yet have message
based interactions adapted for a speci�c problem domain.
Importantly, IP makes no commitments to the speci�c

interactions which take place in supervening protocols. It is
rather focused on solving the problem of coordinating shared
resources - the common network infrastructure - in a scalable
way. As such it remains the common denominator for the
vast majority of machine interactions.

3.1 Lesson 1 : Less is more
The ubiquity of IP, despite its minimal speci�cation, sug-

gests that detailed examination should be made of the min-
imal common foundation required for the hosting of inter-
acting agents of arbitrary kinds.
Although all hosted agents may not share a common set of

interaction protocols, sharing an execution platform and ad-
dressing layer enables pairwise interactions between agents
on an ad hoc basis, and the formation of clusters of coopera-
tive units, as found in the interactions between machines on

the internet. In the case of mobile agents, co-locating inter-
acting agents can also lead to reductions in communication
latency and increases in eÆciency.
In contrast to many existing models of standardisation

[4][12][2] which focus to a great extent on common seman-
tics, we propose a minimal common base set of hosting func-
tions allowing agents of multiple di�erent kinds, including
mobile agents, to occupy and interact in shared environ-
ments. By contrast with Wooldridge and Jennings [13] we
believe it is possible to construct a generic agent platform.
They are correct to observe that initial platform develop-
ment e�orts are often focused on problem-speci�c design and
advise \Only attempt to apply the architecture to problems
with similar characteristics". However we hope to estab-
lish minimal agent hosting requirements, avoiding commit-
ment to problem-speci�c architectural features or semantic
schemes, and thus address problems which are characteristic
of all agent systems.

3.2 Lesson 2 : Address resource contention
without explicit coordination

One common issue which must be addressed in a scalable,
open agent system is similar to the issue addressed by IP -
the problem of resource contention.
In a IP packet routed network, it is hard to imagine how

all the individuals using a speci�c route could coordinate
their usage by explicit negotiation. A single route could
be used to connect a very large number of possible pairs of
machines, making the communication overhead of explicit
coordination very large. Perversely, this is a 'Catch 22' [5]
situation : for coordination, stable communication routes
are required. The solution adopted in IP networks is a fail
fast regime, in which �nite bu�ers are associated with each
contended resource. Demands made beyond this point are
simply rejected. Feedback notifying failure may be returned
to each node in an IP route. Compliant nodes respond to
this by reducing their traÆc, and potentially selecting a dif-
ferent route to deliver packets to their destination.
In agent systems, similar issues must be faced. Contended

resources in agent host environments include: memory, net-
work bandwidth, threads, read/write locks on shared data
structures, and the attention of other hosted agents. The
problem is that the initiator of a request cannot negotiate
to minimise contention on all of the resources which are ded-
icated to the completion of that request. This too is a 'Catch
22' : explicit negotiation requires host resources.
The problems of the management of host resources de-

scribed above shows strong similarities to those solved by
IP. However, despite the analogy with IP and network com-
munication it should be stressed that resource contention
is not restricted to mobile agent systems or agent systems
incorporating networked communication.
As the agent pattern is used more widely, we may expect

more aspects of of our computing environment to be deliv-
ered in this way. A large number of agents could be hosted at
one time, with the majority in an inactive state. In this situ-
ation, the allocation of threads to all hosted agents simulta-
neously may lead to host overload. A shared service provider
targeted by more messages than it can handle may lead to
large delays in the completion of its clients' tasks. With de-
mand originating from a large number of hosted agents, (or
potentially from anywhere in a very large network), peaks
of activity must be handled gracefully at all levels. The dy-

namics of an agent system may even encourage peaks, as
the demands made by one agent may trigger the activation
of several others. Without appropriate constraints, free ac-
cess to host resources could lead to unintended crashes or
denial of service through unexpected interactions between
co-hosted agent communities.
Examples of this form of resource overload in agent sys-

tems are rare at present, owing to the small populations of
agents which share resources in experimental scenarios, to
the scaling of available resources to the demands of the ex-
periment which is being executed, or to the close coupling of
all individuals in a single community, allowing implicit co-
ordination. However, in open agent systems without these
constraints, the lessons of IP suggest that �nite limits and
fail fast behaviour with feedback may be needed to control
the behaviour of a large, diverse population of agents.

3.3 Lesson 3 : The ends are the means
Internet Protocol is often encountered as a component

of TCP/IP. TCP or Transmission Control Protocol enables
applications to use the IP network without being aware of
the fact that IP packets arrive at variable rates, through
various routes, and can arrive out of order or fail to arrive
at all. TCP/IP hides the complexity of managing asyn-
chronous packet deliveries and packet loss from the software
which uses it. Conformant implementations adopt backo�
strategies, responding to packet loss by reducing the number
of packets sent. Consequently, the reliability of connections
is guaranteed not by the behaviour of the shared resource
- the network - but through a higher level behaviour which
adapts to the strict limitations on that resource.
TCP/IP is not the only strategy to manage failure in the

network. The appropriate strategy depends upon the ap-
plication. In some cases, the resending of lost packets is
unnecessary, for example where delays arising from network
latency, or redundancy in the encoding of informations into
packets, make packet redelivery inappropriate. This sug-
gests that it is more appropriate for demand on host re-
sources to be managed end to end , by the participants in
transactions, rather than the host platform itself.
It is part of the agent paradigm that subtasks are dele-

gated to autonomously executing individuals. Commonly,
the initiator only receives feedback from the agent handling
the request. The initiator of a request may not even share
common communication protocols with the agents which de-
liver its intermediate objectives. The existence of resource
bottlenecks must responded to by the initiator at each point
in the chain of agent interactions which composes a ser-
vice. Responses to failure could include; resending messages,
rescheduling routine tasks to a time when activity is lower,
relocation to less loaded environments or the identi�cation
of more responsive service providers.

4. DIET CONTENTION STRATEGIES
Example scenarios illustrating the features of an inde�-

nitely scalable peer to peer system for process intercommu-
nication - the core of the DIET, (Decentralised Information
Ecosystem Technologies[6][3][9]), platform - incorporating
resource contention strategies analogous to those in IP, are
presented in Table 2 as a starting point for discussion of a
minimal hosting speci�cation. More implementation details
are available in [6].
The strategy adopted in DIET could be compared in some

Table 1: Internet Protocol and Hosting Platforms compared

IP (Internet Protocol) HP (Hosting Platform))
Contended route bandwidth hosting resources
Participants machines processes
Application delivery software behaviours agent behaviours
Supervening protocols TCP/IP HTTP FTP UDP FIPA-ACL KQML KIF
Result software control agent coordination

Table 2: DIET Scenarios: Contended resources and strategies adopted

Contended Resource(s) Scenario Threat to Host Contention Measure
Processor capacity, Stack memory new agents are

spawned or idle
agents reactivated

environment failure �nite population and limited thread
pool - feedback for event failure

Processor capacity, Stack memory many agents are
idle waiting on a
thread

memory overload and envi-
ronment failure

permit thread surrender and reallo-
cation for event handling

Processor capacity, Stack memory,
Sockets and Ports

agents overload
environment
through migra-
tion

loss of responsiveness, en-
vironment failure

�nite population, socket pool and
thread pool - no feedback for migra-
tion failure

Agent Service Providers, Heap
Memory

too many trans-
actions or trans-
action states are
maintained in
parallel

client delay, environment
failure

number of open communication
channels per agent �nite - feedback
for channel failure

Agent lookup tables query operations
require list syn-
chronisation

delays of lookup and regis-
tration

restrict queries to lookup by direct
match (clock cycles for hash lookup
independent of population size). Do
not support wildcard lookups or
copy exhaustive list of hosted agents

respects to that of the OPAL project [10] which describes
a micro-agent kernel from which more complex services can
be composed. However, in addition, the DIET core is specif-
ically designed to address key technical obstacles in the
deployment of very large populations of agents across an
internet-scale host network, focusing on scalability, eÆciency,
decentralisation and robustness.
The DIET core is highly scalable. The CPU load to de-

liver its core services is not systematically dependent on the
number of processes hosted, or the number of hosts in the
network. It is highly eÆcient, the memory footprint of a
JVM running the DIET core occupies signi�cantly less than
1Megabyte. DIET applications have scaled to more than
500,000 addressable processes on a modest desktop PC. It is
fully decentralised, maintaining the separation of each host's
addressing tables whilst connecting hosts via peer to peer
links.
DIET has deliberately omitted several agent services or

features in the core, owing to problem-speci�c semantics,
or to scalability or resource contention concerns. These in-
clude; predetermined ACLs or parsers; yellow pages services;
the forwarding of yellow and white pages requests to remote
hosts; the forwarding or storing of messages for agents not
currently hosted; the guaranteed startup of agents; the guar-
anteed availability of hosted agents; the guaranteed delivery
of messages within or between hosts.
In many cases, we have implemented add-on services on

top of the minimal DIET core which do commit to problem
speci�c semantics or particular failure handling strategies
but deliver these services in turn through the execution of
resource-constrained agents. These 'parasitic' hosting ser-
vices may be considered the equivalents of the higher level
protocols which supervene on IP, each satisfying di�erent
functional criteria. In this way, a variety of services with
di�erent behaviours, performance and load characteristics
can be made available through a common platform, leaving
agent developers free to choose the most appropriate imple-
mentation, or to develop their own. However, all levels of
service provision can bene�t from the resource management
and scalability inherent in the DIET core.

5. CONCLUSION
We have presented analogies between the functional re-

quirements of Internet Protocol, and the functional require-
ments of a minimal agent hosting platform. We claim that
the bene�ts to developers of a shared hosting platform are
also clear from this analogy, permitting interactions between
heterogeneous agents on an ad hoc basis.
A short list of the features found in DIET has been put

forward for discussion. The DIET core has been designed
from the outset not only to o�er a scalable and lightweight
platform for process migration, management and intercom-
munication, but also to address issues of resource contention
inherent in heterogeneous multi-agent systems.
In common with IP, its implementation is characterised by

�nite limits, fail-fast behaviour and feedback. This feedback
provides a basis for the initiator of a transaction to moderate
the demand on host resources according to a diverse range of
failure handling strategies, in a similar way to the diversity
of IP based ow control approaches.
Building upon minimal foundations as a common stan-

dard could permit a broader variety of agent strategies to
coexist in a common hosting environment, allowing both the

functions of the hosting environment and the degree of in-
teroperation between di�erent agents to increase gracefully
according to the needs of participating developers.
A common hosting environment could o�er a basis for

the emergence of de facto standards in inter-agent messag-
ing, communication languages, directory listing, and other
hosting services for speci�c problem domains. With mini-
mal hosting, these standards can diversify yet interoperate
within a common, scalable infrastructure.

6. REFERENCES
[1] G. Bell and J. N. Gray. The revolution yet to happen,

volume Beyond Calculation. Springer Verlag, 1997.

[2] Fabio Bellifemine, Agostino Poggi, and Giovanni
Rimassa. Jade a �pa-compliant agent framework. In
Proc. of the 4th International Conference and
Exhibition on The Practical Application of Intelligent
Agents and Multi-Agents, London, 1999.

[3] Erwin Bonsma and Cefn Hoile. A distributed
implementation of the swan peer to peer lookup
system using mobile agents. In AAMAS Proceedings of
Agents and Peer to Peer workshop, 2002.

[4] T. Finin, R. Fritzson, D. McKay, and R. McEntire.
KQML as an Agent Communication Language. In
Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM'94),
pages 456{463, Gaithersburg, Maryland, 1994. ACM
Press.

[5] Joseph Heller. Catch 22. Simon and Schuster, 1999.

[6] Cefn Hoile, Fang Wang, Erwin Bonsma, and Paul
Marrow. Core speci�cation and experiments in diet: A
decentralised ecosystem-inspired mobile agent system.
In AAMAS Conference Proceedings, 2002.

[7] Kevin Kelly. New Rules for the Network Economy : 10
Ways the Network Economy is Changing Everything.
Barnes and Noble, 1999.

[8] Paul Marrow. Survey of agent toolkits, 2001. Available
to ECOMAS forum members after free registration.

[9] Paul Marrow, Cefn Hoile, Fang Wang, and Erwin
Bonsma. Evolving preferences among emergent groups
of agents. In AISB Proceedings of Adaptive Agents and
Multi-Agent Systems Workshop, 2002.

[10] Mariusz Nowostawski, Geo� Bush, Martin Purvis, and
Stephen Crane�eld. A multi-level approach and
infrastructure for agent-oriented software
development. In Proceedings of the 2nd Workshop on
Infrastructure for Agents, MAS and Scalable MAS at
the 5th International Conference on Autonomous
Agents, Montreal, 2001.

[11] A. Oram, editor. Peer-to-peer : Harnessing the Power
of Disruptive Technologies. Sebastopol, CA, 2001.

[12] S. Poslad, P. Buckle, and R.G. Hadingham. The
�pa-os agent platform: Open source for open
standards. In Proceedings of PAAM , Manchester,
UK, 355-368, 2000.

[13] Michael Wooldridge and Nicholas R. Jennings. Pitfalls
of agent-oriented development. In Katia P. Sycara and
Michael Wooldridge, editors, Proceedings of the 2nd
International Conference on Autonomous Agents
(Agents'98), pages 385{391, New York, 9{13, 1998.
ACM Press.

