Ontologies for Interaction Protocols

Stephen Cranefield, Martin Purvis,
Mariusz Nowostawski and Peter Hwang
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

ABSTRACT

In this paper we propose reducing the degree of human interpre-
tation currently necessary to understand an interaction protocol by
describing at an abstract level the required agent actions that must
be ‘plugged into’ the protocol for it to be executed. In particular,
this can be done by designing and publishing ontologies describing
the input and output data that are processed during the protocol’s
execution together with the actions and decisions that the agents
must perform. An agent (or agent developer) that has previously
defined mappings between the internal agent code and the actions
and decisions in an ontology would then be able to interpret any
interaction protocol that is defined with reference to that ontology.
The discussion is based on the use of Coloured Petri Nets to repre-
sent interaction protocols and the Unified Modeling Language for
ontology modelling.

1. INTRODUCTION

Agent communication languages (ACLs) such as the Knowledge
Query and Manipulation Language (KQML) [7] and the Founda-
tion for Intelligent Physical Agents (FIPA) ACL [8] are based on
the concept of agents interacting with each other by exchanging
messages that specify the desired ‘performative’ (inform, request,
etc.) and a declarative representation of the content of the mes-
sage. Societies of agents cooperate to collectively perform tasks
by entering into conversations—sequences of messages that may
be as simple as request/response pairs or may represent complex
negotiations. In order to allow agents to enter into these conversa-
tions without having prior knowledge of the implementation details
of other agents, the concept of interaction protocols (also known
as conversation policies) has emerged [11]. Interaction protocols
are descriptions of standard patterns of interaction between two or
more agents. They constrain the possible sequences of messages
that can be sent amongst a set of agents to form a conversation of a
particular type. An agent initiating a conversation with others can
indicate the interaction protocol it wishes to follow, and the recip-
ient (if it knows the protocol) then knows how the conversation is
expected to progress. A number of interaction protocols have been
defined, in particular as part of the FIPA standardisation process

[a].

The specification of the individual messages comprising an inter-
action protocol is necessarily very loose: usually only the message
performative, sender and receiver are described. This is because
an interaction protocol is a generic description of a pattern of in-
teraction. The actual contents of messages will vary from one ex-
ecution of the protocol to the next. Furthermore, the local actions
performed and the decisions made by agents, although they may

be related to the future execution of the protocol, are traditionally
either not represented explicitly (e.g. in an Agent UML sequence
diagram representation [17]) or are represented purely as labelled
‘black boxes’ (e.g. in a Petri net representation [4]).

In this paper we argue that the traditional models of interaction pro-
tocols are suitable only as specifications to guide human developers
in their implementation of multi-agent systems, and even then often
contain a high degree of ambiguity in their intended interpretation.
Here we are not referring to the necessity for an interaction proto-
col to have formal semantics (although that is an important issue).
Rather, we see a need for techniques that allow the designers of
interaction protocols to indicate their intentions unambiguously so
that a) other humans can interpret the protocols without confusion,
and b) software agents can interpret protocols for the purposes of
generating conversations. Ideally, an agent would be able to down-
load an interaction protocol previously unknown to it, work out
where and how to plug in to the protocol its own code for message
processing and for domain-specific decision making, and begin us-
ing that protocol to interact with other agents.

We propose reducing the degree of human interpretation currently
necessary to understand an interaction protocol by describing at an
abstract level the required agent actions that must be ‘plugged into’
the protocol for it to be executed. In particular, this can be done by
designing and publishing ontologies describing the input and out-
put data that are processed during the protocol’s execution together
with the actions and decisions that the agents must perform. An
agent (or agent developer) that has previously defined mappings
between the internal agent code and the actions and decisions in an
ontology would then be able to interpret any interaction protocol
that is defined with reference to that ontology.

For example, consider a protocol describing some style of auction.
Inherent in this protocol are the concepts of a bid and response and
the actions of evaluating a bid (with several possible outcomes).
There are also some generic operations related to any interaction
protocol such as the parsing of a message to check that it has a
particular performative and that its content can be understood by
the agent in the current conversational context, and the creation of
a message.

2. EXAMPLE: THE FIPA REQUEST PRO-
TOCOL

Figure 1 shows the FIPA Request Protocol as defined in its current
experimental-status specification [10] using Agent UML (AUML)
[17]. This protocol defines a simple interaction between two agents.

' Initiator, Participant, i
i request, refuse*, not- '
i understood*, agree, failure*, !
; inform-done : inform#, !
' inform-ref : inform* i

Participant

/FIPA—Request—Protocol

request

not-understood

refuse

agree

S e e

failure

inform-done
>_

inform-ref

Figure 1. The FIPA Request Protocol defined using AUML

One agent plays the Initiator role and sends a request for an action
to be performed to another agent which plays the Participant role.
The protocol illustrates that there are three alternative responses
that the participant can make after receiving the request: it can
refuse or agree to the request or it may signal that it did not un-
derstand the request message. If it agreed, it subsequently sends
a second response: a message indicating that its attempt to fulfil
the request action failed, a message signalling that the action has
been performed, or a message containing the result of performing
the requested action.

There are some aspects of this protocol that are not specified. The
choice of whether the final response should be the message la-
belled inform-done or the one labelled inform-ref depends on
the body of the original request (the latter choice only seems to be
valid if the initiator requested an inform-ref to be performed).
It is also not specified that each of the not-understood, agree
and refuse messages should contain the original request in their
content tuple along with an additional proposition (representing re-
spectively an error message, a precondition for the action to be per-
formed, and a reason for refusal). To make the specification more
precise there needs to be a way of annotating the protocol with
constraints on the contents of and relationships between the mes-
sages. These constraints would need to be expressed in terms of a
vocabulary relating to the structure of messages—i.e. an ontology
for messages.

Receive
request
result

Receive request
answer

Agreed Agreed

Request processed)
Start sent
Process
Refused precondition Result
reseunedst Not Failed Done
q understood D

D Process
out Process result
Process not understood

refusal

Process
failure Process
done

Figure 2: Thelnitiator rolefor the Request protocol asa CPN
(outline only)

Furthermore, the underlying intention of this protocol is not explic-
itly specified. In order to customise this protocol to a particular do-
main, a request initiator agent must ‘plug in’ domain-specific pro-
cedures at six different points: the handling of not-understood,
refuse and failure messages, analysing an agree message to
check if a precondition is specified by the participant, and the han-
dling of the two different types of final response. Similarly, there
are (in one possible decomposition) three pieces of domain-specific
functionality that an agent wishing to play the role of participant
must supply: the recognition of the type of the request (correspond-
ing to the two types of response and possibly resulting in a failure
to understand the message) and procedures for performing the two
different types of action that may be requested. We believe that an
interaction protocol is not completely specified until the interface
between the domain-specific agent-supplied code and the generic
interaction protocol is defined. Clearly interaction protocols should
remain as generic as possible, making no commitment to any par-
ticular agent platform or implementation language. Thus the spec-
ification of this interface should be in terms of a programming-
language independent representation. Furthermore, the agent op-
erations related to a particular protocol will be related to the types
of entity involved in the execution of that protocol, e.g. the notion
of a bid in a “call for proposals’ protocol. This model of protocol-
related concepts and the operations that act on them is an ontology
that needs to be supplied along with the interaction protocol to give
it a full specification.

3. A COLOURED PETRI NET APPROACH

The above discussion was based on an analysis of an interaction
protocol expressed as an AUML sequence diagram. However, this
form of diagram currently has some shortcomings for further in-
vestigation of these ideas. First, AUML is currently underspecified
and the intended interpretation of an AUML sequence diagram is
not always clear. Second, the authors know of no tools that support
the use of AUML. Finally, AUML sequence diagrams do not have a
way of explicitly modelling the internal actions of agents'—which
are exactly the points of the protocol at which we wish to attach an-
notations refering to an ontology. We have therefore adopted an al-
ternative modelling language for our research in this area: coloured
Petri nets.

LAUML activity diagrams have this capability and can be used on
their own or in conjunction with sequence diagrams to specify the
internal agent processing [17]. However there are few examples of
their use for modelling agent interaction protocols.

| Guard:
| reply.inReplyTo->notEmpty () and |
| reply.inReplyTo = req.replyWith

Receive
request
~._answer

In : FIPAMessage

reqg

Request sent :

FIPAMessage Agreed :
Pair<FIPARequestMessage,
Precondition >
Refused : Not understood :
Pair<FIPARequestMessage, Pair<FIPARequestMessage,
Reason > Reason >

if reply.oclIsKindOf (FIPARefuseMessage)
then Bag{Pair.create(
req, Reason.createFromProposition (

reply.oclAsType (FIPARefuseMessage) .reason)) }
else Bag{} 5
endif

if reply.oclIsKindOf (FIPANotUnderstoodMessage)
then Bag{Pair.create(
req, Reason.createFromProposition (
reply.oclAsType (FIPANotUnderstoodMessage) .reason)) }
else Bag{}
endif

iif reply.oclIsKindOf (FIPAAgreeMessage)

| then Bag{Pair.create(

3 req, Precondition.createFromProposition (

| reply.oclAsType (FIPAAgreeMessage) .precondition)) }
lelse Bag{}
iendif

Figure 3: Details of the ‘Receiverequest answer’ transition

FIPAMessage

replyWith : String [0..1]
1 inReplyTo : String [0..1]

T

Fl PARefuseMessage|

|FIPANotUnderstoodMessage|

|FIPAAgreeMessage|

0.1 0.1

roposition
precondition

Reason

Precondition

«create» createFromProposition(p : Proposition)

«create» createFromProposition(p : Proposition)

Figure 4: A partial ontology for the Request interaction protocol

Petri Nets [14] are a formalism and associated graphical notation
for modelling dynamic systems. The state of the system is repre-
sented by places (denoted by hollow circles) that can contain tokens
(denoted by symbols inside the places). The possible ways that the
system can evolve are modelled by defining transitions that have
input and output arcs (denoted by arrows) connected to places. The
system dynamics can be enacted (non-deterministically) by deter-
mining which transitions are enabled by the presence of tokens in
the input places, selecting one and firing it, which results in tokens
being removed from its input places and new tokens being gener-
ated and placed in the output places.

Coloured Petri nets (CPNs) [12] are an elaboration of ordinary
Petri nets. In a coloured Petri net, each place is associated with
a ‘colour’, which is a type (although the theory of CPNs is inde-
pendent of the actual choice of type system). Places can contain a
multiset of tokens of their declared type. Each input arc to a transi-
tion is annotated with an expression (possibly containing variables)
that represents a multiset of tokens. For a transition to be enabled,
it must be possible to match the expression on each input arc to a
sub-multiset of the tokens in the associated input place. This may
involve binding variables. In addition, a Boolean expression asso-
ciated with the transition (its guard) must evaluate to true, taking
into account the variable bindings. When a transition is fired, the
matching tokens are removed from the input places and multiset
expressions annotating the output arcs are evaluated to generate the
new tokens to be placed in the output places. If the expression on
an output arc evaluates to the empty multiset then no tokens are
placed in the connected place.

The coloured Petri net formalism provides a powerful technique for
defining system dynamics and has previously been proposed for use
in modelling interaction protocols [4]. In this paper we take a dif-
ferent approach from previous work (including our own [16, 15,
18]) in the application of CPNs to interaction protocol modelling.
We choose to model each side of the conversation (a role) using a

separate CPN. Figure 2 shows an overview of the net for the Ini-
tiator role of the FIPA Request protocol (the ‘colours’ of places,
the arc inscriptions and the initial distribution of tokens are not
shown). In the figure, places are represented by circles and transi-
tions are represented by squares. No tokens are shown. The places
labelled In and Out are fusion places: they are shared between all
nets for the roles the agent can play (in any interaction protocol).
The agent’s messaging system places tokens representing received
messages in the In place and removes tokens from the Out place
(these represent outgoing messages) and sends the corresponding
messages.

The fully detailed version of this Petri net encodes the following
process. The Initiator begins the conversation by sending a request
with its reply-with parameter set to a particular value. When an
answer with a matching in-reply-to parameter value is received,
the Receive request answer transition is enabled and can subse-
quently fire at the agent’s discretion. This transition generates a
single token that is placed in one of the Agreed, Refused or Not
understood places, depending on the communicative act of the re-
ply (the remaining two of these output places each receive an empty
multiset of tokens). In the case that the other agent agreed to the
request, another message is subsequently expected from that agent
containing the result of the requested action. This is handled by the
right hand side of the net in a similar fashion.

In this Petri net we have included transitions that correspond to in-
ternal actions of the agent, such as those labelled Process refusal
and Process not understood. These are not part of the protocol
when it is viewed in the pure sense of simply being a definition of
the possible sequences of messages that can be exchanged. How-
ever, we believe these communicate the underlying intent of the
protocol: there are a number of points at which the agent must in-
voke particular types of computation to internalise and/or react to
the different states that can occur. In the example shown, most
of these ‘extra’ transitions occur after the final states of the pro-

tocol. However, this is not necessarily the case, e.g. the Process
precondition transition gives the agent a chance to reason about
the precondition that may be specified by the other agent when it
agrees to the request. This precondition must become true before
the other agent will fulfil the request (in the simple case it can just
be the expression true). Although the Request protocol does not
allow for any extra communication between the two agents regard-
ing this precondition, an agent might wish to do something out-
side the scope of the conversation to help satisfy the precondition
(e.g. perform an action). Therefore, the initiator needs an opportu-
nity to notice the precondition.

Figure 3 shows the details of the Receive request answer tran-
sition. This is where we make the connection with ontologies: the
types used as place colours and within arc expressions are concepts
in an associated ontology (a portion of which is shown in Figure 4).
We use the object-oriented Unified Modeling Language (UML) [3]
to represent the ontology and UML’s associated Object Constraint
Language (OCL) [19] as our expression language. For brevity, we
adopt the convention that a variable x appearing on an input arc
represents the singleton multiset Bag{x} (Bag is the OCL type cor-
responding to a multiset).

In the case of the Request protocol, the concepts that need to be
defined in the associated ontology are message types. Figure 4
therefore defines an inheritance hierarchy of FIPA ACL message
types? (generalisation relationships are represented by arrows with
triangular heads, while associations are represented by arrows with
open heads). In addition, we have chosen to explicitly model the
concepts of a reason and a precondition that are associated with the
Request protocol. Within a FIPA ACL message these are both rep-
resented as propositions, but here the Reason and Precondition
classes can be used (via their constructors) to achieve an additional
level of interpretation of a proposition. Note that although the on-
tology is shown here as being a monolithic model, in practice some
of the classes shown would be imported from a separate UML pack-
age.

In addition to the classes shown, the ontology is assumed to include
a UML class template called Pair. A class template is a class
that is defined in terms of one or more other classes, which are
specified only as parameter names. When it is used (as in Figure 3)
specific types must be supplied to instantiate the parameters. Pair
represents a pair of elements with the type of each argument being
the corresponding supplied parameter.

The arc expressions in Figure 3 use the operations oc1IsKindOf
and oclAsType. These are predefined OCL operations used for
run-time type checking and type casting respectively.

4. MODELLING INTERNAL AGENT OP-
ERATIONS

In Figure 3, all processing represented by the transition is per-
formed by the guard and the output arc expressions. This is not
always the case. Consider the Process request refusal transition
from Figure 2 (shown in detail in Figure 5). This represents the
computation that an agent must do to react to the participant’s re-
fusal of the request. Although any future actions of the initiator

2A more complex UML model for FIPA messages has been pre-
sented elsewhere [5], but that serves a different purpose. The model
in this paper is not intended as an update of that previous work, but
instead provides a different view of FIPA message types.

Refused : Pair<FIPARequestMessage,
Reason >

e}

Process refusal

Guard: true

Operation: processRefusal(request: FIPARequestMessage,
reason: Reason)

Inputs: { request =p.get (1), reason =p.get(2) }

Outputs: {}

Figure5: Detailsof the ‘processrequest refusal’ transition

«role»
Initiator

createPendingRequest() : FIPARequestMessage

processRefusal(req : FIPARequestMessage, rsn : Reason)
processRequestNotUnderstood(req : FIPARequestMessage, rsn : Reason)
processAgreementPrecondition(req : FIPARequestMessage, pre : Precondition)
processRequestedActionFailure(req : FIPARequestMessage, rsn : Reason)
processRequestDone(req : FIPARequestMessage)
processRequestResult(result : GroundTerm)

Figure6: Specification of thelnitiator rolefor the Request pro-
tocol

agent are outside the scope of the Request protocol, in order for the
protocol model to act as a stand-alone specification (without rely-
ing on implicit assumptions about the meaning of certain places)
it should define the way in which the agent transfers information
from the Petri net to its own internal processes. To support this,
we optionally associate an operation with each transition, specify-
ing the inputs to the operation as OCL expressions and providing a
list of variables to which the outputs should be assigned (note that
UML allows multiple output parameters in an operation). Figure 5
illustrates this for the Process request refusal transition.

The operations required to interface an agent with the CPN for a
given role constitute part of the ontology for the protocol. In this
section we describe two approaches for using UML to model the
operations required for particular roles: a simple “static” approach
and a more flexible but complex “dynamic” approach.

4.1 The Static Approach

Figure 6 illustrates the static approach to including a role’s opera-
tions in a UML ontology. This figure shows a class (annotated with
the «rolex» stereotype) representing the role and containing all re-
quired operations. Although this looks like the specification of an
application programmer interface rather than an ontology, it is not
intended that an agent must implement operations with the same
signatures as shown here. Instead an agent may be able to map
these operations into those it does possess. To do this, the role’s re-
quired operations would need to have some information about their
semantics specified, possibly using OCL pre- and postcondition ex-
pressions. This is a subject for future research.

The representation in Figure 6 does not model the operations re-
quired for a given role as first class objects in UML, but as features
of a class representing the role. Although this is a simple represen-
tation, it has a number of shortcomings. Essentially it treats a role
as an interface that an agent must implement if it wants to act in that
role. We call this the static approach because it doesn’t accommo-
date in a straightforward way the possibility of agents dynamically
changing the roles they support. The UML object model does not

Binding «powertype»
name: String oPType
o: OpType
1 *
1 0.1 «powertype»

RoleType
OpExecutor | Object |

execute(b : Binding) : Binding

before

after

«operation»
Operation

* 1

: RoleType : OpType

«operation»

Initiator

ProcessRefusal
0.1 0.1)
{in} req {in} reason
1
|FIPARequestMessage| | Reason |

Figure7: Specifying operations as fir st-class objects

allow classes (or agent types in this scenario) to change their set
of implemented interfaces at run time. Also, the notation does not
show graphically the relationships between the operations and the
ontological concepts on which they are dependent.

4.2 The Dynamic Approach

Figure 7 shows an alternative approach that addresses the concerns
raised above. The majority of the figure represents a base ontology
containing classes to which a specific role ontology would make
reference. Only the four classes at the bottom of the figure repre-
sent a specific ontology: a portion of the ontology for the Request
protocol.

Modelling both entities and the operations that act on them as first
class objects is difficult to do in a straightforward way without de-
parting from a “strict metamodelling architecture” where there is
a firm distinction between instances and classes [1]. In this case,
in order to define the types of operation arguments using associa-
tions, each operation must be defined as a class. The abstract class
Operation represents the concept of an operation as being associ-
ated with a role and relating two contexts: the relevant local states
of the world before and after the operation is performed. Particular
operations are modelled as subclasses of Operation with their in-
put and output arguments represented by associations labelled with
the ‘tagged values’ in or out (the stereotype «operation» special-
izes the notion of a class by allowing the use of these tagged val-
ues).

If operations are classes, we need to consider what their instances
are. The answer is that the instances represent snapshots of the
operation’s execution in different contexts and with different argu-
ments, in the same way that a mathematical function can be re-
garded as the set of all the points on its graph. However, the oper-
ation class only serves as a description of the operation: it will not
be instantiated by an agent. Instead we model an agent as contain-

ing a collection of OpExecution objects, each being an instance
of some class that implements an operation. These objects are in-
dexed by role and operation (this is shown using UML’s qualified
association notation). Roles and operations are both modelled as
classes, so the types for these association qualifiers must be ‘pow-
ertypes’ of Operation and Role. A powertype is a class whose
instances are all the subclasses of another class [13, Chapter 23].

To invoke an operation, an agent calls execute on an OpExecutor
object. The arguments to this method must be completely generic,
so a binding structure is provided as an argument. This maps the
operation’s argument names to objects. The operation returns an-
other binding list specifying values for the “result” parameter and
any output parameters.

5. CONCLUSION

In this paper we have identified two weaknesses in traditional mech-
anisms for specifying agent interaction protocols: a lack of preci-
sion in defining the form of messages that are exchanged during the
protocol and the relationships between them, and the lack of any
explicit indication of where and how the protocol interfaces with
an agent’s internal computation. We have proposed the use of an
ontology associated with a protocol to define the relevant concepts
and the internal operations that an agent needs in order to partake
in a conversation using that protocol.

We note that some uses of interaction protocols are not concerned
with the internal actions of agents, e.g. external monitoring of con-
versations for the purpose of compliance testing. For this type of
application it may be beneficial to provide a simpler view of proto-
cols that abstracts away the transitions representing internal actions
and we plan to investigate techniques for this.

The discussion in this paper was based on a particular way of using
coloured Petri nets to model conversations. However, the princi-
ple applies to other approaches to specifying interaction protocols.
In particular, we propose that AUML sequence and/or activity dia-
grams should be extended to include the types of ontology-related
annotation we have discussed.

Two techniques were proposed for modelling the agent internal ac-
tions necessary to use an interaction protocol: a static model and
a dynamic model. We believe the dynamic model, although more
complex, is more flexible and has more scope for adding seman-
tic annotations to define the operations—an extension necessary to
enable agents to deduce how to use their existing operations to im-
plement those required by an interaction protocol.

The type of ontology discussed in this paper combines descriptions
of concepts and operations that act on them in a single model. To
date, there has been little work on the inclusion of actions in ontolo-
gies, although methodologies for agent-oriented software engineer-
ing typically include diagrams describing agent capabilities [2].
In the knowledge acquisition research community there has been
considerable study of techniques for building libraries of reusable
problem-solving methods, and work has been done on combining
such libraries and ontologies in a single system [6]. This research
may provide some insights into the problems of integrating action
descriptions into ontologies.

The aim of the work described in this paper is to reduce the degree
of human interpretation required to understand an interaction proto-
col. The solution proposed here achieves this by including more de-

tailed information about the actions that participating agents must
perform. The use of an associated ontology provides terminology
for describing how the messages received and sent by agents are re-
lated to each other, and also allows signatures to be defined for the
operations that agents must be able to perform to use the protocol
for its intended purpose. These signatures provide a syntactic spec-
ification for the points in the protocol at which the agents must pro-
vide their own decision-making and information-processing code,
and agent developers could use this to bind internal agent code to
these points in the protocol. There is further work to be done to
find ways of defining the meaning of these operations so that this
binding can be performed on a semantic rather than syntactic ba-
sis. This will provide the ability for agents to engage in previously
unknown interaction protocols by interpreting the specifications of
the protocol and its associated ontologies.

6. REFERENCES
[1] C. Atkinson and T. Kiihne. Processes and products in a
multi-level metamodelling architecture. International
Journal of Software Engineering and Knowledge
Engineering, 11(6):761-783, 2001.

[2] F. Bergenti and A. Poggi. Exploiting UML in the design of
multi-agent systems. In A. Omicini, R. Tolksdorf, and
F. Zambonelli, editors, Engineering Societies in the Agents
World, Lecture Notes in Computer Science 1972, pages
106-113. Springer, 2000. (an earlier version is available at
http://lia.deis.unibo.it/confs/ESAWO00/pdf/ESAW13.pdf).

[3] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[4] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using
colored Petri nets for conversation modeling. In F. Dignum
and M. Greaves, editors, Issuesin Agent Communication,
volume 1916 of Lecture Notesin Artificial Intelligence,
pages 178-192. Springer, 2000.

[5] S. Cranefield and M. Purvis. A UML profile and mapping for
the generation of ontology-specific content languages.
Knowledge Engineering Review, Special Issue on Ontologies
in Agent Systems, 2002. To appear.

[6] D. Fensel, M. Crubezy, F. van Harmelen, and M. 1. Horrocks.
OIL & UPML.: A unifying framework for the knowledge
web. In Proceedings of the Workshop on Applications of
Ontologies and Problem-Solving Methods, 14th European
Conference on Artificial Intelligence (ECAI 2000), 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/14.pdf.

[7] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. M. Bradshaw, editor,
Software Agents. MIT Press, 1997. Also available at
http://www.cs.umbc.edu/kgml/papers/kgmlacl.pdf.

[8] Foundation for Intelligent Physical Agents. FIPA ACL
message representation in string specification.
http://www:.fipa.org/specs/fipa00070/, 2000.

[9] Foundation for Intelligent Physical Agents. FIPA interaction
protocol library. http://www.fipa.org/repository/ips.html,
2001.

[10] Foundation for Intelligent Physical Agents. FIPA request
interaction protocol specification, version F.
http://www.fipa.org/specs/fipa00026/, 2001.

[11] M. Greaves, H. Holmback, and J. Bradshaw. What is a
conversation policy? In F. Dignum and M. Greaves, editors,
Issues in Agent Communication, volume 1916 of Lecture
Notesin Artificial Intelligence, pages 118-131. Springer,
2000.

[12] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use, Volume 1: Basic Concepts.
Monographs in Theoretical Computer Science. Springer,
1992.

[13] J. Martin and J. J. Odell. Object-Oriented Methods: A
Foundation. Prentice Hall, Englewood Cliffs, NJ, UML
edition, 1998.

[14] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the |IEEE, 77(4), 1989.

[15] M. Nowostawski, M. Purvis, and S. Cranefield. A layered
approach for modelling agent conversations. In Proceedings
of the 2nd International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS 5th International
Conference on Autonomous Agents, 2001.
http://www.cs.cf.ac.uk/User/O.F.Rana/agents2001/papers/
06_nowostawski_et_al.pdf.

[16] M. Nowostawski, M. Purvis, and S. Cranefield. Modelling
and visualizing agent conversations. In J. P. Mller,
E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents, pages
234-235. ACM Press, 2001.

[17] J.J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing
agent interaction protocols in UML. In P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software
Engineering, volume 1957 of Lecture Notes in Computer
Science, pages 121-140. Springer, 2001. (Draft version at
http://www.auml.org/auml/working/Odell-AOSE2000.pdf).

[18] M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter.
Opal: A multi-level infrastructure for agent-oriented
software development. Discussion Paper 2002/01,
Department of Information Science, University of Otago,
PO Box 56, Dunedin, New Zealand, 2002.
http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2002-01.pdf.gz.

[19] J. B. Warmer and A. G. Kleppe. The Object Constraint
Language: Precise Modeling With UML. Addison-Wesley,
1998.

