&Q

' Tlon and Frf r)J/m/nrr Fion)}

r—_ ——Hq

Characteristics of PASSI

PASSI is a step-by-step requirements-to-code method for
developing multi-agent software that integrates design
models and philosophies from both object-oriented
software engineering and MAS using UML notation

PASSI refers to the most diffused standards: (A)UML,
FIPA, JAVA, RDF, Rational Rose

PASSI is conceived to be supported by PTK, an agent-
oriented CASE tool

e The functionalities of PTK include:

Automatic (total or partial) compilation of some diagrams
Automatic support to the execution of recurrent operations
Check of design consistency

Automatic compilation of reports and design documents
Access to a database of patterns

Generation of code and Reverse Engineering

Ontology design (and its actual Java implementation) has
a central role in the process

Reuse is performed through patterns

PASSI: process and language

PASSI is composed of a complete design
process and a modeling language

e The design process is incremental and
iterative

e The modeling language is an extension of
UML. It will evolve towards the results of
the FIPA AUML standardization process

Patterns of agents

We consider a pattern of agent as composed of its design level
description and the corresponding JAVA code.

Our patterns are multi-platforms: they can be used in both our
supported agent platforms

More in detail each pattern is composed of:
e A structure

= Usually a base agent class and a set of task/behavior
classes.

m Described using UML class diagrams

e A behavior

m Expressed by the agent using its structural elements

m Detailed in UML dynamic diagrams (activity/state chart
diagrams)

e A portion of code

m Lines of code implementing the structure and behavior
described in the previous diagram

Class
Diagram(s)

Activity
Diagram

Design

Representation

XSLT platform
specialization

Meta pattern

pattern

XSL rules

Multi-Platform Representation

Patterns of agents

XSLT
constraints
solver

Java
skeleton

Constraints

Platform-Specific Representation

From design diagrams to the JAVA code

Java agent
complete code

Action pattern

>«

XML

JAVA

»<

Initial Requirements

v

PASSI

(Process for Agent Societies Specification and Implementation)

New Requirements

Deployment
Configuration

Deployment Model

System Requirements Model Agent Implementation Model
Domain Req. . .
Descfiption Multi-Agent Single-Agent
* Structure Structure
Definition — Definition
Agents
Identiflcation l ‘ l T
v -
Behavior Behavior
Roles Tasks Description Description
Identification Specification
Domain Communication
Rol Protocol
Ontology Ontology — e . E— roTose’s
Description Description Description Description
Agent Society Model

Code Model

Code
Completion

A 4

Code
Completion

The System Requirements Model

It describes:
e System requirements
e Agents functionalities

e Roles played by agents in accomplishing
their duties

e Tasks performed by agents in their roles

Initial Requirements

New
* ; Requirements

System Requirements Model

Domain Req.
Desciiption

v

Agents
ldenti!ication

v

Roles Tasks
—>

Identification Specification

Domain Description Phase

Q <<include>>

;Q\/sonarReadef Q
\\\\\\\g izggwyyéf
Environment O sensorFusion

laserReader <<include>>
<:::::::%i <<include>> \\\\:::>
engControl pathPlanningTL

A functional description of the system with
conventional use case diagrams.

8

Agents ldentification Phase

‘ Agent ‘ \\ |
<<Agent>>
SensorReader
@ <<include>> Q
7 <<W .
% sonarReader O sensorFusion
laserReader f
Environment
Communication ‘\ <<commuicate>>
(a series of messages)]
<<Agen <<Agent>>
engController TLPlanner
Q <<communicate>>

engControl

Packages are used in the
previous diagrams to
divide the functionalities
into different agents.

C D

pathPlanningTL

Relationships among
different agents are
characterized by a
“communication”

stereotype 9

PTK support

m The A.ld. diagram is automatically composed
by the tool

m The designer creates new agents and select
their use cases operating in the D.D. diagram

" ‘\\—_—/}—_—_—ﬁ_—ﬁ_
/-f—\\;:-::include}} changehlotify
l\‘\——~——‘“ Open Specificaton. ..
Erwironrent SnnarHeadE Sub Diagrarms v szindude>>
ﬂ Select In Broweser
<<includést

Stereotype Display *

Format 4 /

Identify new Agent
Edit 4l Addto an Agent
Remowe from agent

laserReader

<<include== \l

10

| | | | |
Roles Identification Phase
ReactivePlanner : SensorFusion : RobotPosition : positionServer :
TLPlanner SensorReader engController VsionMamger

/ getActiveGrid |
] |

|
|
<Role> : <agent name> ‘ |
|
_— Message or event
e 5 < iiiiiii
i a | |
i & i | |
|| getPosition \ \
|] |
< e — |
| |
|] |
L | | resetSelfPosition |
| | ‘ >ﬂ
| |
| planning
| |
| |
| |
| |
| |
| |

11

engController T.Sp.:Interacting Agents

Tasks Specification Phas

/ This agent

swimlane

engController

/ VisionLocalizer

e

Interacting

agents
swimlane VisionManager.
Locator
TLPlanner.MyP osition
Initiator

LPlanner.Setting

\ dBehaviour v
<<agent method>>
; setup
(Firstl ocalization addBehaviour

W

MyP ositionResponder

/ SetParameters

P arameters

’QT

\

< OdometryLocalizer

* One diagram for each agent

* A complete description of the agent's behavior in terms of
state/activity machine

* Each activity represents a task (or a method) of the agent

12

PTK support

Tasks are introduced by the designer in the T.Sp.

diagram and they are automatically reported in
the structural diagrams

engCantroller T.5p.:Interacting Agents engController

/ VisionLocahzer

\ dBehaviour t
<=agent method>>

VistonManager Fit in Window crisw e addBehaviour setup
Locator
Select In Browser W
Print Diagram
TLPlanner. MyPo nResponder \ _
Imtiator ehavyour

_ _ Insert Task.

Suahwtﬂrchltect Insert Task of external agent haviour
orma

Edit

.] % 7

13

Ok

Description of the selected agent:

Agente che si occupa della gestione
dei motari (sia per l'invio dei comandi
di rnoto, sia per la lettura dei dati

odometrici e la loro trasfarmazione in W PASS| Add-In: Tasks of the agent
coordinate cartesiane)

Cancel

X

Select an existing task or create a new one

I, -

Ok

Description of the selected task:
W PASS| Add-In

X

Mew task

Insertthe name of the Task:

Cancel

|newTask

Selectthe type of behaviour Repositary
|OneSthElehaviDur ﬂ

“'ou can insert & brief description of the Inzert
Task:

Just an example of JADE task

Cancel

The Agent Society Model

It includes the description of:
e Ontology of the system domain
e Ontology of inter-agents communications
e Services offered by agents

e Agents’ communications (in terms of
ontology, agent interaction protocol and
content language)

e Agent interaction protocols

Domain Communication Roles

Ontology e Ontology —P

Description Description Description

Agent Society Model

Protocols
S —

Description

15

Domain Ontology Description Phase

A predicate

<<predicate>> GenericComponent " Position Point MarkerPosition
IsIntruder 1 +Position _|time : long o x it —
Value : Boolean +infrud ID - int 0.1 1/angle : int y:int h:int
infruder
1/ +Target 1% +Target +markerPos/\ _
. - 1..n
<<action>> <<action>> Marker
Oncept Localize StartTracking -
Actor : String Actor : String Ol G
ResultReceiver : String ResultReceiver : String

<<Act>> Track(Target : GenericComponent)

7 <<Act>> Localize(Target : GenericComponent)

<<action>>
AutolLocalize

An action

<<action>>
LocalizeMe

Actor = Self

<<Act>> Localize(Target : GenericComponent = Self)

<<Act>> Localize(Target : GenericComponent = Self)

- We use concepts, predicates and actions o model the
ontology of the domain

- We can have aggregation, association and
generalization relationships

* From this diagram we automatically obtain an RDF
description of the ontology

16

PTK support

Starting from this diagram, PTK exports the RDF description
of the ontology

W Export Ontologies to RDF Wizard @

Welcome to the Export Ontologies to
RDF Wizard

This “Wizard exports a Domain Ontology
Diagram to RDF. To Continue click Mext.

...

i Mext » Cancel
L i 17

Communication Ontology Description Phase

Communication

<<Agent>> . .
Calibration specifications

&JcalibratioData : CalibratioData[]

<<Communication>>
TrackingToCalibrationRequest

Ontology : GimmeCalibration

+CalibrationServer

__|Language : RDF <<Communication>>
~_ — — — Protocol: FIPARequest TrackingRequest
. o Ontology : StartTracking
TrackingToCalibrationRequest Language : RDF

Protocol : FIPARequest

+Startup - g
<<Agent>> -
Tracking TrackingRe quest Int;igggtzaor
e

&limage : Monolmage

BScalibration : CalibrationData | +Tracking +IntruderDetector Bintruder : GenericComponent

ﬁ'\

| Agents |

A class diagram is used to specify communications
among the agents and the knowledge they need 8

PTK support

s Communications are automatically

created looking at messages
exchanged in scenarios

<<Agent>>
SensorReader

&activeGrid : Grid

<<Communication>>
SensorGrid

Ontology : GetGrid
Language : RDF I
Protocol : FIPARequest

s Knowledge of agents is built
considering the content of their
communications

<<Agent>>

TLPlanner

&2robot : RobotPosition
&robotEng : Eng

EactiveGrid : Grid

Epath : Path

EenvMatrix : EnvironmentMatrix

19

PTK support

Communications are detailed in this form

W PASS|I Add-In: communication setting

This form allow you to set this communication. ||rmageReguest
1- Select a protocol pattern for this 2 - 3electthe ontalogy from the 'Domain
communication Cntology Diagram!'
<<Agent>>
SensorReader
. FIFARequest Givelmage
&activeGrid : Grid q ﬂ | d ﬂ
7 Description of the protocal Description of the antology
<<Communication>>
SensorGrid
KOntology : GetGrid
ElLanguage : RDF —
EProtocol : FIPARequest
<<Agent>>
TLPlanner

&robot : RobotPosition
&robotEng : Eng

BactiveGrid : Grid .
BSpath : Path 4- Select the Initiator task |Hequestlmage ﬂ
BienvMatrix : EnvironmentMatrix

3-Insertthe language |HDF

h - Select the Fadicipant task

Ik Cancel

| Role |\

Agent | \

‘ EMover()

engControlfer

RobotPosition

(from engController)

®OdometryLocalizer()
[SvisionLocalizer()
[®SetParameters()

A

\ |

[ROLE C‘HANGE]

\
| /
\ 4

Listener
(from engController)

®MyPositionResponder()
®FirstLocalization()

MyHpsition

<<Resource>>

RobotPosition

EngP. eters

Communication
name

Roles Description Phase

| Dependency |
|

TLPlanner

SettingPosition
(from TLPlanner)

®FirstLocalization()

[ROLE QHANGE]

ReactivePlanner
(from TLPlanner)

I®sLListener()

My GridInitiator()
®MyPositionlnitiator()
1 —_|B®Planner()
[¥settingParameters()
¥ TLDeadlockInform()

\
SensorGrid <<S\eévice>>
ActivéGrid

/

SensorReader /

SensorFusion
(from SensorReader)

®ResponderGrid()

All roles from the R.Id. Diagrams are here detailed
together with communications exchanged

PTK support

A great part of this diagram is automatically built
looking at roles identified in scenarios

e If an agent plays different roles (in A.ld. scenarios)
they are here reported together with communication
exchanged (coming from the C.O.D. diagram)

e If an agent plays different roles in the same scenario
the change role relationship in introduced among
them

22

Protocols Description Phase

Inifiztor, Participant, !

- propose, not-undarstood®, !
FIPA-Pmopose- Protocol efus®, refpct-poposal,
=ecept-proposzl |

P L L L L L T R |

Initi=ior Farticipzunt

|:| pro pose

- ncrt- urnids rstood

i

rejpct- propos=l {:c}—

acos pt-pm pos=l

i

b

" ’)
An AUML sequence diagram for each (non
standard) protocol

The Agent Implementation Model

It includes the description of:
e Agents’ structure (society abstraction level)
e Agents’ behavior (society abstraction level)

e Agents’ structure (single agent abstraction
level)

e Agents’ behavior (single agent abstraction
level)

Agent Implementation Model

Multi-Agent

Structure
Definition

v |

Behavior
Description

v

T

Single-Agent

Structure
Definition

v |

Behavior
Description

e Parts of structure and
behavior provided by
pattern reuse

24

Multi-Agent Structure Definition Phase

®ResponderGrid()
E i /.Setup() \

Environment

‘ Knowledge

‘ Tasks ‘

/

/ | Agent |
<<Agent>> ¥
SensorReader
Eactive Grid : Giid <<Agent>>
TLPlanner

[&robot : RobotPosition
BrobotEng : Eng

BactiveGrid : Grid

Rpath : Path

EenvMatrix : EnvironmentMatrix

<<Agent>>
engController

[&robot : RobotPosition

®Mover()
®¥MyPositionResponder()

robotEng : Eng /\

IS FirstLocalization()
IS Listener()
¥MyGridlnitiator()
FMyPositioninitiator()
¥Planner()
I¥SettingParameters()
F®TLDeadlockInform()

®OdometrylLocalizer()
I¥SetParameters()
I FirstLocalization()
Msetup()
®VisionLocalizer()

Communi-
cations

One class diagram is drawn for the whole system

25

Single-Agent Structure Definition Phase

Agent Behavior
(from JADE) (from JADE)
<<Agent>> <<Task>>
engController <<Task>> MyPositionResponder <<Task>>
& myName : String = engController OdometryLocalizer Mover
&Jeng : Eng ®MyPositionResponder()
I®OdometryLocalizer() MprepareResponse() EMover()
engControIIer() [®action() F¥prepareResultNotification() ®action()
EPsetup() Baction() Emove()
B®onEnd()

Agent

26

One class diagram for each agent

PTK Support

= Automatic compilation of the whole MASD
diagram.

= Automatic compilation of part of the SASD
diagram (agent skeleton, tasks coming from

the T.Sp. phase, patterns of tasks) for each
agent.

= Introduction of new tasks (synchronization of
T.Sp. —Multi ASD - Single ASD diagrams).

27

i I Multi-Agent Behavior Description Phase

Task method

Task
swimlane

Message

The Deployment Model

It includes the description of:
e Agents’ deployment computational units
e Agents’ movements

e Agents’ communication paths

Deployment
Configuration

Deployment Model

29

B

Deployment Configuration Phase

‘ Elaborating Unit ‘
Agent’s
movement
Agent
<<netwoy>
Site 1 | Site2
[
A:scooter ______Imove_to A:scooter
I
I
| | |
I
I . . .
<<network>> icommunic ated™ Communlcatlon
| among agents
Server ¥
I <<network>> € — Phvsical
S1Ca
C:central y i
connection
|

30

The Code Model

It includes the description of:
e Pattern reused code
e Code of the application

Code Model

Code
Completion

:

Code
Completion

In our applications we used the FIPA-OS and JADE agent
platforms therefore code is mainly written in the JAVA
language

PTK support

m The whole skeleton of the agents is generated

= When patterns have been applied, code
iIncludes not only skeletons but also internal
parts of methods

m |tis possible to reverse engineer code

= In the next release (April 2003) a complete
management of communications will be
iIntroduced:

e JAVA data structures for agents’ knowledge

e Code for (RDF) messages management

32

Future works

m Support for multi-perspective design

= Improvement of ontology design
capabilities

m Greater repository of patterns

For more information visit our website:
WwWw.csai.unipa.it/passi

33

