
11

PASSIPASSI
(Process for Agent Societies (Process for Agent Societies

Specification and Implementation)Specification and Implementation)

Massimo CossentinoMassimo Cossentino (ICAR(ICAR--Italian National Research Council)Italian National Research Council)
cossentino@pa.icar.cnr.itcossentino@pa.icar.cnr.it

22

Characteristics of PASSICharacteristics of PASSI
PASSI is a stepPASSI is a step--byby--step step requirementsrequirements--toto--codecode method for method for
developing multideveloping multi--agent software that integrates design agent software that integrates design
models and philosophies from both objectmodels and philosophies from both object--oriented oriented
software engineering and MAS using UML notationsoftware engineering and MAS using UML notation
PASSI refers to the most diffused standards: (A)UML, PASSI refers to the most diffused standards: (A)UML,
FIPA, JAVA, RDF, Rational RoseFIPA, JAVA, RDF, Rational Rose
PASSI is conceived to be supported by PASSI is conceived to be supported by PTKPTK, an agent, an agent--
oriented CASE tooloriented CASE tool

The functionalities of PTK include:The functionalities of PTK include:
Automatic (total or partial) compilation of some diagramsAutomatic (total or partial) compilation of some diagrams
Automatic support to the execution of recurrent operationsAutomatic support to the execution of recurrent operations
Check of design consistencyCheck of design consistency
Automatic compilation of reports and design documentsAutomatic compilation of reports and design documents
Access to a database of Access to a database of patternspatterns
Generation of code and Reverse EngineeringGeneration of code and Reverse Engineering

Ontology design (and its actual Java implementation) has Ontology design (and its actual Java implementation) has
a central role in the processa central role in the process
Reuse is performed through patternsReuse is performed through patterns

33

PASSI: PASSI: processprocess and and languagelanguage

PASSI PASSI isis composedcomposed of a complete design of a complete design
processprocess and a and a modelingmodeling languagelanguage

The design The design processprocess isis incrementalincremental and and
iterativeiterative

The modeling language is an extension of The modeling language is an extension of
UML. UML. ItIt willwill evolve evolve towardstowards the the resultsresults of of
the FIPA AUML the FIPA AUML standardizationstandardization processprocess

44

PatternsPatterns of of agentsagents
We consider a pattern of agent as composed of its design level We consider a pattern of agent as composed of its design level
description and the corresponding JAVA code.description and the corresponding JAVA code.
Our patterns are Our patterns are multimulti--platformsplatforms: they can be used in both our : they can be used in both our
supported agent platformssupported agent platforms

More in detail each pattern is composed of:More in detail each pattern is composed of:
A structureA structure

Usually a base agent class and a set of task/behavior Usually a base agent class and a set of task/behavior
classes. classes.
Described using UML class diagramsDescribed using UML class diagrams

A behaviorA behavior
Expressed by the agent using its structural elements Expressed by the agent using its structural elements
Detailed in UML dynamic diagrams (activity/state chart Detailed in UML dynamic diagrams (activity/state chart
diagrams)diagrams)

A portion of codeA portion of code
Lines of code implementing the structure and behavior Lines of code implementing the structure and behavior
described in the previous diagramdescribed in the previous diagram

55

PatternsPatterns of of agentsagents

FromFrom design design diagramsdiagrams toto the JAVA codethe JAVA code

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
solver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

66

PASSI PASSI
(Process for Agent Societies Specification and Implementation)(Process for Agent Societies Specification and Implementation)

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Protocols
Description

Agent Society Model

Initial Requirements

Agents
Identification

Domain Req.
Description Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

New Requirements

Code Model

Code
Completion

Code
Completion

Deployment Model

Deployment
Configuration

Communication
Ontology

Description

Domain
Ontology

Description

Roles
Description

77

The System The System RequirementsRequirements ModelModel

ItIt describesdescribes::
System requirementsSystem requirements
Agents functionalitiesAgents functionalities
Roles played by agents in accomplishing Roles played by agents in accomplishing
their dutiestheir duties
Tasks performed by Tasks performed by agentsagents in in theirtheir rolesroles

System Requirements Model

Tasks
Specification

Roles
Identification

Initial Requirements

Agents
Identification

Domain Req.
Description

New
Requirements

88

Domain Description PhaseDomain Description Phase

A functional description of the system with
conventional use case diagrams.

sensorFusion

sonarReader

laserReader

<<include>>

<<include>>

pathPlanningTL

<<include>>

Environment

engControl

<<include>>

99

Agents Identification PhaseAgents Identification Phase

Packages are used in the
previous diagrams to
divide the functionalities
into different agents.

Relationships among
different agents are
characterized by a
“communication”
stereotype

SensorReader
<<Agent>>

engController
<<Agent>>

TLPl anner
<<Agent>>

pathPlanningTLengControl

<<communicate>>

sensorFusion

<<comm unicate>>

sonarReader

<<include>>

Environment
laserReader

<<i nclude>>

Agent

Communication
(a series of messages)

1010

PTK PTK supportsupport

The The A.IdA.Id. diagram is automatically composed . diagram is automatically composed
by the toolby the tool
The designer creates new agents and select The designer creates new agents and select
their use cases operating in the D.D. diagramtheir use cases operating in the D.D. diagram

1111

ReactivePlanner :
TLPlanner

SensorFusion :
SensorReader

RobotPosition :
engController

positionServer :
VisionManager

getActiveGrid

getPosition

planning

resetSelfPosition

Roles Identification PhaseRoles Identification Phase

<Role> : <agent name>
Message or event

Scenarios coming from UC diagram are used to identify agents’ roles

1212

VisionManager.
Locator

TLPlanner.Setting
Parameters

TLPlanner.MyPosition
Initiator

Mover

MyPositionResponder

OdometryLocalizer

SetParameters

FirstLocalization
setup

<<agent method>>

VisionLocalizer

addBehaviour

addBehaviour

addBehaviour

addBehaviour

addBehaviour

addBehaviour

engControllerengController T.Sp.:Interacting Agents

Tasks Specification PhaseTasks Specification Phase

• One diagram for each agent
• A complete description of the agent’s behavior in terms of

state/activity machine
• Each activity represents a task (or a method) of the agent

Communication

Task

Interacting
agents

swimlane

This agent
swimlane

1313

PTK PTK supportsupport
TasksTasks are are introducedintroduced byby the designer in the the designer in the T.SpT.Sp. .
diagramdiagram and and theythey are are automaticallyautomatically reportedreported in in
the the structuralstructural diagramsdiagrams

1414

PTK PTK supportsupport

1515

The The AgentAgent Society ModelSociety Model

It includes the description of:It includes the description of:
Ontology of the system domainOntology of the system domain
Ontology of interOntology of inter--agents communicationsagents communications
Services offered by agentsServices offered by agents
Agents’ communications (in terms of Agents’ communications (in terms of
ontology, agent interaction protocol and ontology, agent interaction protocol and
content language)content language)
Agent interaction protocolsAgent interaction protocols

Protocols
Description

Agent Society Model

Communication
Ontology

Description

Domain
Ontology

Description
Roles

Description

1616

Domain Ontology Description Domain Ontology Description PhasePhase

• We use concepts, predicates and actions to model the
ontology of the domain

• We can have aggregation, association and
generalization relationships

• From this diagram we automatically obtain an RDF
description of the ontology

Point
x : int
y : int

MarkerPosition
h : int

Marker
IDMarker : int

1

1..n

+markerPos 1

1..n

LocalizeMe

<<Act>> Localize(Target : GenericComponent = Self)

<<action>>
AutoLocalize

Actor = Self

<<Act>> Localize(Target : GenericComponent = Self)

<<action>>

Position
time : long
angle : int

Localize
Actor : String
ResultReceiver : String

<<Act>> Localize(Target : GenericComponent)

<<action>>

IsIntruder
Value : Boolean

<<predicate>> GenericComponent
ID : int 10..1

+Position
10..1

1 +Target1

1

+intruder

1

StartTracking
Actor : String
ResultReceiver : String

<<Act>> Track(Target : GenericComponent)

<<action>>

1 +Target1

A concept

A predicate

An action

1717

PTK PTK supportsupport

StartingStarting from this diagram, PTK exports the RDF from this diagram, PTK exports the RDF descriptiondescription
of the of the ontologyontology

1818

Calibration
calibratioData : CalibratioData[]

<<Agent>>

TrackingToCalibrationRequest
Ontology : GimmeCalibration
Language : RDF
Protocol : FIPARequest

<<Communication>>

Tracking
image : MonoImage
calibration : CalibrationData

<<Agent>>

TrackingRequest
Ontology : StartTracking
Language : RDF
Protocol : FIPARequest

<<Communication>>

IntruderDetector
intruder : GenericComponent

<<Agent>>

+Startup

+CalibrationServer

TrackingToCalibrationRequest

+IntruderDetector+Tracking

TrackingRequest

Communication Ontology Description PhaseCommunication Ontology Description Phase

AgentsKnowledge of
the agent

Communication
specifications

A class diagram is used to specify communications
among the agents and the knowledge they need

1919

PTK PTK supportsupport
Communications are automatically Communications are automatically
created looking at messages created looking at messages
exchanged in scenariosexchanged in scenarios

Knowledge of agents is built Knowledge of agents is built
considering the content of their considering the content of their
communicationscommunications

SensorReader
activeGrid : Grid

<<Agent>>

SensorGrid
Ontology : GetGrid
Language : RDF
Protocol : FIPARequest

<<Communication>>

TLPlanner
robot : RobotPosition
robotEng : Eng
activeGrid : Grid
path : Path
envMatrix : EnvironmentMatrix

<<Agent>>

2020

PTK PTK supportsupport
CommunicationsCommunications are are detaileddetailed in in thisthis formform

SensorReader
activeGrid : Grid

<<Agent>>

SensorGrid
Ontology : GetGrid
Language : RDF
Protocol : FIPARequest

<<Communication>>

TLPlanner
robot : RobotPosition
robotEng : Eng
activeGrid : Grid
path : Path
envMatrix : EnvironmentMatrix

<<Agent>>

2121

SensorReader

engController

TLPlanner

SettingPosition

FirstLocalization()

(from TLPlanner)

SensorFusion

ResponderGrid()

(from SensorReader)

Listener

MyPositionResponder()
FirstLocalization()

(from engController)

ReactivePlanner

SLListener()
MyGridInitiator()
MyPositionInitiator()
Planner()
SettingParameters()
TLDeadlockInform()

(from TLPlanner)

RobotPosition

Mover()
OdometryLocalizer()
VisionLocalizer()
SetParameters()

(from engController)

SensorGrid
EngParameters

MyPosition

[ROLE CHANGE]

[ROLE CHANGE]

ActiveGrid

<<Service>>

RobotPosition

<<Resource>>

Roles Description PhaseRoles Description Phase
Role

Tasks

Dependency

Communication
name

Change of
role

All roles from the R.Id. Diagrams are here detailed
together with communications exchanged

Agent

2222

PTK PTK supportsupport

A great part of this diagram is automatically built A great part of this diagram is automatically built
looking at roles identified in scenarioslooking at roles identified in scenarios

If an agent plays different roles (in If an agent plays different roles (in A.IdA.Id. scenarios) . scenarios)
they are here reported together with communication they are here reported together with communication
exchanged (coming from the C.O.D. diagram)exchanged (coming from the C.O.D. diagram)

IfIf anan agentagent playsplays differentdifferent rolesroles in the in the samesame scenario scenario
the the changechange rolerole relationshiprelationship in in introducedintroduced amongamong
themthem

2323

Protocols Description Protocols Description PhasePhase

AnAn AUML AUML sequencesequence diagramdiagram forfor eacheach (non (non
standard) standard) protocolprotocol

2424

The The AgentAgent ImplementationImplementation ModelModel

It includes the description of:It includes the description of:
Agents’ structure (society abstraction level)Agents’ structure (society abstraction level)
Agents’ behavior (society abstraction level)Agents’ behavior (society abstraction level)

Agents’ structure (single agent abstraction Agents’ structure (single agent abstraction
level)level)
Agents’ behavior (single agent abstraction Agents’ behavior (single agent abstraction
level)level)

Agent Implementation Model

Structure
Definition

Behavior
Description

Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent
Parts of structure and Parts of structure and
behavior provided by behavior provided by
pattern reusepattern reuse

2525

TLPlanner
robot : RobotPosition
robotEng : Eng
activeGrid : Grid
path : Path
envMatrix : EnvironmentMatrix

FirstLocalization()
SLListener()
MyGridInitiator()
MyPositionInitiator()
Planner()
SettingParameters()
TLDeadlockInform()

<<Agent>>
SensorReader
activeGrid : Grid

ResponderGrid()
setup()

<<Agent>>

engController
robot : RobotPosition
robotEng : Eng

Mover()
MyPositionResponder()
OdometryLocalizer()
SetParameters()
FirstLocalization()
setup()
VisionLocalizer()

<<Agent>>
Environment

MultiMulti--Agent Structure Definition Agent Structure Definition PhasePhase

One class diagram is drawn for the whole system

Agent

Tasks

Communi-
cations

Knowledge

2626

engController
myName : String = engController
eng : Eng

engController()
setup()

<<Agent>>

Agent
(from JADE)

Behavior
(from JADE)

Mover

Mover()
action()
move()

<<Task>>MyPosit ionResponder

MyPositionResponder()
prepareResponse()
prepareResultNotification()
action()
onEnd()

<<Task>>

OdometryLocalizer

OdometryLocalizer()
action()

<<Task>>

SingleSingle--Agent Structure Definition Agent Structure Definition PhasePhase

One class diagram for each agent

Agent Tasks

2727

PTK PTK SupportSupport

Automatic compilation of the whole MASD Automatic compilation of the whole MASD
diagram. diagram.
Automatic compilation of part of the SASD Automatic compilation of part of the SASD
diagram (agent skeleton, tasks coming from diagram (agent skeleton, tasks coming from
the the T.SpT.Sp. phase, patterns of tasks) for each . phase, patterns of tasks) for each
agent. agent.
Introduction of new tasks (synchronization of Introduction of new tasks (synchronization of
T.SpT.Sp. . ––Multi ASD Multi ASD –– Single ASD diagrams). Single ASD diagrams).

2828

MultiMulti--Agent Behavior Description PhaseAgent Behavior Description Phase

Task
swimlane

Task method

Message

2929

The The DeploymentDeployment ModelModel

ItIt includesincludes the the descriptiondescription of:of:
Agents’Agents’ deploymentdeployment computationalcomputational unitsunits
Agents’ movementsAgents’ movements
Agents’ communication Agents’ communication pathspaths

Deployment Model

Deployment
Configuration

3030

Deployment Configuration PhaseDeployment Configuration Phase

Site 1 Site 2

Se rve r

A:s coote r A:s coote rmove_to

C:ce ntral

<<network>>

<<network>>

<<network>>

communicate

Physical
connection

Communication
among agents

Agent’s
movement

Elaborating Unit

Agent

3131

The Code ModelThe Code Model

ItIt includesincludes the the descriptiondescription of:of:
Pattern Pattern reusedreused code code
Code of the Code of the applicationapplication

Code Model

Code
Completion

Code
Completion

In our applications we used the FIPA-OS and JADE agent
platforms therefore code is mainly written in the JAVA
language

3232

PTK PTK supportsupport

The whole skeleton of the agents is generatedThe whole skeleton of the agents is generated

When patterns have been applied, code When patterns have been applied, code
includes not only skeletons but also internal includes not only skeletons but also internal
parts of methodsparts of methods

It is possible to reverse engineer codeIt is possible to reverse engineer code

In the next release (April 2003) a complete In the next release (April 2003) a complete
management of communications will be management of communications will be
introduced:introduced:

JAVA data structures for agents’ knowledgeJAVA data structures for agents’ knowledge

Code for (RDF) messages managementCode for (RDF) messages management

3333

Future Future worksworks

Support for multiSupport for multi--perspective designperspective design

Improvement of ontology design Improvement of ontology design
capabilitiescapabilities

Greater repository of patternsGreater repository of patterns

For more information visit our website:For more information visit our website:
www.csai.unipa.it/passiwww.csai.unipa.it/passi

