

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Abstract Architecture Specification

Document title FIPA Abstract Architecture Specification
Document number XC00001I Document source FIPA TC Architecture
Document status Experimental Date of this status 2001/01/29
Supersedes None
Contact fab@fipa.org
Change history
2001/01/29 Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification may
be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their current
status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA specifications
may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Introduction ... 1
1.1 Contents .. 1
1.2 Audience.. 1
1.3 Acknowledgements ... 2

2 Scope and Methodology ... 3
2.1 Background .. 3
2.2 Why an Abstract Architecture?... 4
2.3 Scope of the Abstract Architecture ... 4

2.3.1 Areas that are not Sufficiently Abstract... 5
2.3.2 Areas for Future Consideration... 5

2.4 Going From Abstract to Concrete Specifications .. 5
2.5 Methodology ... 7
2.6 Status of the Abstract Architecture ... 8
2.7 Evolution of the Abstract Architecture.. 8

3 Themes of the Abstract Architecture...10
3.1 Focus on Agent Interoperability ...11
3.2 An Exemplar System ...11

4 Architectural Overview ...12
4.1 Agents and Services...12
4.2 Directory Services ..12

4.2.1 Starting an Agent ..12
4.2.2 Finding an Agent ...13

4.3 Agent Messages ..13
4.3.1 Message Structure ..14
4.3.2 Message Transport ..14

4.4 Agents Send Messages to Other Agents..15
4.5 Providing Message Validity and Encryption...17
4.6 Providing Interoperability ...18

5 Architectural Elements..19
5.1 Introduction..19

5.1.1 Classification of Elements ..19
5.1.2 Key-Value Tuples ..19
5.1.3 Services ...21
5.1.4 Format of Element Description..21
5.1.5 Abstract Elements...21

5.2 Agent ..22
5.2.1 Summary..22
5.2.2 Relationships to Other Elements...22
5.2.3 Description ...23

5.3 Agent Attributes ...23
5.3.1 Summary..23
5.3.2 Relationships to Other Elements...23
5.3.3 Description ...23

5.4 Agent Communication Language ...23
5.4.1 Summary..23
5.4.2 Relationships to Other Elements...23
5.4.3 Description ...23

5.5 Agent Name ..24
5.5.1 Summary..24
5.5.2 Relationships to Other Elements...24
5.5.3 Description ...24

5.6 Content ...24

 iv

5.6.1 Summary..24
5.6.2 Relationships to Other Elements...25

5.7 Content Language ..25
5.7.1 Summary..25
5.7.2 Relationships to Other Elements...25
5.7.3 Description ...25

5.8 Directory Entry...25
5.8.1 Summary..25
5.8.2 Relationships to Other Elements...25
5.8.3 Description ...25

5.9 Directory Service..26
5.9.1 Summary..26
5.9.2 Relationships to Other Elements...26
5.9.3 Actions...26
5.9.4 Description ...28

5.10 Encoding Representation...28
5.10.1 Summary..28
5.10.2 Relationships to Other Elements...29
5.10.3 Description ...29

5.11 Encoding Transform Service...29
5.11.1 Summary..29
5.11.2 Relationships to Other Elements...29
5.11.3 Actions...29
5.11.4 Description ...30

5.12 Envelope..30
5.12.1 Summary..30
5.12.2 Relationship to Other Elements ..31
5.12.3 Description ...31

5.13 Explanation..31
5.13.1 Summary..31
5.13.2 Relationship to Other Elements ..31
5.13.3 Description ...31

5.14 Locator ..31
5.14.1 Summary..31
5.14.2 Relationships to Other Elements...31
5.14.3 Description ...31

5.15 Message..32
5.15.1 Summary..32
5.15.2 Relationships to other elements..32
5.15.3 Description ...32

5.16 Message Transport Service..32
5.16.1 Summary..32
5.16.2 Relationships to Other Elements...32
5.16.3 Actions...32
5.16.4 Description ...34

5.17 Ontology ..34
5.17.1 Summary..34
5.17.2 Relationships to Other Elements...34
5.17.3 Description ...34

5.18 Payload ...35
5.18.1 Summary..35
5.18.2 Relationships to Other Elements...35
5.18.3 Description ...35

5.19 Service ..35
5.19.1 Summary..35
5.19.2 Relationships to Other Elements...35
5.19.3 Description ...35

5.20 Transport ...35

 v

5.20.1 Summary..35
5.20.2 Relationships to Other Elements...35
5.20.3 Description ...36

5.21 Transport Description ..36
5.21.1 Summary..36
5.21.2 Relationships to Other Elements...36
5.21.3 Description ...36

5.22 Transport Message ...36
5.22.1 Summary..36
5.22.2 Relationships to Other Elements...36
5.22.3 Description ...36

5.23 Transport Specific Properties ...37
5.23.1 Summary..37
5.23.2 Relationships to Other Elements...37
5.23.3 Description ...37

5.24 Transport Type ...37
5.24.1 Summary..37
5.24.2 Relationships to Other Elements...37
5.24.3 Description ...37

6 Agent and Agent Information Model ..38
6.1 Agent Relationships ...38
6.2 Transport Message Relationships ..39
6.3 Directory Entry Relationships ..40
6.4 Message Elements ..41
6.5 Message Transport Elements..42

7 Informative Annex A — Goals of Message Transport Abstractions ...43
7.1 Scope ...43
7.2 Variety of Transports ..43
7.3 Support for Alternative Transports Within a Single System ...43
7.4 Desirability of Transport Agnosticism ...44
7.5 Desirability of Selective Specificity...44
7.6 Connection-Based, Connectionless and Store-and-Forward Transports..44
7.7 Conversation Policies and Interaction Protocols ..44
7.8 Point-to-Point and Multiparty Interactions ...44
7.9 Durable Messaging...45
7.10 Quality of Service..45
7.11 Anonymity ...45
7.12 Message Encoding ...45
7.13 Interoperability and Gateways ..45
7.14 Reasoning about Agent Communications ..46
7.15 Testing, Debugging and Management ...46

8 References...47
9 Informative Annex B — Goals of Directory Service Abstractions ..48

9.1 Scope ...48
9.2 Variety of Directory Services ...48
9.3 Desirability of Directory Agnosticism..48
9.4 Desirability of Selective Specificity...49
9.5 Interoperability and Gateways..49
9.6 Reasoning about Agent Directory...49
9.7 Testing, Debugging and Management...49

10 Informative Annex C — Goals for Abstract Agent Communication Language ...50
10.1 Goals of This Abstract Communication Language ..50
10.2 Scope of this Discussion...50
10.3 Requirements...50

10.3.1 Variety of Content Languages ...50
10.3.2 Content Languages for FIPA...50
10.3.3 Small Content Languages ..50
10.3.4 Variety of Language Expressions ..51

 vi

10.3.5 Desirability of Logic ...51
11 Informative Annex D — Goals for Security and Identity Abstractions...52

11.1 Introduction ..52
11.2 Overview ..52
11.3 Areas to Apply Security ..52

11.3.1 Content Validity and Privacy During Message Transport ..52
11.3.2 Agent Identity..53
11.3.3 Agent Principal Validation ..53
11.3.4 Code Signing Validation ...53

11.4 Risks Not Addressed ..54
11.4.1 Code or Data Peeping..54
11.4.2 Code or Data Alteration..54
11.4.3 Concerted Attacks...54
11.4.4 Copy and Replay ...54
11.4.5 Denial of Service..54
11.4.6 Misinformation Campaigns ...54
11.4.7 Repudiation...54
11.4.8 Spoofing and Masquerading..55

11.5 Glossary of Security Terms ...55

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 1

1 Introduction
This document, and the specifications that are derived from it, defines the FIPA Abstract Architecture. The parts of the
FIPA abstract architecture include:

• A specification that defines architectural elements and their relationships (this document).

• Guidelines for the specification of agent systems in terms of particular software and communications technologies

(Guidelines for Instantiation).

• Specifications governing the interoperability and conformance of agents and agent systems (Interoperability

Guidelines).

See Section 2, Scope and Methodology for a fuller introduction to this document.

1.1 Contents
This document is organized into the following sections and a series of annexes.

• This Introduction.

• The Scope and methodology section explains the background of this work, its purpose, and the methodology that

has been followed. It describes the role of this work in the overall FIPA work program and discusses both the current
status of the work and way in which the document is expected to evolve.

• The Themes of the Abstract Architecture section that explains the style and the themes of the Abstract

Architecture specification.

• The Architectural overview presents an overview of the architecture with some examples. It is intended to provide

the appropriate context for understanding the subsequent sections.

• The Architectural Elements section comprises the FIPA architecture components.

• The Agent and Agent Information Model defines UML pattern relationships between Architectural Elements.

The annexes include:

• Goals for message transport, directory services, agent communication language and security.

• Goals for directory service abstractions.

• Goals of the Abstract ACL.

• Goals for security and identity abstractions.

1.2 Audience
The primary audience for this document is developers of concrete specifications for agent systems – specifications
grounded in particularly technologies, representations, and programming models. It may also be read by the users of thee
concrete specifications, including implementers of agent platforms, agent systems, and gateways between agent
systems.

This document describes an abstract architecture for creating intentional multi-agent systems. It assumes that the reader
has a good understanding about the basic principles of multi-agent systems. It does not provide the background material

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 2

to help the reader assess whether multi-agent systems are an appropriate model for their system design, nor does it
provide background material on topics such as Agent Communication Languages, BDI systems, or distributed computing
platforms.
The abstract architecture described in this document will guide the creation of concrete specifications of different
elements of the FIPA agent systems. The developers of the concrete specifications must ensure that their work conform
to the abstract architecture in order to provide specifications with appropriate levels of interoperability. Similarly, those
specifying applications that will run on FIPA compliant agent systems will need to understand what services and features
that they can use in the creation of their applications.

1.3 Acknowledgements
This document was developed by members of FIPA TC A, the Technical Committee of FIPA charged with this work. Other
FIPA Technical Committees also made substantial contributions to this effort, and we thank them for their effort and
assistance.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 3

2 Scope and Methodology
This section provides a context for the Abstract Architecture, the scope of the work and methodology employed.

2.1 Background
FIPA’s goal in creating agent standards is to promote inter-operable agent applications and agent systems. In 1997 and
1998, FIPA issued a series of agent system specifications that had as their goal inter-operable agent systems. This work
included specifications for agent infrastructure and agent applications. The infrastructure specifications included an agent
communication language, agent services, and supporting management ontologies. There were also a number of
application domains specified, such as personal travel assistance and network management and provisioning.

At the heart FIPA’s model for agent systems is agent communication, where agents can pass semantically meaningful
messages to one another in order to accomplish the tasks required by the application. In 1998 and 1999 it became clear
that it would be useful to support variations in those messages:

• How those messages are transferred (that is, the transport).

• How those messages are represented (as strings, as objects, as XML).

• Optional attributes of those messages, such as how to authenticate or encrypt them.

It also became clear that to create agent systems, which could be deployed in commercial settings, it was important to
understand and to use existing software environments. These environments included elements such as:

• Distributed computing platforms or programming languages,

• Messaging platforms,

• Security services,

• Directory services, and,

• Intermittent connectivity technologies.

FIPA was faced with two choices: to incrementally revise specifications to add various features, such as intermittent
connectivity, or to take a more holistic approach. The holistic approach, which FIPA adopted in January of 1999, was to
create an architecture that could accommodate a wide range of commonly used mechanisms, such as various message
transports, directory services and other commonly, commercially available development platforms. For detailed
discussions of the goals of the architecture, see:

• Section 7, Informative Annex A — Goals of Message Transport Abstractions.

• Section 9, Informative Annex B — Goals of Directory Service Abstractions.

• Section 10, Informative Annex C — Goals for Abstract Agent Communication Language.

• Section 11,

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 4

Informative Annex D — Goals for Security and Identity Abstractions.

These describe in greater detail the design considerations that were considered when creating this abstract architecture.
In addition, FIPA needed to consider the relationship between the existing FIPA 97, FIPA 98 and FIPA 2000 work and the
abstract architecture. While more validation is required, the FIPA 2000 work is in part a concrete realization of this
abstract architecture. While one of the goals in creating this architecture was to maintain full compatibility with the FIPA
97 and 98 specifications, this was not entirely feasible, especially when trying to support multiple implementations.
Agent systems built according to FIPA 97 and 98 specifications will be able to inter-operate with agent systems built
according to the abstract architecture through transport gateways with some limitations. The FIPA 2000 architecture is a
closer match to the abstract architecture, and will be able to fully inter-operate via gateways. The overall goal in this
architectural approach is to permit the creation of systems that seamlessly integrate within their specific computing
environment while interoperating with agent systems residing in separate environments.

2.2 Why an Abstract Architecture?
The first purpose of this work is to foster interoperability and reusability. To achieve this, it is necessary to identify the
elements of the architecture that must be codified. Specifically, if two or more systems use different technologies to
achieve some functional purpose, it is necessary to identify the common characteristics of the various approaches. This
leads to the identification of architectural abstractions: abstract designs that can be formally related to every valid
implementation.

By describing systems abstractly, one can explore the relationships between fundamental elements of these agent
systems. By describing the relationships between these elements, it becomes clearer how agent systems can be created
so that they are interoperable. From this set of architectural elements and relations one can derive a broad set of possible
concrete architectures, which will interoperate because they share a common abstract design.

Because the abstract architecture permits the creation of multiple concrete realizations, it must provide mechanisms to
permit them to interoperate. This includes providing transformations for both transport and encodings, as well as
integrating these elements with the basic elements of the environment.

For example, one agent system may transmit ACL messages using the OMG IIOP protocol. A second may use IBM’s
MQ-series enterprise messaging system. An analysis of these two systems – how senders and receivers are identified,
and how messages are encoded and transferred – allows us to arrive at a series of architectural abstractions involving
messages, encodings, and addresses.

2.3 Scope of the Abstract Architecture
The primary focus of this abstract architecture is create semantically meaningful message exchange between agents
which may be using different messaging transports, different Agent Communication Languages, or different content
languages. This requires numerous points of potential interoperability. The scope of this architecture includes:

• Message transport interoperability.

• Supporting various forms of ACL representations.

• Supporting various forms of content language.

• Supporting multiple directory services representations.

It must be possible to create implementations that vary in some of these attributes, but which can still interoperate.
Some aspects of potential standardization are outside of the scope of this architecture. There are three different reasons
why things are out of scope:

• The area cannot be described abstractly.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 5

• The area is not yet ready for standardization, or there was not yet sufficient agreement about how to standardize it.

• The area is sufficiently specialized that it does not currently need standardization.

Some of the key areas that are not included in this architecture are:

• Agent lifecycle and management.

• Agent mobility.

• Domains.

• Conversational policy.

• Agent Identity.

The next sections describe the rationale for this in more detail. However, it extremely important to understand that the
abstract architecture does not prohibit additional features – it merely addresses how interoperable features should be
implemented. It is anticipated that over time some of these areas will be part of the interoperability of agent systems.

2.3.1 Areas that are not Sufficiently Abstract

An abstraction may not appear in the abstract architecture because is there is no clean abstraction for different models of
implementation. Two examples of this are agent lifecycle management and security related issues.

For example, in examining agent lifecycle, it seems clear there are a minimum set of features that are required: Starting
an agent, stopping an agent, "freezing" or "suspending" an agent, and "unfreezing" or "restarting" an agent. In practice,
when one examines how various software systems work, very little consistency is detected inside the mechanisms, or in
how to address and use those mechanisms. Although it is clear that concrete specifications will have to address these
issues, it is not clear how to provide a unifying abstraction for these features. Therefore there are some architectural
elements that can only appear at the concrete level, because the details of different environments are so diverse.

Security has similar issues, especially when trying to provide security in the transport layer, or when trying to provide
security for attacks that can occur because a particular software environment has characteristics that permits that sort of
attack. Agent mobility is another implementation specific model that cannot easily be modelled abstractly.

Both of these topics will be addressed in the Instantiation Guidelines, because they are an important part of how agent
systems are created. However, they cannot be modelled abstractly, and are therefore not included at the abstract level of
the architecture.

2.3.2 Areas for Future Consideration

FIPA may address a number of areas of agent standardization in the future. These include ontologies, domains,
conversational policies and mechanisms that are used to control systems (resource allocation and access control lists),
and agent identity. These all represent ideas requiring further development.

This architecture does not address application interoperability. The current model for application interoperability is that
agents that communicate using a shared set of semantics (such as represented by an ontology) can potentially
interoperate. This architecture does not extend this model any further.

2.4 Going From Abstract to Concrete Specifications
This document describes an abstract architecture. Such an architecture cannot be directly implemented, but instead the
forms the basis for the development of concrete architectural specifications. Such specifications describe in precise detail
how to construct an agent system, including the agents and the services that they rely upon, in terms of concrete

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 6

software artefacts, such as programming languages, applications programming interfaces, network protocols, operating
system services, and so forth.

In order for a concrete architectural specification to be FIPA compliant, it must have certain properties. First, the concrete
architecture must include mechanisms for agent registration and agent discovery and inter-agent message transfer. These
services must be explicitly described in terms of the corresponding elements of the FIPA abstract architecture. The
definition of an abstract architectural element in terms of the concrete architecture is termed a realization of that element;
more generally, a concrete architecture will be said to realize all or part of an abstraction.

The designer of the concrete architecture has considerable latitude in how he or she chooses to realize the abstract
elements. If the concrete architecture provides only one encoding for messages, or only one transport protocol, the
realization may simplify the programmatic view of the system. Conversely, a realization may include additional options or
features that require the developer to handle both abstract and platform-specific elements. That is to say that the
existence of an abstract architecture does not prohibit the introduction of elements useful to make a good agent system,
it merely sets out the minimum required elements.

Abstract Architecture

Concrete realization: CORBA Elements

Concrete realization: Java Elements

Messaging Directory ACL

Messaging Directory ACL

Figure 1: Abstract Architecture Mapped to Various Concrete Realizations

The abstract architecture also describes optional elements. Although an element is optional at the abstract level, it may
be mandatory in a particular realization. That is, a realization may require the existence of an entity that is optional at the
abstract level (such as a message-transport-service), and further specify the features and interfaces that the element
must have in that realization.

It is also important to note that a realization can be of the entire architecture, or just one element. For example, a series
of concrete specifications could be created that describe how to represent the architecture in terms of particular
programming language, coupled to a sockets based message transport. Messages are handled as objects with that
language, and so on.

On the other hand, there may be a single element that can be defined concretely, and then used in a number of different
systems. For example, if a concrete specification were created for the directory-service element that describes the
schemas to use when implemented in LDAP, that particular element might appear in a number of different agent systems.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 7

Abstract Architecture

Messaging Directory ACL

Concrete realization: C++ & SMTP

Messaging ACL

Concrete realization: Java Elements

Messaging ACL

LDAP
Directory
Services

Figure 2: Concrete Realizations Using a Shared Element Realization

In this example, the concrete realization of directory is to implement the directory services in LDAP. Several realizations
have chosen to use this directory service model.

2.5 Methodology
This abstract architecture was created by the use of UML modelling, combined with the notions of design patterns as
described in [Gamma95]. Analysis was performed to consider a variety ways of structuring software and communications
components in order to implement the features of an intelligent multi-agent system. This ideal agent system was to be
capable of exhibiting execution autonomy and semantic interoperability based on an intentional stance. The analysis drew
upon many sources:

• The abstract notions of agency and the design features that flow from this.

• Commercial software engineering principles, especially object-oriented techniques, design methodologies,

development tools and distributed computing models.

• Requirements drawn from a variety of applications domains.

• Existing FIPA specifications and implementations.

• Agent systems and services, including FIPA and non-FIPA designs.

• Commercially important software systems and services, such as Java, CORBA, DCOM, LDAP, X.500 and MQ

Series.

The primary purpose of this work is to foster interoperability and reusability. To achieve this, it is necessary to identify the
elements of the architecture that must be codified. Specifically, if two or more systems use different technologies to
achieve some functional purpose, it is necessary to identify the common characteristics of the various approaches. This
leads to the identification of architectural elements: abstract designs that can be formally related to every valid
implementation.

For example, one agent system may transmit ACL messages using the OMG IIOP protocol. A second may use IBM’s
MQ-series enterprise messaging system. An analysis of these two systems – how senders and receivers are identified,
and how messages are encoded and transferred – allows us to arrive at a series of architectural abstractions involving
messages, encodings, and addresses.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 8

In some areas, the identification of common abstractions is essential for successful interoperation. This is particularly true
for agent-to-agent message transfer. The end-to-end support of a common agent communication language is at the core of
FIPA's work. These essential elements, that correspond to mandatory implementation specifications are here described
as mandatory architectural elements. Other areas are less straightforward. Different software systems, particularly
different types of commercial middleware systems, have specialized frameworks for software deployment, configuration,
and management, and it is hard to find common principles. For example, security and identity remain tend to be highly
dependent on implementation platforms. Such areas will eventually be the subjects of architectural specification, but not
all systems will support them. These architectural elements are optional.

This document models the elements and their relationships. In Section 3, Themes of the Abstract Architecture there is an
holistic overview of the architecture. In Section 4, Architectural Overview there is a structural overview of the architecture.
In Section 5, Architectural Elements, each of the architectural elements is described. In Section 6, Agent and Agent
Information Model there are diagrams in UML notation to describe the relationships between the elements.

2.6 Status of the Abstract Architecture
There are several steps in creating the abstract architecture:

1. Modelling of the abstract elements and their relationships.

2. Representing the other requirements on the architecture that cannot be modelled abstractly.

3. Describing interoperability points.

This document represents the first item in the list. It is nearing completion, and ready for review.

The second step is satisfied by guidelines for instantiation. This document will not be written until at least one
implementation based on the abstract architecture has been created, as it is desirable to base such a document on
actual implementation experience.

Interoperability points and conformance are defined by specific interoperability profiles. These profiles will be created as
required during the creation of concrete specifications.

2.7 Evolution of the Abstract Architecture
It is important that a document such as this be able to change to reflect new technologies and software engineering
practices, and to correct errors, mistakes or poor choices. However extreme care must be taken when proposing any
change, since an ill-considered change could, in principle, invalidate all concrete architectural specifications which are
based upon this document.

For this reason it is recommended that new architectural elements be introduced only after they have been the subjects of
substantial practical experience. When in doubt, new elements should be proposed as optional elements, and restricted
to mutually consenting platform implementations. New properties and relationships for existing architectural elements
must be introduced in a backward-compatible fashion; specifically, the change must support (and require) that all
concrete implementations can incorporate the change in a backward compatible manner.

Much of our understanding about how to extend the FIPA architecture will depend on the use of experimental systems. It
is useful to be able to deploy and test such systems without breaking "production" systems based on FIPA standard
specifications. FIPA may elect to define specific ontologies or extend existing architectural elements in order to support
experimental features in a well-behaved fashion. (A parallel may be drawn with the use of RFC-822 email systems, in
which experimental elements may be introduced provided that they use names that begin "X-".)

One of the challenges involved in creating the current set of abstractions is drawing the line between elements that belong
in the abstract architecture and those which belong in concrete instantiations of the architecture. As FIPA creates several
concrete specifications, and explores the mechanisms required to properly manage interoperation of these

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 9

implementations, some features of the concrete architectures may be abstracted and incorporated in the FIPA abstract
architecture. Likewise, certain abstract architectural elements may eventually be dropped from the abstract architecture,
but may continue to exist in the form of concrete realizations.

The current placement of various elements as mandatory or optional is somewhat tentative. It is possible that some
elements that are currently optional will, upon further experience in the development of the architecture become
mandatory.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 10

3 Themes of the Abstract Architecture
The overall approach of the abstract architecture is deeply rooted in object-oriented design, including the use of design
patterns and UML modelling. As such, the natural way to envision the elements of the architecture is as a set of abstract
object classes that can act as the input to the high level design of specific implementations.

Although the architecture explicitly avoids any specific model of composing its elements, its natural expression is a set of
object classes comprising an agent platform that supports agents and services.

The following diagram depicts the hierarchical relationships between the abstraction defined by this document and the
elements of a specific instantiation:

Abstract Architecture
(Naming, Transport, Encoding, Namespace)

Agent Communication and Semantics
(ACL, Encodings, Interation Procols, etc.)

Concrete Elements
(Gateways, Services, Agent Platform)

Set 1 Set 2

Actual
Implementation

1

Actual
Implementation

2

Figure 3: Relationship between Abstract and Concrete Architecture Elements

Several themes pervade the architecture; these capture the interaction between elements and their intended use.

The first theme is of opaque typed elements, which can be understood by specific implementations of a service. For
example, the details of each transport description are opaque to other layers of the system. The transport descriptor
provides a transport type, such as fipa-tcpip-raw-socket which acts to select the specific transport service that can
interpret the transport-specific-address. Thus, a given address element, opaque to other portions of the system, might be
foo.bar.baz.com:1234 which would be readily understood by the above transport service. Opaque typed elements are
used in both message encoding and directory services.

This theme leads to an elegant solution for extensibility. Additional implementations of a service may be dynamically
added to an environment by defining a new opaque typed element and associating it with the new service. For example, it
may be required that a transport mechanism such as the Simple Object Access Protocol (SOAP) be supported within the
environment. The transport type ontology would be extended to include a new term, fipa-soap-v1. Note that this resembles
a polymorphic type scheme.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 11

A second repeated theme is the creation of an association (in the form of a contract) between an agent and a service,
such that the agent may then use the service through a returned handle. Note that this theme is intentionally well suited
for implementation through the factory design patterns.

For those familiar with the "design pattern" approach to describing system structure, these themes may be naturally
implemented using the factory pattern.

3.1 Focus on Agent Interoperability
The Abstract Architecture focuses on core interoperability between agents. These include:

• Managing multiple message transport schemes,

• Managing message encoding schemes, and,

• Locating agents and services via directory services.

The Abstract Architecture explicitly avoids issues internal to the structure of an agent. It also largely defers details of
agent services to more concrete architecture documents.

After reading through the abstract architecture, many readers may feel that it lacks a number of elements they would have
expected to be included. Examples include the notion of an "agent-platform," "gateways" between agent systems,
bootstrapping of agent systems and agent configuration and coordination.

These elements are not included in the abstract architecture because they are inherently coupled with specific
implementations of the architecture, rather than across all possible implementations. The forthcoming document
"Concrete Architectural Elements" will describe many of these elements in terms of specific environments. Beyond this,
some elements will exist only in specific instantiations.

3.2 An Exemplar System
In order to further illuminate the intended use of the architectural elements, let us consider an agent platform,
implemented in an object oriented environment. The system uses the components of the abstract architecture to
implement two separate object factories; a transport factory and an encoding factory. A directory service is also provided,
with access through a static object.

Agents in the environment are constructed as objects, each running on a permanent thread. Each has access to the two
agent factories, as well as the directory service.

When an agent wants to send a message to another agent, it uses the directory service to obtain a set of transport-
descriptors for the agent. It then passes these transport-descriptors to the transport factory, which returns a transport-
handle. It should be noted that the transport factory and handle are not parts of the abstract architecture, but rather
artefacts of the specific implementation. The agent then uses an encoder provided by the encoding factory, to transform
the message into the desired encoding. Finally it transfers this encoded message to the recipient via the selected
transport.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 12

4 Architectural Overview
The FIPA architecture defines at an abstract level how two agents can locate and communicate with each other by
registering themselves and exchanging messages. To do this, a set of architectural elements and their relationships are
described. In this section the basic relationships between the elements of the FIPA agent system are described. In
Section 5, Architectural Elements and Section 6, Agent and Agent Information Model, there are descriptions of each
element (including mandatory or optional status) and UML Models for the architecture, respectively.

This section gives a relatively high level description of the notions of the architecture. It does not explain all of the aspects
of the architecture. Use this material as an introduction, which can be combined with later sections to reach a fuller
understanding of the abstract architecture.

4.1 Agents and Services
Agents communicate by exchanging messages which represent speech acts, and which are encoded in an agent-
communication-language .

Services provide support services for agents. This version of the Abstract Architecture defines two support services:
directory-services and message-transport-services.

Services may be implemented either as agents or as software that is accessed via method invocation, using
programming interfaces such as those provided in Java, C++, or IDL. An agent providing a service is more constrained in
its behaviour than a general-purpose agent. In particular, these agents are required to preserve the semantics of the
service. This implies that these agents do not have the degree of autonomy normally attributed to agents. They may not
arbitrarily refuse to provide the service.

It should be noted that if services are implemented as agents there are potential problems that may arise with discovering
and communicating with these services. The resolution of these issues is beyond the scope of this document.

4.2 Directory Services
The basic role of the directory-service function is to provide a location where agents register directory-entries. Other
agents can search the directory-entries to find agents with which they wish to interact.

The directory-entry is a key-value-tuple consisting of at least the following two key-value-pairs:

Agent-name A globally unique name for the agent
Locator One or more transport-descriptors that describe the transport-type and the transport-

specific-address to use to communicate with that agent

In addition the directory-entry may contain other descriptive attributes, such as the services offered by the agent, cost
associated with using the agent, restrictions on using the agent, etc.

Note that the keys agent-name and locator are short-form for the fully qualified names in the FIPA controlled
namespace. See Section 5.1.2, Key-Value Tuples for further details.

4.2.1 Starting an Agent

Agent A wishes to advertise itself as a provider of some service. It first binds itself to one or more transports. In some
implementations it will delegate this task to the message-transport-service; in others it will handle the details of, for
example, contacting an ORB, or registering with an RMI registry, or establishing itself as a listener on a message queue.
As a result of these actions, the agent is addressable via one or more transports.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 13

Having established bindings to one or more transport mechanisms, the agent must advertise its presence. The agent
realizes this by constructing a directory-entry and registering it with the directory-service. The directory-entry
includes the agent’s name, its transport addressing information, and optional attributes that describe the service. For
example, a stock service might advertise itself in abstract terms as {agent-service, "com.dowjones.stockticker"} and
{ontology, org.fipa.ontology.stockquote}1.

Directory-services

Agent
A

Directory-entry: "123"

Directory-entry: "XYZ"

Directory-entry: "A"

Register
Directory-entry

Figure 4: An Agent Registers with a Directory Service

4.2.2 Finding an Agent

Agents can use the directory-service to locate other agents with which to communicate. With reference to Figure 5, if
agent B is seeking stock quotes, it may search for an agent that advertises use of the stockquote ontology. Technically,
this would involve searching for a directory-entry that includes the key-value-pair {ontology, {com, dowjones, ontology,
stockquote}}. If it succeeds it will retrieve the directory-entry for agent A. It might also retrieve other directory-entries for
agents that support that ontology.

Directory-services
Agent

A

Directory-entry

Directory-entry

Directory-entry

Query for
stock quote
agent

Agent
B

Figure 5: Directory Query

Agent B can then examine the returned directory-entries to determine which agent best suits its needs. The directory-
entries include the agent-name, the locator, which contains information related to how to communicate with the agent,
and other optional attributes.

4.3 Agent Messages
In FIPA agent systems agents communicate with one another, by sending messages. Two fundamental aspects of
message communication between agents are the message structure and the message transport.

1 Note that the quoted string in the first example is a quoted value whereas the other elements are abstract names represented as tuples that may
be encoded in a variety of different ways.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 14

4.3.1 Message Structure

The structure of a message is a key-value-tuple (see Section 5.1.2, Key-Value Tuples) and is written in an agent-
communication-language, such as FIPA ACL. The content of the message is expressed in a content-language ,
such as KIF or SL. The content-language may reference an ontology, which grounds the concepts being discussed in
the content. The messages also contain the sender and receiver names, expressed as agent-names. Agent-names are
globally unique name identifiers for an agent.

Messages can recursively contain other messages.

Message
Expressed in an
Agent-communication-language

Message content

Expressed in a content language
May reference an ontology

Sender: Agent-name
Receiver: Agent-name

Unique names,
regardless of transport

Figure 6: A Message

4.3.2 Message Transport

When a message is sent it is transformed into a payload, and included in a transport-message. The payload is
encoded using the encoding-representation appropriate for the transport. For example, if the message is going to be
sent over a low bandwidth transport (such a wireless connection) a bit efficient representation may used instead of a string
representation to allow more efficient transmission.

The transport-message itself is the payload plus the envelope . The envelope includes the sender and receiver
transport-descriptions. The transport-descriptions contain the information about how to send the message (via what
transport, to what address, with details about how to utilize the transport). The envelope can also contain additional
information, such as the encoding-representation, data related security, and other realization specific data that needs
be visible to the transport or recipient.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 15

Transport-message

Envelope
Sender: transport-description
Receiver: transport-description
Additional attributes:
X
Y

Payload

Payload

Message

Message content

Message

Sender: agent name
Receiver: agent name

Addressing and
more attributes

Message content

Message

Sender: agent name
Receiver: agent name

Message content

Message-encoding

Figure 7: A Message Becomes a Transport-message

In the above diagram, a message is transformed into a payload suitable for transport over the selected message-
transport. An appropriate envelope is created that has sender and receiver information that uses the transport-
description data appropriate to the transport selected. There may be additional envelope data also included. The
combination of the payload and envelope is termed as a transport-message.

4.4 Agents Send Messages to Other Agents
In FIPA agent systems agents are intended to communicate with one another. Hence, here are some of the basic notions
about agents and their communications:

Each agent has an agent-name. This agent-name is unique and unchangeable. Each agent also has one or more
transport-descriptions, which are used by other agents to send a transport-message. Each transport-description
correlates to a particular form of message transport, such as IIOP, SMTP, or HTTP. A transport is a mechanism for
transferring messages. A transport-message is a message that sent from one agent to another in a format (or encoding)
that is appropriate to the transport being used. A set of transport-descriptions can be held in a locator.

For example, there may be an agent with the agent-name "ABC". This agent is addressable through two different
transports, HTTP, and an SMTP e-mail address. Therefore, the agent has two transport-descriptions, which are held in
the locator. The transport descriptions are as follows:

Directory entry for ABC

Agent-name: ABC
Locator:

Transport-type Transport-specific-address Transport-specific-property
HTTP http://www.whiz.net/abc (none)
SMTP Abc@lowcal.whiz.net (none)

Agent-attributes: Attrib-1: yes
Attrib-2: yellow
Language: French, German, English
Preferred negotiation: contract-net

Note: in this example, the agent-name is used as part of the transport-descriptions. This is just to make these
examples easier to read. There is no requirement to do this.

Another agent can communicate with agent "ABC" using either transport-description, and thereby know which agent it
is communicating with. In fact, the second agent can even change transports and can continue its communication.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 16

Because the second agent knows the agent-name, it can retain any reasoning it may be doing about the other agent,
without loss of continuity.

Agent 1234
selects
ABC to
communicate
with

ABC's directory-entry
Agent-name: ABC
Locator

(1)
Transport-type: http
Transport-specific-address:
http://www.whiz.net/abc.html
(2)
Transport-Type: smtp
Transport-specific-address:
abc@lowcal.whiz.net

Agent-attributes:
attrib-1: yes
attrib-2: yellow
.....

Directory-service Agent
1234

Agent
Descriptions

Agent
Descriptions

Directory-
entry

Agent
ABC

To:
abc@lowcal.whiz.netTo: www.whiz.net.abc

Message Message

Messages can
be sent by
either address

R
eg

is
te

re
d

in
 d

ire
ct

or
y

Query

Figure 8: Communicating Using Any Transport

In the above diagram, Agent 1234 can communicate with Agent ABC using either an SMTP transport or an HTTP
transport. In either case, if Agent 1234 is doing any reasoning about agents that it communicates with, it can use the
agent-name "ABC" to record which agent it is communicating with, rather than the transport description. Thus, if it
changes transports, it would still have continuity of reasoning.

Here’s what the messages on the two different transports might look like:

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 17

Transport-message: HTTP

Envelope
Sender:
Tranport-type: FIPA-HTTP
Transport address:http://www.joe.com/
1234
Tranport-properties: none

Receiver:
Tranport-type: FIPA-HTTP
Transport address:http://www.whiz.net/
abc
Tranport-properties: none

Additional attributes:
none

Transport-message: SMTP

Envelope
Sender:
Tranport-type: FIPA-SMTP
Transport address:1234@joe.com
Tranport-properties: MIME

Receiver:
Tranport-type: FIPA-SMTP
Transport address:abc@local.whiz.net
Tranport-properties: MIME

Additional attributes:
Content-type: X-FIPA-message

Payload

Message

Message content

Sender: 1234
Receiver: ABC

Payload

Message

Message content

Sender: 1234
Receiver: ABC

Agent names remain
the same, regardless
of transport.

Message encoding
may be different

Transport Addresses
are different than agent

name

Figure 9: Two Transport-Messages to the Same Agent

In the diagram above, the transport-description is different, depending on the transport that is going to be used.
Similarly, the message-encoding of the payload may also be different. However, the agent-names remain consistent
across the two message representations.

4.5 Providing Message Validity and Encryption
There are many aspects of security that can be provided in agent systems. See Section 11,

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 18

Informative Annex D — Goals for Security and Identity Abstractions for a discussion of possible security features. In this
abstract architecture, there is a simple form of security: message validity and message encryption. In message validity,
messages can be sent in such a way that any modification during transmission is identifiable. In message encryption, a
message is sent in encrypted form such that non-authorized entities cannot comprehend the message content.

In the abstract architecture these features are accommodated through encoding-representations and the use of
additional attributes in the envelope . For example, as the payload is transformed, one of the transformations could be to
a digitally encrypted set of data, using a public key and preferred encryption algorithm. Additional parameters are added
to the envelope to indicate these characteristics.

Transport-message: HTTP

Envelope
Sender:
Tranport-type: FIPA-HTTP
Transport address:http://www.joe.com/1234
Tranport-properties: none

Receiver:
Tranport-type: FIPA-HTTP
Transport address:http://www.whiz.net/abc
Tranport-properties: 3DES

Additional attributes:
Public key: <data>
Payload-stat: 3-DES encrypt

Transport-message: HTTP

Envelope
Sender:
Tranport-type: FIPA-HTTP
Transport address:http://www.joe.com/1234
Tranport-properties: none

Receiver:
Tranport-type: FIPA-HTTP
Transport address:http://www.whiz.net/abc
Tranport-properties: Encrypt: 3DES

Additional attributes:
none

Payload

Message

Message content

Sender: 1234
Receiver: ABC

3kswermsdf

weproi234023984

ere93:034kkkads
askfasdf

2349802349829:ksks03
ke:0984234

Encrypted Payload

Additional attributes for
encryption

Figure 10: Encrypting a Message Payload

In the above diagram, the payload is encrypted, and additional attributes added to the envelope to support the encryption.
These attributes must remain unencrypted in order that the receiving party be able to use them.

4.6 Providing Interoperability
There are two ways in which the abstract architecture makes provision for interoperability. The first is transport
interoperability. The second is message representation interoperability.

To provide interoperability, there are certain elements that must be included throughout the architecture to permit multiple
implementations. For example, earlier it was noted that an agent has both an agent-name and a locator. The locator
contains transport-descriptions, each of which contains information necessary for a particular transport to send a
message to the corresponding agent. The semantics of agent communication require that an agent’s name be preserved
throughout its lifetime, regardless of what transports may be used to communicate with it.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 19

5 Architectural Elements
The elements of the abstract architecture are defined here. For each element, the semantics are described informally
followed by the relationships between the element and others.

5.1 Introduction

5.1.1 Classification of Elements

The word element is used here to indicate an item or entity that is part of the architecture, and participates in
relationships with other elements of the architecture.

The architectural elements are classified as mandatory or optional. Mandatory elements must appear in all instantiations
of the FIPA abstract architecture. They describe the fundamental services, such as agent registration and
communications. These elements are the core aspects of the architecture. Optional elements are not mandatory; they
represent architecturally useful features that may be shared by some, but not all, concrete instantiations. The abstract
architecture only defines those optional elements that are highly likely to occur in multiple instantiations of the
architecture.

These descriptors and classifications are summarised in Table 1.

Word Definition
Can, May In relationship descriptions, the word can or may is used to indicate this is an optional relationship.

For example, a service may provide an API invocation, but it is not required to do so.
Element, or
architectural
element

A member of this abstract architecture. The word element is used here to indicate an item or
entity that is part of the architecture, and participates in relationships with other elements of the
architecture.

Mandatory Description of an element or relationship. Required in all fully functional implementations of the
FIPA Abstract Architecture.

Must In relationship descriptions, the word must is used to indicate this is a mandatory relationship. For
example, an agent must have an agent-name means that an agent is required to have an agent-
name.

Optional Description of an element or relationship. May appear in any implementation of the FIPA Abstract
Architecture, but is not required. Functionality that is common enough that it was included in
model.

Realize,
realization

To create a concrete specification or instantiation from the abstract architecture. For example,
there may be a design to implement the abstract notion of directory-services in LDAP. This could
also be said that there is a realization of directory-services.

Relationship A connection between two elements in the architecture. The relationship between two elements is
named (for example "is an instance of", "sends message to") and may have other attributes, such
as whether it is required, optional, one-to-one, or one-to-many. The term as used in this document,
is very much the way the term is used in UML or other system modelling techniques.

Table 1: Terminology

5.1.2 Key-Value Tuples

Many of the elements of the abstract architecture are defined to be key-value-tuples, or KVTs. For example, an ACL
message, its envelope, and agent descriptions are all KVTs. The concept of a KVT is central to the notion of architectural
extensibility, and so it is discussed in some length here.

A KVT consists of an unordered set of key-value-pairs. Each key-value-pair has two elements, as the term implies.
The first element, the key, is a pair-element drawn from an administered name space. All keys defined by the Abstract
Architecture are drawn from a name space managed by FIPA. This makes it possible for concrete architectures, or

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 20

individual implementations, to add new architectural elements in a manner which is guaranteed not to conflict with the
Abstract Architecture. The second element of the key-value-pair is the value . The type of value depends on the key. In
many cases, the value is another pair-element, an identifier drawn from a name-space. In other cases, the value is a
constant or expression of some specific type.

The rest of this section describes the rules governing the names for keys and values.

Traditionally, pair-elements have been treated as simple text strings. It is more useful to adopt a more abstract model in
which abstract identifiers and keywords may be encoded in a variety of different ways.

It is also important that the FIPA elements represented as key-value-tuples should be extensible. There are three types
of extension that can be envisaged:

• Official FIPA sanctioned standard extensions,

• Durable vendor-specific extensions, and,

• Temporary, probably private, extensions.

The last of these has traditionally been addressed by using a particular prefix string ("X-").

Every pair-element is an ordered tuple of tokens. This tuple denotes a name within a hierarchical namespace, in which
the first token in the tuple is at the highest level in the hierarchy and the rightmost is the leaf. Examples of tuples are:

{org, fipa, standard, ontology, foo}
{com, sun, java, agent, performative, brainwash}
{x, cc}
{protocol}

A pair-element containing more than one token is a qualified-element. In a qualified-element, the left-most token
must correspond to one of the top-level ICANN domain names, or to an anonymous-token. The latter is used to
introduce temporary, experimental qualified-elements.

If a pair-element contains only one token, it is an unqualified-element. An unqualified-element is interpreted as
though its token were appended to a tuple of tokens defining a FIPA standard name space, as follows:

• An unqualified-element, x, which is a key in a transport-message is equivalent to the name {org, fipa, standard,

message, x}.

• An unqualified-element, x, which is a key in an agent-description is equivalent to the name {org, fipa, standard,

agent-description, x}.

• An unqualified-element, x, which is a value in a key-value-pair in which the key is drawn from a namespace

rooted at {org, fipa, standard} is equivalent to the tuple formed by appending x to the (fully-qualified) key.

For example, the pair-element

{ {ontology}, {foo} }

is equivalent to,

{ {org, fipa, standard, message, ontology}, {org, fipa, standard, message, ontology, foo} }

The natural encoding of a pair-element is as a sequence of text strings separated by dots. Thus the pair-element

 { {org, fipa, standard, message, ontology}, {org, fipa, standard, message, ontology, foo} },

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 21

will naturally be encoded as:

 org.fipa.standard.message.ontology org.fipa.standard.message.ontology.foo

5.1.3 Services

A service is defined in terms of a set of actions that it supports. Each action defines an interaction between the service
and the agent using the service. The semantics of these actions are described informally, to minimize assumptions about
how they might be reified in a concrete specification.

5.1.4 Format of Element Description

The architectural elements are described below. The format of the description is:

• Summary. A summary of the element.

• Relationship to other elements. A complete description of the relationship of this element to the other architectural

elements.
• Actions. In the case of mandatory services, the actions that may be exerted by that service are described.

• Description. Additional description and context for the element, along with explanatory notes and examples.

5.1.5 Abstract Elements

Element Description Presence
Action-status A status indication delivered by a service showing the success or failure of an

action.
Mandatory

Agent A computational process that implements the autonomous, communicating
functionality of an application.

Mandatory

Agent-attributes A set of properties associated with an agent by inclusion in its directory-
entry.

Optional

Agent-name An opaque, non-forgeable token that uniquely identifies an agent. Mandatory
Agent-
communication-
language

A language with a precisely defined syntax semantics and pragmatics, which
is the basis of communication between independently designed and developed
agents.

Mandatory

Content Content is that part of a communicative act that represents the domain
dependent component of the communication.

Mandatory

Content-language A language used to express the content of a communication between agents. Mandatory
Directory-entry A composite entity containing the name, locator, and agent-attributes of a

agent
Mandatory

Directory-service A service providing a shared information repository in which directory-entries
may be stored and queried

Mandatory

Encoding-
representation

A way of representing an abstract syntax in a particular concrete syntax.
Examples of possible representations are XML, FIPA Strings, and serialized
Java objects.

Mandatory

Envelope That part of a transport-message containing information about how to send
the message to the intended recipient(s). May also include additional
information about the message encoding, encryption, etc.

Mandatory

Explanation An encoding of the reason for a particular action-status. Optional

Locator A locator consists of the set of transport-descriptions used to communicate
with an agent.

Mandatory

Message A unit of communication between two agents. A message is expressed in an
agent-communication-language , and encoded in an encoding-

Mandatory

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 22

agent-communication-language , and encoded in an encoding-
representation.

Encoding-transform-
service

A service that transforms a message or payload from one encoding-
representation to another.

Mandatory

Message-transport-
service

A service that supports the sending and receiving of transport-messages
between agents.

Mandatory

Ontology A set of symbols together with an associated interpretation that may be
shared by a community of agents or software. An ontology includes a
vocabulary of symbols referring to objects in the subject domain, as well as
symbols referring to relationships that may be evident in the domain.

Optional

Payload A message encoded in a manner suitable for inclusion in a transport-
message.

Mandatory

Service A service provided for agents and other services. Optional
Transport A transport is a particular data delivery service supported by a given

message-transport-service.
Mandatory

Transport-description A transport-description is a self describing structure containing a transport-
type, a transport-specific-address and zero or more transport-specific-
properties.

Mandatory

Transport-message The object conveyed from agent to agent. It contains the transport-
description for the sender and receiver or receivers, together with a payload
containing the message.

Mandatory

Transport-specific-
property

A transport-specific-property is a property associated with a transport-type. Optional

Transport-type A transport-type describes the type of transport associated with a transport-
specific-address.

Mandatory

Table 2: Abstract Elements

5.2 Agent

5.2.1 Summary

An agent is a computational process that implements the autonomous, communicating functionality of an application.
Typically, agents communicate using an Agent Communication Language. A concrete instantiation of agent is a
mandatory element of every concrete instantiation of the abstract architecture.

5.2.2 Relationships to Other Elements

Agent is an instance of agent
Agent has an agent-name
Agent may have agent-attributes
Agent has a locator, which lists the transport-descriptions for that agent
Agent may be sent messages via a transport-description, using the transport corresponding to the transport-
description
Agent may send a transport-message to one or more agents
Agent may register with one or more directory-services
Agent may have a directory-entry, which is registered with a directory-service
Agent may modify its directory-entry as registered by a directory-service
Agent may delete its directory-entry from a directory-service.
Agent may query for a directory-entry registered within a directory-service
Agent is addressable by the mechanisms described in its transport-descriptions in its directory-entry.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 23

5.2.3 Description

In a concrete instantiation of the abstract architecture, an agent may be realized in a variety of ways, for example as a
Java™ component, a COM object, a self-contained Lisp program, or a TCL script. It may execute as a native process on
some physical computer under an operating system, or be supported by an interpreter such as a Java Virtual Machine or
a TCL system. The relationship between the agent and its computational context is specified by the agent lifecycle. The
abstract architecture does not address the lifecycle of agents as it is often handled differently in discrete computational
environments. Realizations of the abstract architecture must address these issues.

5.3 Agent Attributes

5.3.1 Summary

The agent-attributes are optional attributes that are part of the directory-entry for an agent. They are represented as
key-value-pairs within the key-value-tuple that makes up the directory-entry. The purpose of the attributes is to allow
searching for directory-entries that match agents of interest. A concrete instantiation of agent-attributes is an optional
element of concrete instantiations of the abstract architecture.

5.3.2 Relationships to Other Elements

A directory-entry may have zero or more agent-attributes
Agent-attributes describe aspects of an agent

5.3.3 Description

When an agent registers a directory-entry, the directory-entry may optionally contain key-value-pairs that offer
additional description of the agent. The values might include information about costs of using the agent or service,
features available, ontologies understood, names that the service is commonly known by, or any other data that agents
deem useful. This information can then be used to enhance search criteria exerted by agents on the directory-service.

In practice, when defining realizations of this abstract architecture, domain specific specifications should exist describing
the agent-attributes to be used. This eases requirements for interoperation.

5.4 Agent Communication Language

5.4.1 Summary

An agent-communication-language (ACL) is a language in which communicative acts can be expressed. The FIPA
architecture is defined in terms of an Abstract ACL (see Section 10). An abstract syntax is a syntax in which the
underlying operators and objects of a language are exposed, together with a set of precise semantics for those entities.

The primary role of an abstract syntax is to highlight the semantic meaning of constructs in the language at the possible
expense of legibility and convenience of expression.

A concrete instantiation of agent-communication-language is a mandatory element of every concrete instantiation of
the abstract architecture.

5.4.2 Relationships to Other Elements

Message is written in an agent-communication-language

5.4.3 Description

FIPA ACL is described in detail in [FIPA00037] and [FIPA00061].

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 24

5.5 Agent Name

5.5.1 Summary

An agent-name is a means to identify an agent to other agents and services. It is expressed as a key-value-pair, is
unchanging (that is, it is immutable), and unique under normal circumstances of operation. A concrete instantiation of
agent-name is a mandatory element of every concrete instantiation of the abstract architecture.

5.5.2 Relationships to Other Elements

Agent has one agent-name
Message must contain the agent-names of the sending and receiving agents
Directory-entry must contain the agent-name of the agent to which it refers

5.5.3 Description

An agent-name is an identifier (a GUID, globally unique identifier) that is associated with the agent at creation time or
initial registration. Name issuing should occur in a way that tends to ensure global uniqueness. This may be achieved, for
example, through employing an algorithm that generates the name with a sufficient degree of stochastic complexity such
as to induce a vanishingly small chance of a name collision.

The agent-name will typically be issued by another entity or service. Once issued, the unique identifier should not be
dependent upon the continued existence of the third party that issued it. Ideally through, there will be some mechanism
available that is capable of verifying name authenticity.

Beyond this durable relationship with the agent it denotes, the agent-name should have no semantics. It should not
encode any actual properties of the agent itself, nor should it disclose related information such as agent transport-
description or location. It should also not be used as a form of authentication of the agent. Authentication services must
rely on the combination of a unique identifier plus additional information (for example, a certificate that makes the name
tamper-proof and verifies its authenticity through a trusted third party).

A useful role of an agent-name is to support the use of BDI (belief/desire/intention) models within a multi-agent system.
The agent-name can be used to correlate propositional attitudes with the particular agents that are believed to hold
those attitudes.

Agents may also have "well-known" or "common" or "social" names, or "nicknames", or aliases by which they are
popularly known. These names are often used to commonly identify an agent. For example, within an agent system, there
may be a broker service for finding "air-fare" agents. The convention within this system is that this agent is nicknamed
"Air-fare broker". In practice, this is implemented as an agent-attribute. The attribute could have the key "Nickname"
with the value "Air-fare broker". However, the actual name of the agent provi ding the function is unique, to maintain the
ability to distinguish between an agent providing that function in one cluster of agents, and another agent providing the
same function in a different cluster of agents.

5.6 Content

5.6.1 Summary

Content is that part of a communicative act that represents the component of the communication that refers to a domain
or topic area. Note that, "the content of a message" does not refer to "everything within the message, including the
delimiters", as it does in some languages, but rather specifically to the domain specific component. In the ACL semantic
model, a content expression may be composed from propositions, actions or terms. A concrete instantiation of content
is a mandatory element of every concrete instantiation of the abstract architecture.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 25

5.6.2 Relationships to Other Elements

Content is expressed in a content-language
Content may reference one or more ontologies
Content is part of a message

5.7 Content Language

5.7.1 Summary

A content-language is a language used to express the content of a communication between agents. FIPA allows
considerable flexibility in the choice, form and encoding of a content language. However, content languages are required
to be able to represent propositions, actions and terms (names of individual entities) if they are to make full use of the
standard FIPA performatives. A concrete instantiation of content-language is a mandatory element of every concrete
instantiation of the abstract architecture.

5.7.2 Relationships to Other Elements

Content is expressed in a content-language
FIPA-SL is an example of a content-language
FIPA-RDF is an example of a content-language
FIPA-KIF is an example of a content-language
FIPA-CCL is an example of a content-language

5.7.3 Description

The FIPA content language library is described in detail in [FIPA00007].

5.8 Directory Entry

5.8.1 Summary

A directory-entry is a key-value tuple consisting of the agent-name, a locator, and zero or more agent-attributes. A
directory-entry refers to an agent; in some implementations this agent will provide a service. A concrete instantiation of
directory-entry is a mandatory element of every concrete instantiation of the abstract architecture.

5.8.2 Relationships to Other Elements

Directory-entry contains the agent-name of the agent to which it refers
Directory-entry contains one locator of the agent to which it refers. The locator contains one or more transport-
descriptions
Directory-entry is managed by and available from a directory-service
Directory-entry may contain agent-attributes

5.8.3 Description

Different realizations that use a common directory-service, are strongly encouraged to adopt a common schema for
storing directory-entries. (This in turn implies the use of a common representation for locators, transport-descriptions,
agent-names, and so forth.)

Agents are not required to publish a directory-entry. It is possible for agents to communicate with agents that have
provided a transport-description through a private mechanism. For example, an agent involved in a negotiation may
receive a transport-description directly from the party with which it is negotiating. This falls outside the scope of the
using the directory-services mechanisms.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 26

5.9 Directory Service

5.9.1 Summary

A directory-service is a shared information repository in which agents may publish their directory-entries and in which
they may search for directory-entries of interest. A concrete instantiation of directory-service is a mandatory element
of every concrete instantiation of the abstract architecture.

5.9.2 Relationships to Other Elements

Agent may register its directory-entry with a directory-service
Agent may modify its directory-entry as registered by a directory-service
Agent may delete its directory-entry from a directory-service
Agent may search for a directory-entry registered within a directory-service
A directory-service must accept valid, authorized requests to register, de-register, delete, modify and identify agent
descriptions
A directory-service must accept valid, authorized requests for searching

5.9.3 Actions

A directory-service supports the following actions.

5.9.3.1 Register
An agent may register a directory-entry with a directory-service. The semantics of this action are as follows:

The agent provides a directory-entry that is to be registered. In initiating the action, the agent may control the scope of
the action. Different reifications may handle this in different ways. The action may be addressed to a particular instance of
a directory-service, or the action may be qualified with some kind of scope parameter.

If the action is successful, the directory-service will return an action-status indicating success. Following a successful
register, the directory-service will support legal modify, delete , and query actions with respect to the registered
directory-entry.

If the action is unsuccessful, the directory-service will return an action-status indicating failure, together with an
explanation. The range of possible explanations is, in general, specific to a particular reification. However a conforming
reification must, where appropriate, distinguish between the following explanations:

• Duplicate. The new entry "clashed" with some existing directory-entry. Normally this would only occur if an existing

directory-entry had the same agent-name, but specific reifications may enforce additional requirements.

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The directory-entry is invalid in some way.

5.9.3.2 Modify
An agent may modify a directory-entry that has been registered with a directory-service. The semantics of this action
are as follows:

The agent provides a directory-entry which contains the same agent-name as the entry to be modified. In initiating the
action, the agent may control the scope of the action. Different reifications may handle this in different ways. The action
may be addressed to a particular instance of a directory-service, or the action may be qualified with some kind of scope
parameter.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 27

The directory-service verifies that the argument is a valid directory-entry. It then searches for a registered directory-
entry with the same agent-name. If it does not find one, the action fails and an explanation provided. Otherwise it
modifies the existing directory-entry by examining each key-value pair in new directory-entry. If the value is non-null,
the pair is added to the new entry, replacing any existing pair with the same key. If the value is null, any existing pair
with the same key is removed from the entry.

If the action is successful, the directory-service will return an action-status indicating success, together with a
directory-entry corresponding to the new contents of the registered entry. Following a successful register, the
directory-service will support legal modify, delete , and query actions with respect to the modified directory-entry.

If the action is unsuccessful, the directory-service will return an action-status indicating failure, together with an
explanation. The range of possible explanations is, in general, specific to a particular reification. However a conforming
reification must, where appropriate, distinguish between the following explanations:

• Not-found. The new entry did not match any existing directory-entry. This would only occur if no existing directory-

entry had the same agent-name.

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The new directory-entry is invalid in some way.

5.9.3.3 Delete
An agent may delete a directory-entry from a directory-service. The semantics of this action are as follows:

The agent provides a directory-entry which has the same agent-name as that which is to be deleted. (The rest of the
directory-entry is not significant.) In initiating the action, the agent may control the scope of the action. Different
reifications may handle this in different ways. The action may be addressed to a particular instance of a directory-
service, or the action may be qualified with some kind of scope parameter.

If the action is successful, the directory-service will return an action-status indicating success. Following a successful
delete , the directory-service will no longer support modify, delete , and query actions with respect to the registered
directory-entry.

If the action is unsuccessful, the directory-service will return an action-status indicating failure, together with an
explanation. The range of possible explanations is, in general, specific to a particular reification. However a conforming
reification must, where appropriate, distinguish between the following explanations:

• Not-found. The new entry did not match any existing directory-entry. This would only occur if no existing directory-

entry had the same agent-name.

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The directory-entry is invalid in some way.

5.9.3.4 Query
An agent may query a directory-service to locate directory-entries of interest. The semantics of this action are as
follows:

The agent provides a directory-entry that is to be treated as a search pattern. In initiating the action, the agent may
control the scope of the action. Different reifications may handle this in different ways. The action may be addressed to a
particular instance of a directory-service, or the action may be qualified with some kind of scope parameter.

The directory service verifies that the argument is a valid directory-entry. It then searches for registered directory-
entries that satisfy the search criteria. A registered entry satisfies the search criteria if there is a match between each

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 28

key-value pair in the submitted entry. The semantics of "matching" are likely to be reification-dependent; at a minimum,
there should be support for matching on the same value and on any value.

If the action is successful, the directory-service will return an action-status indicating success, together with a set of
directory-entries that satisfy the search pattern. The mechanism by which multiple entries are returned, and whether or
not an agent may limit or terminate the delivery of results, is not defined in the abstract architecture and is therefore
reification dependent.

If the action is unsuccessful, the directory-service will return an action-status indicating failure, together with an
explanation. The range of possible explanations is, in general, specific to a particular reification. However a conforming
reification must, where appropriate, distinguish between the following explanations:

• Not-found. The search pattern did not match any existing directory-entry.

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The directory-entry is invalid in some way.

5.9.4 Description

A directory-service may be implemented in a variety of ways, using a general-purpose scheme such as X.500 or some
private agent-specific mechanism. Typically a directory-service uses some hierarchical or federated scheme to support
scalability. A concrete implementation may support such mechanisms automatically, or may require each agent to
manage its own directory usage.

Different realizations that are based on the same underlying mechanism are strongly encouraged to adopt a common
schema for storing directory-entries. This in turn implies the use of a common representation for names, locations, and
so forth. For example, considering multiple implementations of directory services in LDAP, it would be useful for all of the
implementations to interoperate because they are using the same schemas. Similarly, if there were multiple
implementations in NIS, they would need the same NIS data representation to interoperate.

The directory-service described here does not have the full flexibility found in the directory-facilitator (see [FIPA00023]),
of existing FIPA specifications. In practice, implementing the search capabilities of the existing directory-facilitator is not
feasible with most directory systems, that is, LDAP, X.500 and NIS. There seems to be a need for a Lookup Service,
which is here called the directory-service, which allows an agent to identify and get the transport-description for
another agent, as well as a more complex search system, which can resolve complex searches. The former system,
which supports a single level of search on attributes, is the directory-service. The latter might be implemented as a
broker, and might be implemented in systems that allow for arbitrary complexity and nesting such as Prolog or LISP. This
division of functionality reflects the experience of many implementations, where there is a "quick" lookup service and a
more robust, but slower complex search service.

5.10 Encoding Representation

5.10.1 Summary

An encoding-representation is a way of representing an abstract syntax in a particular concrete syntax. Examples of
possible representations are XML, FIPA Strings, and serialized Java objects.

In principle, nested elements of the architecture may use different encodings, for example, a message may be encoded
in XML and the resulting string used as the payload of a transport-message encoded as a CORBA object.

A concrete instantiation of encoding-representation is a mandatory element of every concrete instantiation of the
abstract architecture.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 29

5.10.2 Relationships to Other Elements

Payload is encoded according to an encoding-representation.
Message is encoded according to an encoding-representation
Transport-message is encoded according to an encoding-representation
Content is encoded according to an encoding-representation

5.10.3 Description

The way in which a message is encoded depends on the concrete architecture. If a particular architecture supports only
one form of encoding, no additional information is required. If multiple forms of encoding are supported, messages may be
made self-describing using techniques such as format tags, object introspection, and XML DTD references.

5.11 Encoding Transform Service

5.11.1 Summary

An encoding-transform-service is a service. It provides the facility to transform a transport-message, payload,
message or content from one encoding-representation to another. A concrete instantiation of encoding-transform-
service is a mandatory element of every concrete instantiation of the abstract architecture.

5.11.2 Relationships to Other Elements

Encoding-transform-service converts one encoding-representation to another encoding-representation
Encoding-transform-service can transform the encoding-representation of a transport-message
Encoding-transform-service can transform the encoding-representation of a payload
Encoding-transform-service can transform the encoding-representation of a message
Encoding-transform-service can transform the encoding-representation of message content
Encoding-transform-service is a service

5.11.3 Actions

An encoding-transform-service supports the following actions.

5.11.3.1 Transform Encoding
An agent may form a contract with the encoding-transform-service to convert one or more transport-messages or
component thereof (i.e. payload, message or content), into a particular encoding-representation. It does this by
invoking the transform-encoding action of the encoding-transform-service. The semantics of this action are as
follows:

The agent provides the message component to be encoded to the encoding-transform-service, along with the type of
encoding to be used. The encodings offered by the service may be queried using the query-available-encodings action
described below. Encoding is context sensitive to ensure that appropriate encoding-representations are applied to
specific message components. I.e. a message may be encoded in XML representation, but the payload that contains
that message must be encoded for the transport to be used.

If the action is successful, the encoding-transform-service will return an action-status indicating success, together with
the encoded message component.

If the action is unsuccessful, the encoding-transform-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Access. The agent making the request is not authorized to perform the specified action.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 30

• Invalid Message. The message component to be encoded is invalid in some way.

• Invalid Encoding. The encoding-representation selected is unavailable.

5.11.3.2 Query Encoding Representation
An agent may query the encoding-transform-service to resolve the encoding-representation with which the supplied
message component has been encoded. It does this by invoking the query-encoding-representation action of the
encoding-transform-service.

If the action is successful, the encoding-transform-service will return an action-status indicating success. Additionally,
the encoding-representation identity is returned.

If the action is unsuccessful, the encoding-transform-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The encoded message component is invalid in some way.

• Unidentifiable. The encoding-representation is unidentifiable by the encoding-transform-service.

5.11.3.3 Query Available Encodings
An agent may query the encoding-transform-service to provide a list of all encoding-representations known by the
service. It does this by invoking the query-available-encodings action of the encoding-transform-service.

If the action is successful, the encoding-transform-service will return an action-status indicating success. Additionally,
the available encoding-representations are supplied.

If the action is unsuccessful, the encoding-transform-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Access. The agent making the request is not authorized to perform the specified action.

5.11.4 Description

A concrete specification must realize a reification of the encoding-transform-service in order that agents can apply and
decipher encoding-representations. The encoding-transform-service may be viewed as a 'factory' service that creates
concrete instantiation of the transformation mechanism specific to a bi-directional translation between two encoding-
representations. The transformation will be of one of two forms, depending on the encoding-representations employed.
The first is the straightforward String-to-String encoding such as that required for many encryption and decryption
schemes. The second is the more complex translation of String-to-ParseTree (and vice-versa) encoding required for such
encoding-representations as XML.

5.12 Envelope

5.12.1 Summary

An envelope is a key-value tuple that contains message delivery and encoding information. It is included in the
transport-message, and includes elements such as the sender and receiver(s) transport-descriptions. It also contains
the encoding-representation for the message and optionally, other message information such as validation and
security data, or additional routing data. A concrete instantiation of envelope is a mandatory element of every concrete
instantiation of the abstract architecture.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 31

5.12.2 Relationship to Other Elements

Envelope contains transport-descriptions
Envelope optionally contains validity data (such as security keys for message validation)
Envelope optionally contains security data (such as security keys for message encryption or decryption)
Envelope optionally contains routing data
Envelope contains an encoding-representation for the payload being transported
Envelope is contained in transport-message

5.12.3 Description

In the realization of the envelope data, the realization can specify envelope elements that are useful in the particular
realization. These can include specialized routing data, security related data, or other data that can assist in the proper
handling of the encoded message.

5.13 Explanation

5.13.1 Summary

An encoding of the reason for a particular action-status. When an action exerted by a service leads to a failure response,
the explanation is an optional descriptor giving the reason why the particular action failed.

5.13.2 Relationship to Other Elements

Explanation qualifies an action-status.

5.13.3 Description

In terms of the two explicit services described by the abstract architecture, the directory-service and message-
transport-service, the relevant action explanations are listed in the appropriate element subsections.

5.14 Locator

5.14.1 Summary

A locator consists of the set of transport-descriptions, which can be used to communicate with an agent. A locator
may be used by a message-transport-service to select a transport for communicating with the agent, such as an
agent or a service. Locators can also contain references to software interfaces. This can be used when a service can be
accessed programmatically, rather than via a messaging model. A concrete instantiation of locator is a mandatory
element of every concrete instantiation of the abstract architecture.

5.14.2 Relationships to Other Elements

Locator is a member of directory-entry, which is registered with a directory-service
A locator contains one or more transport-descriptions
A locator is used by message-transport-service to select a transport

5.14.3 Description

The locator serves as a basic building block for managing address and transport resolution. A locator includes all of the
transport-descriptions that may be used to contact the related agent or service.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 32

5.15 Message

5.15.1 Summary

A message is an individual unit of communication between two or more agents. A message logically arises from and
programmatically corresponds to a communicative act, in the sense that a message encodes the communicative act.
Communicative acts can be recursively composed, so while the outermost act is directly encoded by the message, taken
as a whole a given message may represent multiple individual communicative acts. Messages are encoded using an
encoding-representation and transmitted between agents over a transport. A concrete instantiation of message is a
mandatory element of every concrete instantiation of the abstract architecture.

A message includes an indication of the type of communicative act (for example, INFORM, REQUEST), the agent-
names of the sender and receiver agents, the ontology to be used in interpreting the content, and the content of the
message itself.

A message does not include any transport or addressing information. It is transmitted from sender to receiver by being
encoded as the payload of a transport-message, which includes this information.

5.15.2 Relationships to other elements

Message is written in an agent-communication-language
Message has content
Message has an ontology
Message includes an agent-name corresponding to the sender of the message
Message includes one or more agent-name corresponding to the receiver or receivers of the message
Message is sent by an agent
Message is received by one or more agents
Message is transmitted as the payload of a transport-message
Message is encoded according to an encoding-representation
Message is encoded by an encoding-transform-service

5.15.3 Description

The FIPA communicative acts library is described in detail in [FIPA00037].

5.16 Message Transport Service

5.16.1 Summary

A message-transport-service is a service. It supports the sending and receiving of transport-messages between
agents. A concrete instantiation of message-transport-service is a mandatory element of every concrete instantiation of
the abstract architecture.

5.16.2 Relationships to Other Elements

Message-transport-service may be invoked to send a transport-message to an agent
Message-transport-service selects a transport based on the recipient's transport-description
Message-transport-service is a service

5.16.3 Actions

A message-transport-service supports the following actions.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 33

5.16.3.1 Bind Transport
An agent may form a contract with the message-transport-service to send and receive messages using a particular
transport. It does this by invoking the bind-transport action of the message-transport-service. The semantics of this
action are as follows:

The agent provides a transport-description corresponding to the transport to be used. (In initiating the action, the
agent may control the scope of the action. Different reifications may handle this in different ways. The action may be
addressed to a particular instance of a directory-service, or the action may be qualified with some kind of scope
parameter.) Some or all of the elements of the transport-description may be missing, in which case the transport-
service may supply appropriate values. The transport-service attempts to create a usable transport-end-point for the
chosen transport-type, and constructs a transport-specific-address corresponding to this end-point.

If the action is successful, the message-transport-service will return an action-status indicating such, together with a
transport-description that has been completely filled in and is usable for message transport. The agent may use this
transport-description as part of its agent-description, and in constructing a transport-message.

Following a successful bind-transport, the message-transport-service will attempt to deliver any messages received
over the transport end-point to the agent.

If the action is unsuccessful, the message-transport-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The transport-description is invalid in some way.

5.16.3.2 Unbind Transport
An agent may terminate a contract with the message-transport-service to send and receive messages using a
particular transport. It does this by invoking the unbind-transport action of the message-transport-service. The
semantics of this action are as follows:

The agent provides a transport-description returned by a previous bind-transport action. (In initiating the action, the
agent may control the scope of the action. Different reifications may handle this in different ways. The action may be
addressed to a particular instance of a directory-service, or the action may be qualified with some kind of scope
parameter.) The transport-service identifies the corresponding transport-end-point and releases all transport related
resources.

If the action is successful, the message-transport-service will return an action-status indicating success. Additionally,
the message-transport-service will no longer attempt to deliver any messages to the agents associated with the defunct
transport binding.

If the action is unsuccessful, the message-transport-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Not-found. The transport-description does not correspond to a bound transport.

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The transport-description is invalid in some way.

5.16.3.3 Send Message
An agent may send a transport-message to another agent by invoking the send-message action of a message-
transport-service. The semantics of this action are as follows:

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 34

The agent provides a transport-message to be sent. The message-transport-service examines the envelope of the
message to determine how it should be handled.

If the action is successful, the message-transport-service will return an action-status indicating success. Following a
successful send-message, the message-transport-service will make attempt to deliver the message to the recipient.
However the successful completion of the send-message action should not be interpreted as indicating that delivery has
been achieved.

If the action is unsuccessful, the message-transport-service will return an action-status indicating failure, together with
an explanation. The range of possible explanations is, in general, specific to a particular reification. However a
conforming reification must, where appropriate, distinguish between the following explanations:

• Access. The agent making the request is not authorized to perform the specified action.

• Invalid. The transport-message is invalid in some way.

5.16.3.4 Deliver Message
A message-transport-service may deliver a transport-message to an agent by invoking the deliver-message action of
the agent. The semantics of this action are identical to those given for the bind-transport action.

5.16.4 Description

A concrete specification need not realize the notion of message-transport-service so long as the basic service
provisions are satisfied. In the case of a concrete specification based on a single transport, the agent may use native
operating system services or other mechanisms to achieve this service.

5.17 Ontology

5.17.1 Summary

Ontologies provide a vocabulary for representing and communicating knowledge about some topic and a set of
relationships and properties that hold for the entities denoted by that vocabulary.

A concrete instantiation of ontology is an optional element of concrete instantiations of the abstract architecture.

5.17.2 Relationships to Other Elements

Message has an ontology
Content has one or more ontologies

5.17.3 Description

An ontology is a set of symbols together with an associated interpretation that may be shared by a community of
agents or services. An ontology includes a vocabulary of symbols referring to objects and relationships in the subject
domain. An ontology also typically includes a set of logical statements expressing the constraints existing in the domain
and restricting the interpretation of the vocabulary.

Ontologies must be nameable, findable and manageable.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 35

5.18 Payload

5.18.1 Summary

A payload is a message encoded in a manner suitable for inclusion in a transport-message. A concrete instantiation of
payload is a mandatory element of every concrete instantiation of the abstract architecture.

5.18.2 Relationships to Other Elements

Payload is an encoded message
Transport-message contains a payload
Payload is encoded according to an encoding-representation

5.18.3 Description

See Section 5.22, Relationships to Other Elements which describes the transport-message.

5.19 Service

5.19.1 Summary

A service is a functional coherent set of mechanisms that support the operation of agents, and other services. These
are services used in the provisioning of agent environments and may be used as the basis for interoperation. A concrete
instantiation of service is a mandatory element of every concrete instantiation of the abstract architecture.

5.19.2 Relationships to Other Elements

Service has a public set of behaviours and actions
Service has a service description
Service can be accessed by agents
Directory-service is an instance of service, and is mandatory
Message-transport-service is an instance of service, and is mandatory

5.19.3 Description

FIPA will administer the name space of services according to the description given in Section 5.1.2. This is part of the
concrete realization process. Having a clear naming scheme for the services will allow for optimised implementation and
management of services.

5.20 Transport

5.20.1 Summary

A transport is a particular data delivery service, such as a message transfer system, a datagram service, a byte stream,
or a shared scratchboard. Abstractly, a transport is a delivery system selected by virtue of the transport-description
used to deliver messages to an agent. A concrete instantiation of transport is a mandatory element of every concrete
instantiation of the abstract architecture.

5.20.2 Relationships to Other Elements

Transport-description can be mapped onto a transport
Message-transport-service may use one or more transports to effect message delivery
A transport may support one or more transport-encodings

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 36

5.20.3 Description

The mapping from transport-description to transport must be consistent across all realizations. FIPA will administer
ontology of transport names. Concrete specifications should define a concrete encoding for this ontology.

5.21 Transport Description

5.21.1 Summary

A transport-description is a key-value tuple containing a transport-type, a transport-specific-address and zero or
more transport-specific-properties. A concrete instantiation of transport-description is a mandatory element of every
concrete instantiation of the abstract architecture.

5.21.2 Relationships to Other Elements

Transport-description has a transport-type
Transport-description has a set of transport-specific-properties
Transport-description has a transport-specific-address
Directory-entries include one or more transport-descriptions
Envelopes contain one or more transport-descriptions

5.21.3 Description

Transport-descriptions are used in three places within the abstract architecture. They are included in the directory-
service, describing where a registered agent may be contacted. They can be included in the envelope for a transport-
message, to describe how to deliver the message. In addition, if a message-transport-service is implemented,
transport-descriptions are used as input to the message-transport-service to specify characteristics for additional
delivery requirements for the delivery of messages to an agent.

5.22 Transport Message

5.22.1 Summary

A transport-message is the object conveyed from agent to agent. It contains the transport-description for the sender
and receiver together with a payload containing the message. A concrete instantiation of transport-message is a
mandatory element of every concrete instantiation of the abstract architecture.

5.22.2 Relationships to Other Elements

Transport-message contains one or more transport-descriptions for the receiving agents
Transport-message contains a payload
Transport-message contains an envelope
Transport-message is encoded according to an encoding-representation

5.22.3 Description

A concrete implementation may limit the number of receiving transport-descriptions for a transport-message. It may
also establish particular relationships between the agent-name or agent-names for the receiver in the payload. For
example, it may ensure that there is a one-to-one correspondence between agent-names.

The important thing to convey from agent to agent is the payload, together with sufficient transport-message context
to send a reply. A gateway service or other transformation mechanism may unpack and reformat a transport-message
as part of its processing.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 37

5.23 Transport Specific Properties

5.23.1 Summary

A transport-specific-property is property associated with a transport-type. These properties are used by the transport-
service to help it in constructing transport connections, based on the properties specified. A concrete instantiation of
transport-specific-property is a mandatory element of every concrete instantiation of the abstract architecture.

5.23.2 Relationships to Other Elements

Transport-description includes zero or more transport-specific-properties

5.23.3 Description

The transport-specific-properties are not required for a particular transport. They may vary between transports.

5.24 Transport Type

5.24.1 Summary

A transport-type describes the type of transport associated with a transport-specific-address. A concrete instantiation
of transport-type is a mandatory element of every concrete instantiation of the abstract architecture.

5.24.2 Relationships to Other Elements

Transport-description includes a transport-type

5.24.3 Description

FIPA will administer an ontology of transport-types. FIPA managed types will be flagged with the prefix of "FIPA-".
Specific realizations can provide experimental types, which will be prefixed "X-"

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 38

6 Agent and Agent Information Model
This section of the abstract architecture provides a series of UML class diagrams for key elements of the abstract
architecture. In Section 5, Architectural Elements you can get a textual description of these elements and other aspects
of the relationships between them.

Comment on notation: In UML, the notion of a 1 to many or 0 to many relationship is often noted as "1…*" or "0…*".
However, the tool that was used to generate these diagrams used the convention "1…n" and "0…n" to express the
concept of many.

6.1 Agent Relationships
Figure 11 outlines the basic relationships between an agent and other key elements of the FIPA abstract architecture. In
other diagrams in this section are provided details on the locator, and the transport-message.

Agent

 Directory-service

Directory-entryMessage-transport-service

0..n

1..n registers

0..n

1

sender

0..n

0..ncontains

0..n

searches

1..n

0..nreceiver

0..n

0..n

is sent/received by

Transport-message

Figure 11: UML - Basic Agent Relationships

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 39

6.2 Transport Message Relationships
Transport-message is the object conveyed from agent to agent. It contains the transport-description for the sender
and receiver or receivers, together with a payload containing the message (see Figure 12).

Envelope

Transport-Description

Payload

Payload-external-attributes

1

contains
1..n

contains

0..n contains

Message

Message-encoding-representation

Transport-Message 1

contains

1

contains
1

encoded in

Transform-service

0..n uses

0..n

0..n

transformed by

transforms 0..n

0..ntransforms

transformed by

1

encoded in

0..n

0..n

transformed by

transforms

Figure 12: UML - Transport-Message Relationships

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 40

6.3 Directory Entry Relationships
The directory-entry contains the agent-name, locator and agent-attributes. The locator provides ways to address
messages to an agent. It is also used in modifying transport requests (see Figure 13).

Locator

Transport-description

Transport-type Transport-specific-addressTransport-specific-properties

Directory-entry

1..ncontains

1contains

Agent-name

1

contains

0..n

contains

1

contains

has a
Transport-specific-address
and Transport-specific attributes
 are based
on Transport-type

Agent-attributes

0..n

contains

Figure 13: UML - Directory-entry and Locator Relationships

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 41

6.4 Message Elements
Figure 14 shows the elements in a Message. A Message is contained in a transport-message when messages are
sent.

Message

Agent Communication LanguageCommunicative
Act

Performative

1..n

contains expressed in

FIPA-ACL

has a

Content Ontology Name

0..n contains 0..n contains

KQML

Figure 14: UML - Message Elements

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 42

6.5 Message Transport Elements
The message-transport-service is an option service that can send transport-messages between agents. These
elements may participate in other relationships as well (see Figure 15).

Transport

Transport-descriptionMessage-transport-service

Transport-message

1selects

1

uses

0..1

sent

0..1

sender

Transform-service0..1

0..1

transforms

transformed by

1..n

supports

Encoding-representation1

uses

Figure 15: UML - Message-Transport Elements

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 43

7 Informative Annex A — Goals of Message Transport Abstractions

7.1 Scope
In order to create abstractions for the various architectural elements, it is necessary to examine the kinds of systems and
infrastructures that are likely targets of real implementations of the abstract architecture. In this section, we examine
some of the ways in which concrete messaging and messaging transports may differ. Authors of concrete architectural
specifications must take these issues into account when considering what end-to-end assumptions they can safely
make. The goals describe below give the reader an understanding of the objectives the authors of the abstract architecture
had in mind when creating this architecture.

7.2 Variety of Transports
There are a wide variety of transport services that may be used to convey a message from one agent to another. The
abstract architecture is neutral with respect to this variety. For any instantiation of the architecture, one must specify the
set of transports that are supported, how new transports are added, and how interoperability is to be achieved. It is
permissible for a particular concrete architecture to require that implementations of that architecture must support
particular transports.

Different transports use a variety of different address representations. Instantiations of the message transport architecture
may support mechanisms for validating addresses, and for selecting appropriate transport services based upon the form of
address used. It is extremely undesirable for an agent to be required to parse, decode, or otherwise rely upon the format
of an address.

The following are examples of transport services that may be used to instantiate this abstract architecture:

• Enterprise message systems such as those from IBM and Tibco.

• A Java Messaging System (JMS) service provider, such as Fiorano.

• CORBA IIOP used as a simple byte stream.

• Remote method invocation, using Java RMI or a CORBA-based interface.

• SMTP email using MIME encoding.

• XML over HTTP.

• Wireless Access Protocol.

• Microsoft Named Pipes.

7.3 Support for Alternative Transports Within a Single System
Many application programming environments offer developers a variety of network protocols and higher-level constructs
from which to implement inter-process communications, and it is becoming increasingly common for services to be made
available over several different communications frameworks. It is expected that some instantiations of the FIPA
architecture will allow the developer or deployer of agent systems to advertise the availability of their services over more
than one message transport.

For this reason, the notion of transport address is here generalized to that of destination. A destination is an object
containing one or more transport addresses. Each address is represented in a format that describes (explicitly or
implicitly) the set of transports for which it is usable. (The precise mapping from address to transport is left to the
concrete specification, although in practice the mapping is likely to be one-to-one.)

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 44

In its simplest form, a destination may be a single address that unambiguously defines the transport for which it can be
used.

7.4 Desirability of Transport Agnosticism
The abstract architecture is consistent with concrete architectures which provide "transport agnostic" services. Such
architectures will provide a programming model in which agents may be more or less aware of the details of transports,
addressing, and many other communications-related mechanisms. For example, one agent may be able to address
another in terms of some "social name", or in terms of service attributes advertised through the agent directory service
without being aware of addressing format, transport mechanism, required level of privacy, audit logging, and so forth.

Transport agnosticism may apply to both senders and recipients of messages. A concrete architecture may provide
mechanisms whereby an agent may delegate some or all of the tasks of assigning transport addresses, binding
addresses to transport end-points, and registering addresses in white-pages or yellow-pages directories to the agent
platform.

7.5 Desirability of Selective Specificity
While transport agnosticism simplifies the development of agents, there are times when explicit control of specific
aspects of the message transport mechanism is required. A concrete architecture may provide programmatic access to
various elements in the message transport subsystem.

7.6 Connection-Based, Connectionless and Store-and-Forward Transports
The abstract architecture is compatible with connection-based, connectionless, and store-and-forward transports. For
connection-based transports, an instantiation may support the automatic reestablishment of broken connections. It is
desirable than instantiations that implement several of these modes of operation should support transport-agnostic
agents.

7.7 Conversation Policies and Interaction Protocols
The abstract architecture specifies a set of abstract objects that allows for the explicit representation of "a conversation",
i.e. a related set of messages between interlocutors that are logically related by some interaction pattern. It is desirable
that this property be achieved by the minimum of overhead at the infrastructure or message level; in particular, it is
important that interoperability remain un-compromised. For example, an implementation may deliver messages to
conversation-specific queues based on an interpretation of the message envelope. To achieve interoperability with an
agent that does not support explicit conversations (i.e. which does not allow individual messages to be automatically
associated with a particular higher-level interaction pattern), it is necessary to specify the way in which the message
envelope must be processed in order to preserve conversational semantics.

Note: in the practice, we were not able to fully meet this goal. It remains a topic of future work.

7.8 Point-to-Point and Multiparty Interactions
The abstract architecture supports both point-to-point and multiparty message transport. For point-to-point interactions, an
agent sends a message to an address that identifies a single receiving agent. (An instantiation may support implicit
addressing, in which the destination is derived from the name of the intended recipient agent without the explicit
involvement of the sender.) For multiparty message transport, the address must identify a group of recipients. The most
common model for such message transport is termed "publish and subscribe", in which the address is a "topic" to which
recipients may subscribe. Other models, for example, "address lists", are possible.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 45

Not all transport mechanisms support multiparty communications, and concrete architectures are not required to provide
multiparty messaging services. Concrete architectures that do provide such services may support proxy mechanisms, so
that agents and agent systems that only use point-to-point communications may be included in multiparty interactions.

7.9 Durable Messaging
Some commercial messaging systems support the notion of durable messages, which are stored by the messaging
infrastructure and may be delivered at some later point in time. It is desirable that a message transport architecture
should take advantage of such services.

7.10 Quality of Service
The term quality of service refers to a collection of service attributes that control the way in which message transport is
provided. These attributes fall into a number of categories:

• Performance,

• Security,

• Delivery semantics,

• Resource consumption,

• Data integrity,

• Logging and auditing, and,

• Alternate delivery.

Some of these attributes apply to a single message; others may apply to conversations or to particular types of message
transport. Architecturally it is important to be able to determine what elements of quality of service are supported, to
express (or negotiate) the desired quality of service, to manage the service features which are controlled via the quality of
service, to relate the specified quality of service to a service performance guarantee, and to relate quality of service to
interoperability specifications.

7.11 Anonymity
The abstract transport architecture supports the notion of anonymous interaction. Multiparty message transport may
support access by anonymous recipients. An agent may be able to associate a transient address with a conversation,
such that the address is not publicly registered with any agent management system or directory service; this may extend
to guarantees by the message transport service to withhold certain information about the principal associated with an
address. If anonymous interaction is supported, an agent should be able to determine whether or not its interlocutor is
anonymous.

7.12 Message Encoding
It is anticipated that FIPA will define multiple message encodings together with rules governing the translation of
messages from one encoding to another. The message transport architecture allows for the development of instantiations
that use one or more message encodings.

7.13 Interoperability and Gateways
The abstract agent transport architecture supports the development of instantiations that use transports, encodings, and
infrastructure elements appropriate to the application domain. To ensure that heterogeneity does not preclude

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 46

interoperability, the developers of a concrete architecture must consider the modes of interoperability that are feasible with
other instantiations. Where direct end-to-end interoperability is impossible, impractical or undesirable, it is important that
consideration be given to the specification of gateways that can provide full or limited interoperability. Such gateways may
relay messages between incompatible transports, may translate messages from one encoding to another, and may
provide quality-of-service features supported by one party but not another.

7.14 Reasoning about Agent Communications
The agent transport architecture supports the notion of agents communicating and reasoning about the message transport
process itself. It does not, however, define the ontology or conversation patterns necessary to do this, nor are concrete
architectures required to provide or accept information in a form convenient for such reasoning.

7.15 Testing, Debugging and Management
In general, issues of testing, debugging, and management are implementation-specific and will not be addressed in an
abstract architecture. Individual instantiations may include specific interfaces, actions, and ontologies that relate to these
issues, and may specify that these features are optional or normative for implementations of the instantiation.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 47

8 References
[FIPA00007] FIPA Content Language Library Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00007/
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000.
 http://www.fipa.org/specs/fipa00023/
[FIPA00037] FIPA Communicative Act Library Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00037/
[FIPA00061] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00061/
[Gamma95] Gamma, Helm, Johnson & Vlissides, Design Patterns. Addison-Wesley, 1995.
[Searle69] Searle, J. L., Speech Acts. Cambridge University Press, 1969.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 48

9 Informative Annex B — Goals of Directory Service Abstractions
This section describes the requirements and architectural elements of the abstract Directory Service. The directory
service is that part of the FIPA architecture which allows agents to register information about themselves in one or more
repositories, for those same agents to modify and delete this information, and for agents to search the repositories for
information of interest to them. The information that is stored is referred to a directory-entry, and the repository is an agent
directory.

9.1 Scope
The purpose of the abstract architecture is to identify the key abstractions that will form the basis of all concrete
architectures. As such, it is necessarily both limited and non-specific. In this section, we examine some of the ways in
which concrete directory services may differ.

9.2 Variety of Directory Services
There are several directory services that may be used to store agent descriptions. The abstract architecture is neutral with
respect to this variety. For any instantiation of the architecture, one must specify the set of directory services that are
supported, how new directory services are added, and how interoperability is to be achieved. It is permissible for a
particular concrete architecture to require that implementations of that architecture must support particular directory
services.

Different directory services use a variety of different representations for schemas and contents. Instantiations of the agent
directory architecture may support mechanisms for hiding these differences behind a common API and encoding, such as
the Java JNDI model or hyper-directory schemes. It is extremely undesirable for an agent to be required to parse, decode,
or otherwise rely upon different information encodings and schemas.

The following are examples of directory systems that may be used to instantiate the abstract directory service:

• LDAP,

• NIS or NIS+,

• COS Naming,

• Novell NDS,

• Microsoft Active Directory,

• The Jini lookup service, and,

• A name service federation layer, such as JNDI.

9.3 Desirability of Directory Agnosticism
The abstract architecture is consistent with concrete architectures which provide "directory agnostic" services. Such a
model will support agents that are more or less completely unaware of the details of directory services. A concrete
architecture may provide mechanisms whereby an agent may delegate some or all of the tasks of assigning transport
addresses, binding addresses to transport end-points, and registering addresses in all available directories to the agent
platform.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 49

9.4 Desirability of Selective Specificity
While directory agnosticism simplifies the development of agents, there are times when explicit control of specific aspects
of the directory mechanism is required. A concrete architecture may provide programmatic access to various elements in
the directory subsystem.

9.5 Interoperability and Gateways
The abstract directory architecture supports the development of instantiations that use directory services appropriate to
the application domain. To ensure that heterogeneity does not preclude interoperability, the developers of a concrete
architecture must consider the modes of interoperability that are feasible with other instantiations. Where direct end-to-
end interoperability is impossible, impractical or undesirable, it is important that consideration be given to the specification
of gateways that can provide full or limited interoperability. Such gateways may extract agent descriptions from one
directory service, transform the information if necessary, and publish it through another directory service.

9.6 Reasoning about Agent Directory
The abstract directory architecture supports the notion of agents communicating and reasoning about the directory service
itself. It does not, however, define the ontology or conversation patterns necessary to do this, nor are concrete
architectures required to provide or accept information in a form convenient for such reasoning.

9.7 Testing, Debugging and Management
In general, issues of testing, debugging, and management are implementation-specific and will not be addressed in an
abstract architecture. Individual instantiations may include specific interfaces, actions, and ontologies that relate to these
issues, and may specify that these features are optional or normative for implementations of the instantiation.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 50

10 Informative Annex C — Goals for Abstract Agent Communication
Language

10.1 Goals of This Abstract Communication Language
The prime motivation for the FIPA ACL is the enabling of communication between agents in a way that allows them to
derive semantically useful information without requiring an a-priori agreement as to the language used in the
communication.

This is achieved by means of a combination of three aspects:

1. A range of message types, which are based on Searle's speech act theory [Searle69] and which are grounded in a

sound logical framework.

2. A series of notations in which logical propositions, actions and objects can be expressed.

3. The use of explicitly referenced ontologies that allow agents to interpret the identifiers in a communication relative to

one or more shared interpretations of those identifiers.

10.2 Scope of this Discussion
The scope of this discussion is the concepts, structures and semantics required to support the three aspects identified
above, taking into account the context of other elements of FIPA specifications, in particular the FIPA abstract
architecture.

10.3 Requirements

10.3.1 Variety of Content Languages

There is considerable scope for variation in the particular content languages; some content languages may be highly
specialized to particular domains and some may be extremely general and powerful. In the case where the content
language is highly specialized, explicit ontologies may be less relevant since the ontology may be effectively frozen in to
the content language. In the case where content languages are extremely general and powerful, the content language can
express shared conditional plans or other propositions, in which case ontologies become quite important.

10.3.2 Content Languages for FIPA

There is also scope for the use of content languages within FIPA itself; for example in the specification of agent
management, or in the application scenarios, or in specific areas such as agent-human interactions. The demand for
content languages in specifications produced by FIPA is likely to grow in the future.

Any content language(s) chosen by FIPA need to strike a balance between expressive power and simplicity. FIPA uses
various subsets of predicate logic as a semantic base for FIPA's own content languages because that approach
maximizes the links with the semantic framework of ACL itself.

10.3.3 Small Content Languages

Not every application domain requires the expressive power of full first order logic. There are many (if not most) situations
where a much simpler language is sufficient. In the spirit of this, we do not require that all content languages (that is, all
concrete ACLs) be capable of representing all of the elements of the AACL.

The minimal requirements of a concrete content language are set by the kinds of messages (in particular the
performatives that may be used in those message) that may be used in the application domain. For example, if an

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 51

application domain does not require the denotation of actions, then the corresponding concrete content language does not
need to have a method of representing actions - except for the specific actions denoted by the specific speech actions
needed. Furthermore, it is not necessarily required that speech acts may be embedded within content language
expressions. Therefore, it is required that any FIPA AACL be easily partitioned into semantically coherent subsets.

Any particular description of a content language should, moreover, show clearly which elements of the AACL are
representable in the content language.

10.3.4 Variety of Language Expressions

On a large scale, software systems can often be viewed as being composed of islands of relatively tightly integrated
components bridged together by specialized gateways. It is often the case that communication between the residents of
an island can be richer than communication across islands - by virtue of the fact that there may be greater commonality
and shared assumptions between components within a single island.

Independent of the particular content language in use, different platforms will tend to support very different program
structures. For example, a Java-native community of agents may wish to communicate about Java objects in a natural
way; and therefore, a Java-natural representation of a content expression would most naturally take the form of a parse
tree-like structure consisting of Java objects. On the other hand, a LISP-native community of agents would prefer content
language expressions as LISP S-expressions. This applies both internally to an agent and externally between agents.

Therefore, an important objective of the AACL is to enable relatively homogenous groups of agents to maximize the benefit
of that homogeneity. This can be done by permitting the communication of values in a natural way while at the same time
supporting a minimal range of data values that can be supported reasonably by all modern environments.

For example, in a community of Java agents, they should be able to incorporate Java objects directly in messages - this
may be useful even if it is not possible or meaningful to send Java objects in messages to non-Java agents.

In addition to supporting native data values efficiently, the representation of messages themselves may be different in
different environments. Again, a Java agent would be more efficient manipulating (and therefore understanding) an ACL
message as a tree of Java objects representing the parse tree than as a string; whereas a PERL agent would tend to
prefer a string representation given PERL's very powerful string handling features.

Therefore, an additional goal of the AACL is to allow multiple representations of content expressions, whilst at the same
time constraining them to be semantically coherent across platforms.

10.3.5 Desirability of Logic

Logic - in particular predicate calculus - has been shown to be a very powerful formalism for expressing both mathematics
and simpler concepts. The formalism itself is separate from the written notation, allowing many languages to have a
semantic basis in logic. The prime benefit of a logical foundation is predictability: given a logical semantics it is possible
to accurately predict the meaning of expressions (within the limitations of the interpretation of the particular symbols in
the language which may be `outside' the logic).

10.3.5.1 Desirability of Logical Agnosticism
As noted above, the potential range of content languages is quite large, with a correspondingly large variety of semantic
frameworks. However, the semantics of ACL itself is necessarily and firmly based in predicate calculus. Therefore it is
required that there be some connection between the semantics of content languages and the semantics of ACL itself.

The full realization of this is strictly impossible since there are many systems of reasoning that cannot be formalized as
logic. However, for many practical purposes, it is possible to express the semantics of most programming languages and
most communications languages in logic. Furthermore, most applications involving the FIPA ACL are likely to be simple
in nature and easily modelled in logic.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 52

11 Informative Annex D — Goals for Security and Identity Abstractions

11.1 Introduction
In order to create abstractions for the various architectural elements, it is necessary to examine the kinds of systems and
infrastructures that are likely targets of real implementations of the abstract architecture. In this section, we examine
some of the ways in which security related issues may differ. Authors of concrete architectural specifications must take
these issues into account when considering what end-to-end assumptions they can safely make. The goals describe
below give the reader an understanding of the objectives the authors of the abstract architecture had in mind when
creating this architecture.

In practice, only a very minor part of the security issues can be addressed in the abstract architecture, as most security
issues are tightly coupled to their implementation.

In general, the amount of security required is highly dependent on the target deployment environment.

A glossary of security terms is located at the end of this section.

11.2 Overview
There are several aspects to security, which must permeate the FIPA architecture. They are:

• Identity. The ability to determine the identity of the various entities in the system. By identifying an entity, another

entity interacting with it can determine what policies are relevant to interactions with that entity. Identity is based on
credentials, which are verified by a Credential Authority.

• Access Permissions. Based on the identity of an entity, determine what policies apply to the entity. These policies

might govern resource consumption, types of file access allowed, types of queries that can be performed, or other
controlling policies.

• Content Validity. The ability to determine whether a piece of software, a message, or other data has been modified

since being dispatched by its originating source. Digitally signing data and then having the recipient verify the
contents are unchanged often accomplish this. Other mechanisms such as hash algorithms can also be applied.

• Content Privacy. The ability to ensure that only designated identities can examine software, a message or other

data. To all others the information is obscured. This is often accomplished by encrypting the data, but can also be
accomplished by transporting the data over channels that are encrypted.

Identity, or the use of credentials, is needed to supply the ability to control access, to provide content validity, and create
content privacy. Each of these is discussed below.

11.3 Areas to Apply Security
This section describes the areas in which security can be applied within agent systems. In each case, the security
related risks that are being guarded against are described. The assumption is that any agent or other entity in the system
may have credentials that can be used to perform various forms of validation.

11.3.1 Content Validity and Privacy During Message Transport

There are two basic potential security risks when sending a message from one agent to another.

The primary risk is that a message is intercepted, and modified in some way. For example, the interceptor software
inserts several extra numbers into a payment amount, and modifies the name of the check payee. After modification, it is

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 53

sent on to the original recipient. The other agent acts on the incorrect data. In a case like this, the content validity of the
message is broken.

The secondary risk is that the message is read by another entity, and the data in it is used by that entity. The message
does reach its original destination intact. If this occurs, the privacy of the message is violated.

Digital signing and encryption can address these risks, respectively. These two techniques can be abstractly presented at
two different layers of the architecture. The messages themselves (or probably just the payload part) can be signed or
encrypted. There are a number of techniques for this, PGP signing and encryption, Public Key signing and encryption,
one time transmission keys, and other cryptographic techniques. This approach is most effective when the nature of
underlying message transport is unknown or unreliable from a security perspective.

The message transport itself can also provide the digital signing or encryption. There are a number of transports that can
provide such features: SKIP, IPSEC and CORBA Common Secure Interoperability Services. It seems prudent to include
both models within the architecture, since different applications and software environments will have very different
capabilities.

There is another aspect of message transport privacy that comes from agents that misrepresent themselves. In this
scenario, an agent can register with directory services indicating that is a provider of some service, but in fact uses the
data it receives for some other purpose. To put it differently, how do you know who you are talking to? This topic is
covered under agent identity below.

11.3.2 Agent Identity

If agents and agent services have a digital identity, then agents can validate that:

• Agents they are exchanging messages with can be accurately identified, and,

• Services they are using are from a known, safe source.

Similarly, services can determine whether the agent:

• Use identity to determine code access or access control decisions, or,

• Use agent identity for non-repudiation of transactions.

11.3.3 Agent Principal Validation

The Agent can contain a principal (for example a user), on whose behalf this code is running. The principal has one or
more credentials, and the credentials may have one or more roles that represent the principal.

If an agent has a principal, the other agents can:

• Determine whether they want to interoperate with that agent,

• Determine what policy and access control to permit to that user, and,

• Use the identity to perform transactions.

Services could perform similar actions.

11.3.4 Code Signing Validation

An agent can be code signed. This involves digitally signing the code with one or more credentials. If an agent is code
signed, the platform could:

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 54

• Validate the credential(s) used to sign the agent software. Credentials are validated with a credential authority,

• If the credentials are valid, use policy to determine what access this code will have, or,

• If the credentials are valid, verify that the code is not modified.

In addition, the Agent Platform can use the lack of digital signature to determine whether to allow the code to run, and
policy to determine what access the code will have. In other words, some platforms may have the policy that will not
permit code to run, or will restrict Access Permissions unless it is digitally signed.

11.4 Risks Not Addressed
There are a number of other possible security risks that are not addressed, because they are general software issues,
rather than unique or special to agents. However, designers of agent systems should keep these issues in mind when
designing their agent systems.

11.4.1 Code or Data Peeping

An entity can probe the running agent and extract useful information.

11.4.2 Code or Data Alteration

The unauthorized modification or corruption of an agent, its state, or data. This is somewhat addressed by the code
signing, which does not cover all cases.

11.4.3 Concerted Attacks

When a group of agents conspire to reach a set of goals that are not desired by other entities. These are particularly hard
to guard against, because several agents may co-operate to create a denial of service attack in a feint to allow another
agent to undertake the undesirable action.

11.4.4 Copy and Replay

An attempt to copy an agent or a message and clone or retransmit it. For example, a malicious platform creates an illegal
copy, or a clone, of an agent, or a message from an agent is illegally copied and retransmitted.

11.4.5 Denial of Service

In a denial-of-service the attackers try to deny resources to the platform or an agent. For example, an agent floods another
agent with requests and the receiving agent is unable to provide its services to other agents.

11.4.6 Misinformation Campaigns

The agent, platform, or service misrepresents information. This includes lying during negotiation, deliberately representing
another agent, service or platform as being untrustworthy, costly, or undesirable.

11.4.7 Repudiation

An agent or agent platform denies that it has received/sent a message or taken a specific action. For example, a
commitment between two agents as the result of a contract negotiation is later ignored by one of the agents, denying the
negotiation has ever taken place and refusing to honour its part of the commitment.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 55

11.4.8 Spoofing and Masquerading

An unauthorized agent or service claims the identity of another agent or piece of software. For example, an agent
registers as a Directory Service and therefore receives information from other registering agents.

11.5 Glossary of Security Terms
Access permission – Based on a credential model, the ability to allow or disallow software from taking an action. For
example, software with certain credentials may be allowed read a particular file, a group with different credentials may be
allowed to write to the file.
Examples: OS file system permissions, Java Security Profiles (check name), Database access controls.

Authentication – Using some credential model, ability to verify that the entity offering the credentials is who/what it says
it is.

Credential – An item offered to prove that a user, a group, a software entity, a company, or other entities is who or what
it claims to be.
Examples: X.509 certificate, a user login and password pair, a PGP key, a response/challenge key, a fingerprint, a retinal
scan, a photo id. (Obviously, some of these are better suited to software than others!)

Credential Authority – An entity that determines whether the credential offered is valid, and that the credential
accurately identifies the individual offering it.
Examples: An X.509 certificate can be validated by a certificate authority. At a bar, the bartender is the credential
authority who determines whether your photo id represents you (he may then determine your access permissions to
available beverages!).

Credential model – The particular mechanism(s) being used to provide and authenticate credentials.

Code signing – A particular case of digital signature (see below), where code is signed by the credentials of some entity.
The purpose of code signing is to identify the source of the code, and to verify that the code has not been changed by
another entity.
Examples: Java code signing, DCOM object signing, checksum verification.

Digital signature – Using a credential model to indicate the source of some data, and to ensure that the data is
unchanged since it was signed. Note: the word data is used very broadly here – it could a string, software, voice stream,
etc.
Examples: S/MIME mail, PGP digital signing, IPSEC (authentication modes)

Encryption – The ability to transform data into a format that can only be restored by the holder of a particular credential.
Used to prevent data from being observed by others.
Examples: SSL, S/MIME mail, PGP digital signing, IPSEC (encryption modes)

Identity – A person, server, group, company, software program that can be uniquely identified. Identities can have
credentials that identify them.

Lease – An interval of time that some element, such as an identity or a credential is good for. Leases are very useful
when you want to restrict the length of commitment. For example, you may issue a temporary credential to an agent that
gives it 20 minutes in a given system, at which time the credential expires.

Policy – Some set of actions that should be performed when a set of conditions is met. In the context of security, allow
access permissions based on a valid credential that establishes an identity.
Examples: If a credential for a particular user is presented, allow him to access a file. If a credential for a particular role is
presented, allow the agent to run with a low priority.

© 2000 Foundation for Intelligent Physical Agents FIPA Abstract Architecture

 56

Role – An identity that has an "group" quality. That is, the role does not uniquely identify an individual, or machine, or an
agent, but instead identifies the identity in a particular context: as a system manager, as a member of the entry order
group, as a high-performance calculation server, etc.
Examples: In various operating system groups, as applied to file system access. In Lotus Notes, the "role" concept.
X.509 certificate role attributes.

Principal – In the agent domain, the identity on whose behalf the agent is running. This may be a user, a group, a role or
another software entity.
Examples: A shopping agent’s principal is the user who launched it. An commodity trader agent’s principal is a financial
company. A network management agent’s principal is the role of system admin, or super-user. In a small "worker bee"
agent, the principal may be the delegated authority of the parent agent.

