
FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA 98 Specification

Part 12

Ontology Service

Publication date: 23rd October 1998

Copyright © 1998 by FIPA - Foundation for Intelligent Physical Agents

Geneva, Switzerland

This is one part of the first version of the FIPA 98 Specification as released in October 1998.
The latest version of this document may be found on the FIPA web site:

http://www.fipa.org

Comments and questions regarding this document and the specifications therein should be addressed to:
Specs@fipa.org

It is planned to introduce a web -based mechanism for submitting comments to the specifications.
Please refer to the web site for FIPA's latest policy and procedure for dealing with issues regarding the specification.

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting
permission to use any of the technologies described. Anyone planning to make use of technology covered by the
intellectual property rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly
encourages anyone implementing any part of this specification to determine first whether part(s) sought to be
implemented are covered by the intellectual property of others, and, if so, to obtain appropriate licenses or other
permission from the holder(s) of such intellectual property prior to implementation. This FIPA 98 Specification is
subject to change without notice. Neither FIPA nor any of its Members accept any responsibility whatsoever for
damages or liability, direct or consequential, which may result from the use of this specification.

©FIPA (1998) FIPA 98 version 1.0 Part 12

ii

Contents

1 Scope ...1

2 Normative reference(s) ...2

3 Terms and definitions ...2

4 Symbols (and abbreviated terms) ...6

5 Overview ..7

5.1 Rationale for having explicit ontologies...7

5.2 Possible benefits for applications...8

5.3 Some sample scenarios illustrating offered features................................ 9

5.3.1 Scenario 1 – Querying the OA for definition of terms ... 9

5.3.2 Scenario 2 – selecting a shared ontology...9

5.3.3 Scenario 3 – testing equivalence.. 10

5.3.4 Scenario 4 – finding ontologies................................ 10

5.3.5 Scenario 5 - translation of terms... 11

6 Specification of the Ontology Service .. 12

6.1 Reference Model .. 12

6.1.1 Services provided by the Ontology Agent... 12

6.2 Naming and referring Ontologies... 13

6.3 Relationships between Ontologies ... 13

6.3.1 Level = extension ... 14

6.3.2 Level = identical ... 14

6.3.3 Level = equivalent... 15

6.3.4 Level = weakly-translatable ... 15

6.3.5 Level = strongly-translatable ... 16

6.3.6 Level = approx-translatable ... 16

6.3.7 General properties................................ 16

6.4 Registration of the Ontology Agent with the DF................................ 17

6.4.1 Querying the DF................................ 19

©FIPA (1998) FIPA 98 version 1.0 Part 12

iii

6.5 FIPA Knowledge Model and FIPA meta-ontology... 20

6.5.1 Symbols in the FIPA-meta-ontology .. 38

6.6 Responsibilities, Actions and Predicates Supported by the Ontology Agent............................. 40

6.6.1 Responsibilities of the Ontology Agent... 41

6.6.2 Assertion ... 41

6.6.3 Retraction ... 41

6.6.4 Query................................ 41

6.6.5 Modify ... 42

6.6.6 Translation of the Terms and Sentences between Ontologies.. 42

6.6.7 Error handling ... 44

6.7 Interaction Protocol to agree on a shared ontology.. 45

6.8 FIPA-Ontol-service-Ontology... 45

6.8.1 List of predicates... 45

6.8.2 List of actions................................ 45

6.8.3 List of objects and constant values ... 46

7 References................................ 47

Annex A (informative) Ontologies and Conceptualizations ... 48

I. Ontologies vs. conceptualizations.. 48

II. A formal account of ontologies and conceptualizations ... 49

II.1 What is a conceptualization................................ 49

II.2 What is an ontology 50

III. The Ontology Integration Problem... 51

IV. Basic kinds of ontologies... 52

IV.1 From top-level to application-level 52

IV.2 Shareable Ontologies and Reference Ontologies.. 53

IV.3 Meta -level Ontologies................................ 54

V. References................................ 54

Annex B (informative) Guidelines to define a New Ontology ... 55

I. Set of principles useful in the development of ontologies................................ 55

II. Ontology development process... 55

©FIPA (1998) FIPA 98 version 1.0 Part 12

iv

II.1 Project Management Activities ... 56

II.2 Development Activities ... 56

II.4 Ontology Life Cycle... 57

III. Methodology to build ontologies... 57

III.1 Specification .. 57

III.2 Knowledge acquisition .. 58

III.3 Ontology and Natural Language................................ 59

IV. References .. 60

Natural Language based Knowledge acquisition references ... 60

©FIPA (1998) FIPA 98 version 1.0 Part 12

v

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in Geneva, Switzerland.
FIPA’s purpose is to promote the success of emerging agent-based applications, services and equipment. This goal
is pursued by making available in a timely manner, internationally agreed specifications that maximise interoperability
across agent-based applications, services and equipment. This is realised through the open international collaboration
of member organisations, which are companies and universities active in the agent field. FIPA intends to make the
results of its activities available to all interested parties and to contribute the results of its activities to appropriate
formal standards bodies.

This specification has been developed through direct involvement of the FIPA membership. The 48 members of FIPA
(October 1998) represent 13 countries world-wide.

Membership in FIPA is open to any corporation and individual firm, partnership, governmental body or international
organisation without restriction. By joining FIPA each member declares himself individually and collectively committed
to open competition in the development of agent-based applications, services and equipment. Associate Member
status is usually chosen by those entities who want to be members of FIPA without using the right to influence the
precise content of the specifications through voting.

The members are not restricted in any way from designing, developing, marketing and/or procuring agent-based
applications, services and equipment. Members are not bound to implement or use specific agent-based standards,
recommendations and FIPA specifications by virtue of their participation in FIPA.

This specification is published as FIPA 98 specifications ver 1.0. All these parts have undergone an intense review by
members as well as non-members during the past year as preliminary versions have been available on the FIPA web
site. FIPA members as well as many non-members have been conducting validation trials of the FIPA 97 specification
during 1998 and will continue to subject the new output to further validation during the coming months. During 1999
FIPA will publish revised versions of the current specifications and is also planning to continue work on further
specifications of agent based technology.

©FIPA (1998) FIPA 98 version 1.0 Part 12

vi

Introduction

The FIPA specifications represent the primary output of FIPA. It is important to appreciate that these specifications
have been derived from examining requirements on agent technology posed by specific industrial applications chosen
by FIPA so far, and described in Parts 4, 5, 6, and 7 of the FIPA 97 specifications.

FIPA specifies the interfaces of the different components in the environment with which an agent can interact, i.e.
humans, other agents, non-agent software and the physical world. FIPA produces two kinds of specifications:

• normative specifications mandating the external behavior of an agent and ensuring interoperability with other
FIPA-specified subsystems;

• informative specifications of applications providing guidance to industry on the use of FIPA technologies.

In October 1997, FIPA released its first set of specifications, called FIPA 97, Version 1.0. During 1998, comments on
this specification were received. Based upon these comments, parts of FIPA 97 were superseded by a second version
released in October 1998, introducing minor changes only.

Furthermore, in October 1998 FIPA released a new set of specifications, called FIPA 98, version 1.0, of which this
document is a part.

©FIPA (1998) FIPA 98 version 1.0 Part 12

vii

The following tables provide an overview of the complete set of FIPA specifications.

Sorted by part:

 Released October 1997 Released October 1998

Part FIPA 97 Version 1.0 FIPA 97 Version 2.0 FIPA 98 Version 1.0

1 N Agent Management Agent Management Agent Management Extensions

2 N ACL ACL

3 N Agent Software Integration

4 I Personal Travel Assistant

5 I Personal Assistant

6 I Audio Visual Entertainment &
Broadcasting

7 I Network Management &
Provision

8 N Human-Agent Interaction

10 N Agent Security Management

11 N Agent Management Support for Mobility

12 N Ontology Service

13 I/M Developer’s Guide

N == normative; I == informative; M == methodology ; Italicised == superseded

Sorted by topic:

Topic FIPA 97(Version 1.0, unless otherwise
indicated)

FIPA 98 Version 1,0

Agent Management 1. Basic System (Version 2.0) 1. Extension to Basic System

 10. Agent Security Management

 11. Agent Management Support for Mobility

Agent Communication

2. Agent Communication Language
 (Version 2.0)

8. Human-Agent Interaction

 12. Ontology Service

Agent S/W Integration

3. Agent Software Integration

Reference Applications 4. Personal Travel Assistant

 5. Personal Assistant

 6. Audio/Visual Entertainment &
 Broadcasting

 7. Network Management &
 Provisioning

©FIPA (1998) FIPA 98 version 1.0 Part 12

viii

The parts of the FIPA 98 specifications are briefly described below.

Part 1 - Agent Management

This part covers agent management for inter-operable agents, and is thus primarily concerned with defining open
standard interfaces for accessing agent management services. It also specifies an agent management ontology and
agent platform message transport . This specification incorporates and further enhances the FIPA 97, Part 1, Version
2.0 specification. The internal design and implementation of intelligent agents and agent management infrastructure
is not mandated by FIPA and is outside the scope of this part.

Part 8 – Human-Agent Interaction

This part deals with the human-agent interaction part of an agent system. It specifies two agent services: User Dialog
Management Service (UDMS) and User Personalization Service (UPS). A UDMS wraps many types of software
components for user interfaces allowing for ACL level of interaction between agents and human users. A UPS can
maintain user models and supports their construction by either accepting explicit information about the user or by
learning from observa tions of user behavior.

Part 10 – Agent Security Management

Security risks exist throughout agent management: during registration, agent-agent interaction, agent configuration,
agent-agent platform interaction, user-agent interaction and agent mobility. The Security Management specification
identifies the key security threats in agent management and specifies facilities for securing agent-agent
communication via the FIPA agent platform. This specification represents the minimal set of technologies required and
is complementary to the existing FIPA 97 and FIPA 98, Part 1 specifications. This part does not mandate every FIPA-
compliant agent platform to support agent security management.

Part 11 – Agent Management Support for Mobility

This specification represents a normative framework for supporting software agent mobility using the FIPA agent
platform. This framework represents the minimal set of technologies required and is complementary to the existing
FIPA 97 and FIPA 98, Part 1 specifications. Wherever possible, it refers to existing standards in this area. The
framework supports additional non-mobile agent management operations such as agent configuration. The
specification does not mandate that every FIPA-compliant agent platform must support agent mobility, nor does it
cover the specific requirements for agents on mobile devices with intermittent connectivity, which is covered by the
scope of the existing FIPA Agent Management activity.

Part 12 – Ontology Service

This part deals with technologies enabling agents to manage explicit, declaratively represented ontologies. It specifies
an ontology service provided to a community of agents by a dedicated Ontology Agent. It allows for discovering public
ontologies in order to access and maintain them; translating expressions between different ontologies and/or different
content languages; responding to queries for relationships between terms or between ontologies; and, facilitating
identification of a shared ontology for communication between two agents.

The specification deals only with the communicative interface to such a service while internal implementation and
capabilities are left to developers. The interaction protocols, communicative acts and, in general, the vocabulary that
agents must adopt when using this service are defined. The specification does not mandate the storage format of
ontologies, but only the way the ontology service is accessed. However, in order to specify the service, an explicit
representation formalism, or meta-ontology, has been specified allowing communication of knowledge between
agents.

Part 13 – FIPA 97 Developer's Guide

The Developer’s Guide is meant to be a companion document to the FIPA 97 specifications, and is intended to clarify
areas of specific interest and potential confusion. Such areas include issues that span more than one of the normative
parts of FIPA 97.

©FIPA (1998) FIPA 98 version 1.0 Part 12

1

1 Scope

The model of agent communication in FIPA is based on the assumption that two agents, who wish to converse,
share a common ontology for the domain of discourse. It ensures that the agents ascribe the same meaning to
the symbols used in the message. For a given domain, designers may decide to use ontologies that are explicit,
declaratively represented (and stored somewhere) or, alternatively, ontologies that are implicitly encoded with the
actual software implementation of the agent themselves and thus are not formally published to an ontology
service.

This Part of FIPA 98 specifications deals with technologies enabling agents to manage explicit, declaratively
represented ontologies. An ontology service for a community of agents is specified for this purpose. It is required
that the service be provided by a dedicated agent, hereafter called Ontology Agent (OA), whose role in the
community is to provide some or all of the following services:

- discovery of public ontologies in order to access them;

- maintain (e.g. register with the DF, upload, download, and modify) a set of public ontologies;

- translate expressions between different ontologies and/or different content languages;

- respond to query for relationships between terms or between ontologies;

- facilitate the identification of a shared ontology for communication between two agents.

This specification deals only with the communicative interface to such a service while internal implementation and
capabilities are left to developers. It is not mandated that every OA be able to execute all those tasks (e.g.
translation between ontologies, and identification of a shared ontology are in general very difficult and not always
possible to realize), but every OA must be able to participate into a communication about these tasks (possibly
responding that it is not able to execute the translation task). The interface is specified at the agent
communication level [1,2] as opposed to a computational API. Therefore, the specification defines the interaction
protocols, the communicative acts and, in general, the vocabulary that agents must adopt when using this
service.

The specification enables developers to build:

- agents that access such a service,

- agents that provide it,

- agents able to negotiate at run-time a shared ontology for communication.

The application of this specification does not prevent the existence of agents that, for a given domain, use
ontologies implicitly encoded with the implementation of the agents themselves. In these cases full agent
communication and understanding can still be obtained, however the services provided by the OA cannot apply to
implicit encoded ontologies.

It is not intention of this document to mandate that every FIPA Agent Platform must include an Ontology Agent.
However, in order to promote interoperability, if one OA exists, then it must comply with these specification. And,
if the services here described are required by a specific agent platform implementation, then they must be
implemented in compliance with this specification.

In order to keep the applicability of the specification as unrestricted as possible, the approach used is platform
independent. In particular, this specification does not mandate the storage format of ontologies but only the way
agents access an ontology service. However, in order to specify the service, an explicit representation formalism
has been specified. It is the FIPA Knowledge Model, identified by the name Fipa-meta-ontology, that allows
communication of knowledge between agents. As far as possible, care has been taken to integrate existing
formalisms, such as RDF [5] and OKBC [3].

©FIPA (1998) FIPA 98 version 1.0 Part 12

2

2 Normative reference(s)

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this specification are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid specifications, term(s) and definition(s).

FIPA 1998. FIPA 97 specification – Part 1: Agent Management – version 2.0, October 1998.

FIPA 1998. FIPA 97 specification – Part 2: Agent Communication Language – version 2.0, October 1998.

Vinay K. Chaudhri Artificial Intelligence Center SRI International Adam Farquhar Knowledge Systems Laboratory
Stanford University Richard Fikes Knowledge Systems Laboratory Stanford University Peter D. Karp Artificial
Intelligence Center SRI International James P. Rice Knowledge Systems Laboratory Stanford University. Open
Knowledge Base Connectivity 2.0.4 - April 9, 1998. Chapter 2 – Knowledge Model.

3 Terms and definitions

For the purposes of this specification, the following terms and definitions apply:

Action
A basic construct which represents some activity which an agent may perform. A special class of actions is the
communicative acts.

Agent
An Agent is the fundamental actor in a domain. It combines one or more service capabilities into a unified and
integrated execution model which can include access to external software, human users and communication
facilities.

Agent cloning
The process by which an agent creates a copy of itself on an agent platform.

Agent code
The set of instructions used by an agent.

Agent Communication Language (ACL)
A language with precisely defined syntax, semantics and pragmatics that is the basis of communication between
independently designed and developed software agents. ACL is the primary subject of the FIPA 97 specification,
part 2.

Agent Communication Channel (ACC)
The Agent Communication Channel is an agent which uses information provided by the Agent Management
System to route messages between agents within the platform and to agents resident on other platforms.

Agent data
Any data associated with an agent.

Agent invocation
The process by which an agent can create another instance of an agent on an agent platform.

Agent Management System (AMS)
The Agent Management System is an agent which manages the creation, deletion, suspension, resumption,
authentication and migration of agents on the agent platform and provides a “white pages” directory service for all
agents resident on an agent platform. It stores the mapping between globally unique agent names (or GUID) and
local transport addresses used by the platform.

©FIPA (1998) FIPA 98 version 1.0 Part 12

3

Agent Platform
An Agent Platform provides an infrastructure in which agents can be deployed. An agent must be registered on a
platform in order to interact with other agents on that platform or indeed other platforms. An AP consists of three
capability sets ACC, AMS and default Directory Facilitator.

Agent Platform Security Manager (APSM)
An Agent Platform Security Manager is responsible for maintaining the agent platform security policy. The APSM
is responsible for providing transport-level security and creating agent audit logs. The APSM negotiates the
requested intra- and inter-domain security services of other APSM's in concert with the implemented distributed
computing architectures, such as CORBA, COM, DCE, on behalf of an agent in its domain.

ARB Agent
An agent which provides the Agent Resource Broker (ARB) service. There must be at least one such an agent in
each Agent Platform in order to allow the sharing of non-agent services.

Communicative Act
A special class of actions that correspond to the basic building blocks of dialogue between agents. A
communicative act has a well-defined, declarative meaning independent of the content of any given act. CAs are
modelled on speech act theory. Pragmatically, CAs are performed by an agent sending a message to another
agent, using the message format described in FIPA97, part 2.

Content
That part of a communicative act which represents the domain dependent component of the communication. Note
that "the content of a message" does not refer to "everything within the message, including the delimiters", as it
does in some languages, but rather specifically to the domain specific component. In the ACL semantic model, a
content expression may be composed from propositions, actions or IRE's.

Content Language
The content of a FIPA message refers to whatever the communicative act applies to. If, in general terms, the
communicative act is considered as a sentence, the content is the grammatical object of the sentence. This
content can be encoded in any language, the content language, denoted by the :language parameter of the
communicative act.

Conversation
An ongoing sequence of communicative acts exchanged between two (or more) agents relating to some ongoing
topic of discourse. A conversation may (perhaps implicitly) accumulate context that is used to determine the
meaning of later messages in the conversation.

CORBA
Common Object Request Broker Architecture, an established standard allowing object-oriented distributed
systems to communicate through the remote invocation of object methods.

Directory Facilitator
The Directory Facilitator [1] is an agent that provides a “yellow pages” directory service for the agents. It stores
descriptions of the agents and the services they offer.

Explicit & Implicit
An ontology is explicit when it is specified in declarative form as a set of axioms and definitions (e.g. as a set of
Ontolingua statements) that an agent can refer to (e.g. by means of an OKBC interface). An ontology is implicit,
when the assumptions on the meaning of its vocabulary are only implicitly embedded in some piece of software.

Feasibility Precondition (FP)
The conditions (i.e. one or more propositions) which need be true before an agent can (plan to) execute an action.

Knowledge model
It is a specification of the set of primitives used by a certain class of representation languages. As such, a
knowledge model can be considered as a meta-ontology. For instance, several ontology servers use an object
oriented model of knowledge based on primitive notions like classes, frames, properties, constraints, axioms and

©FIPA (1998) FIPA 98 version 1.0 Part 12

4

functions. FIPA adopts for the specification of these notions the OKBC version 2.0.4 Knowledge Model, which is
called FIPA-meta-ontology or FIPA knowledge model.

Illocutionary effect
See speech act theory.

Knowledge Querying and Manipulation Language (KQML)
A de facto (but widely used) specification of a language for inter-agent communication. In practice, several
implementations and variations exist.

Local Agent Platform
The Local Agent Platform is the AP to which an agent is attached and which represents an ultimate destination
for messages directed to that agent.

Message
An individual unit of communication between two or more agents. A message corresponds to a communicative
act, in the sense that a message encodes the communicative act for reliable transmission between agents. Note
that communicative acts can be recursively composed, so while the outermost act is directly encoded by the
message, taken as a whole a given message may represent multiple individual communicative acts.

Message content
See content.

Message transport service
The message transport service is an abstract service provided by the agent management platform to which the
agent is (currently) attached. The message transport service provides for the reliable and timely delivery of
messages to their destination agents, and also provides a mapping from agent logical names to physical
transport addresses.

Meta -ontology
For allowing a FIPA agent to communicate through ACL messages about ontologies, it is necessary to describe
the concepts used to speak about an ontology. This description is called the meta-ontology. It is an ontology
itself as it provides the ontology to refer to another ontology. Therefore, the meta-ontology should be powerful
enough to deal with all potentially available ontologies and make explicit, at least informally, these concepts.

Mobile agent
An agent that is not reliant upon the agent platform where it began executing and can subsequently transport
itself between agent platforms.

Mobility
The property or characteristic of an agent that allows it to travel between agent platforms.

Ontology
An ontology is an explicit specification of the structure of a certain domain (e.g. e-commerce, sport, …). For the
practical goals of FIPA (that is enabling development and deployment of inter-operable agent-based applications),
this includes a vocabulary (i.e. a list of logical constants and predicate symbols) for referring to the subject area,
and a set of logical statements expressing the constraints existing in the domain and restricting the interpretation
of the vocabulary. Ontologies therefore provide a vocabulary for representing and communicating knowledge about
some topic and a set of relationships and properties that hold for the entities denoted by that vocabulary.

Ontology Agent
An agent that provides the Ontology Service specified in this specification. The main objective of the Ontology
Agent is to offer to FIPA agents a unified view of the services offered by the different ontology servers. Its second
objective is to allow an ontology server to be known by FIPA agents. Moreover some ontology agents can provide
the agents with services such as translation facilities. Like any other FIPA agent, the ontology agent has to be
registered to the DF and to provide the DF with the published ontologies and available services.

©FIPA (1998) FIPA 98 version 1.0 Part 12

5

Ontology Name
The ontologies referred to by the agents can be provided by different ontology servers. Consequently, these
ontology names are constructed from: the OA name, and the ontology logical name (given by the ontology
designer e.g. “car “).

Ontology Server
Provider of an Ontology Service, not necessarily in the FIPA domain, or FIPA-compliant. Examples of ontology
servers already existing outside FIPA are: Ontolingua, XML/RDF ontology servers, ODL databases ontologies
servers. Access to the services provided by these ontologies servers are based on various APIs such as the
OKBC interface, the ODL interface or HTTP.

Ontology sharing problem
The problem of ensuring that two agents that wish to converse do, in fact, share a common ontology for the
domain of discourse. Minimally, agents should be able to discover whether or not they share a mutual
understanding of the domain constants.

Perlocutionary Effect
See speech act theory.

Personalization
An agent’s ability to take individual preferences and characteristics of users into account and adapt its behavior
to these factors.

Proposition
A statement which can be either true or false. A closed proposition is one which contains no variables, other than
those defined within the scope of a quantifier.

Protocol
A common pattern of conversations used to perform some generally useful task. The protocol is often used to
facilitate a simplification of the computational machinery needed to support a given dialogue task between two
agents. Throughout this document, we reserve protocol to refer to dialogue patterns between agents, and
networking protocol to refer to underlying transport mechanisms such as TCP/IP.

Rational Effect (RE)
The rational effect of an action is a representation of the effect that an agent can expect to occur as a result of
the action being performed. In particular, the rational effect of a communicative act is the perlocutionary effect an
agent can expect the CA to have on a recipient agent. Note that the recipient is not bound to ensure that the
expected effect comes about; indeed it may be impossible for it to do so. Thus an agent may use its knowledge
of the rational effect in order to plan an action, but it is not entitled to believe that the rational effect necessarily
holds having performed the act.

Software Service
An instantiation of a connection to a software system.

Software System
A software entity which is not conformant to the FIPA Agent Management specification.

Speech Act
The notion of a speech act is derived from the linguistic analysis of human communication. It is based on the idea
that with language the speaker not only makes statements, but also performs actions, e.g. a request or an
assertion. In this context, a verb denoting a speech act, is called a performative, since saying it makes it so. See
FIPA97, part 2 for more details.

Speech Act Theory
A theory of communications which is used as the basis for ACL. Speech act theory is derived from the linguistic
analysis of human communication. It is based on the idea that with language the speaker not only makes
statements, but also performs actions. A speech act can be put in a stylised form that begins "I hereby request
…" or "I hereby declare …". In this form the verb is called the performative, since saying it makes it so. Verbs

©FIPA (1998) FIPA 98 version 1.0 Part 12

6

that cannot be put into this form are not speech acts, for example "I hereby solve this equation" does not actually
solve the equation.

Stationary agent
An agent that executes only upon the agent platform where it begins executing and is reliant upon it.

TCP/IP
A networking protocol used to establish connections and transmit data between hosts

User Agent
An agent which interacts with a human user.

User Dialog Management Service
An agent service in order for FIPA agents to interact with human users; by converting ACL into media/formats
which human users can understand and vice versa, managing the communication channel between agents and
users, and identifying users interacting with agents.

User ID
An identifier for a real user.

User Model
A user model contains assumptions about user preferences, capabilities, skills, knowledge, etc, which may be
acquired by inductive processing based on observations about the user. User models normally contain knowledge
bases which are directly manipulated and administered.

User Personalization Service
An agent service that offers abilities to support personalization, e.g. by maintaining user profiles or forming
complex user models by learning from observations of user behavior.

Wrapper Agent
An agent which provides the FIPA-WRAPPER service to an agent domain on the Internet.

4 Symbols (and abbreviated terms)

ACC Agent Communication Channel

ACL Agent Communication Language

AMS Agent Management System

API Application Programming Interface

CA Communicative Act

DB Data Base

DF Directory Facilitator

EBNF Extended Backus Naur Form

FIPA Foundation for Intelligent Physical Agents

GUID Global Unique Identifier

HTTP Hyper-Text Transfer/Transmission Protocol

IRE Identifying Referring Expression

©FIPA (1998) FIPA 98 version 1.0 Part 12

7

KBS Knowledge Base System

KIF Knowledge Interchange Format

OA Ontology Agent

ODL Object Definition Language

OKBC Open Knowledge Base Connectivity

OQL Object Query Language

RDF Resource Description Framework

SL Semantic Language

TCP/IP Transmission Control Protocol / Internet Protocol

TKB Terminological Knowledge Base

XML Extensible Markup Language

5 Overview

An Ontology Agent (OA) is an agent that provides access to one or more ontology servers and that provides the
ontology services, as specified in this specification, to an agent community. As well as all the other agents, the
OA registers its service with the DF (see section 6.4) and it is identified by the keyword FIPA-OA for the value of
:agent-type. It also registers the list of maintained ontologies and their translation capabilities in order to allow
agents to query the DF (see section 6.4.1) for the specific OA that manages a specific ontology.

Every agent can then request the services of the OA by using the communicative interface specified in section 6.
In particular, they can request to define, modify or remove terms and definitions of the ontology; they can request
to translate expressions between two ontologies for which there exists a mapping; they can query for definitions,
or relationships between terms or between ontologies; finally, they can request to find a shared ontology for
communication with another agent. Even if any agent requests one of the above services, the OA reserves the
right to refuse the request.

The realization of this communication obviously needs an agreement on the language to communicate facts
about ontologies. This is des cribed in section 6.2 where the subsumed knowledge model and the FIPA meta-
ontology is specified. It describes the primitives, and normatively define their names, used in the communication,
like concepts, attributes, relations, … It must be noticed that this specification is neutral in respect to the
language used to store and represent the ontology (e.g. RDF, KIF, ODL, …), while it only specifies the language
to communicate about ontologies.

Section 6.7 specifies the interaction protocol to be used by agents to agree on a shared ontology for
communication.

The document concludes with two informative annexes. Annex A gives a clear definition of what is intended with
the term ontology and, in particular, what is the difference between a conceptualization, an ontology, and a
knowledge base. Annex B lists an informative set of guidelines to help developers to define well-founded new
ontologies.

5.1 Rationale for having explicit ontologies

The FIPA communication model [2] is based on the assumption that communicating agents share an ontology of
communication defining speech acts and protocols. In order to have fruitful communication, agents must also
share an ontology of their domain of application. In an open environment, agents are designed around various

©FIPA (1998) FIPA 98 version 1.0 Part 12

8

ontologies (either implicit or explicit); for allowing their communication explicit ontologies are however necessary,
together with a standard mechanism to access and refer to them (e.g., access protocol, naming space).

Without explicit ontologies, agents need to share intrinsically the same ontology to be able to communicate and
this is a strong constraint in an open environment where agents, designed by different programmers or
organizations, may enter into communication.

An explicit ontology is considered to be declaratively represented as opposed to implicitly, procedurally encoded.
It can be then considered as “a referring knowledge” and, as a consequence, could be outside the communicating
agents, managed by a dedicated ontology agent.

Ontology

Agent 1 Agent 2

Ontology Query Ontology Query

ACL communication =

Ontology-based
communication

 Figure 1 FIPA communication model

As better described in Annex A, in general, an ontology is not only a vocabulary, but also contains explicit
axioms to approximate meaning, i.e. to constrain the set of intended models. Explicit axioms allow validation of
specifications, unambiguous definition of vocabulary, automation of operations like classification and translation.

Several benefits can be envisioned by having explicitly represented ontologies, such as enabling querying for
concepts, updating an ontology, reusing ontologies by extending or specializing existing ones, translation
between different ontologies, sharing through referring to ontology names and locations, etc.

5.2 Possible benefits for applications

There are many applications that benefit from having a dedicated agent that manages and controls access to a
set of explicit ontologies.

In information retrieval applications, the size of some linguistic ontologies may prevent an agent to store the
ontology in its address space, so that agents need to remotely access and refer to ontologies for disambiguation
of user queries, for using information about taxonomies of terms or thesaurus to enhance the quality of retrieved
results, etc. The definition of a standard interface to access and query an ontology service can increase and
simplify the interoperability between different systems.
Semantic integration of heterogeneous information sources in an open and dynamic environment, such as the
Web or a digital library, may also benefit from an ontology service. There are already implementations [6] that use
one domain ontology to integrate several information sources, managed by a dedicated agent, still allowing each
source to use its private ontology. Every user can also have his own ontology depending on his preference, his
role in the domain, or simply his known language. Every used ontology is a subset of the domain ontology or
there exists a map between it and the domain ontology; the knowledge about these relationships (subset and
mapping) is usually maintained by some ontology -dedicated agents.

Some applications use machine learning techniques to adaptively extend an ontology based on the interaction of
the user with the system. In this case, at the execution time, several user agents may compete or collaborate to
request to a dedicated agent to modify an ontology.

©FIPA (1998) FIPA 98 version 1.0 Part 12

9

The development of this specification tried to take into account the requirements from all these kinds of
applications. Hopefully, the specification should be general enough to allow even wider applicability.

5.3 Some sample scenarios illustrating offered features

5.3.1 Scenario 1 – Querying the OA for definition of terms

This scenario shows the usage of an Ontology Agent to access definition of terms when using large linguistic
ontologies.

Let’s consider an agent B able to index pictures based on their captions and send them on a demand basis.

An agent A, which for instance is a user interface agent, is willing to get pictures of “diseased citrus” for its user,
who is a “farmer” and wants to discover a diagnosis for his citrus trees. A, then, requests B, to send pictures of
“diseased citrus” by referring to a given domain ontology, e.g. the “farmer” ontology.

B discovers that no pictures under the name “citrus” are available. Before sending the answer to A, B queries the
appropriate OA (where the “farmer” ontology resides) to obtain sub-species of “citrus” (may be also sub-species
of the “diseased” property) within the given ontology.

OA answers B that “oranges” and “lemon” are sub-species of “citrus”.

Then, B finds pictures of “diseased lemon” and “diseased orange” and sends them to the agent A.

The scenario might continue with the user, i.e. the farmer, looking at the several pictures and finding a match with
the problem his trees have. Found the problem, may be he then asks the agent A to find for a diagnosis and a
cure for it. Even in this case, the service provided by the OA might be useful again.

The existence of an explicit declarative ontology managed by an external agent, the OA, allows B to concentrate
on its actual task, indexing and sending pictures, more than on the maintenance of the ontology itself. The agent
B may also be more light-weighted as it is not necessary to encode in its code all the ontology but relations and
definition of concepts can be accessed on demand by querying the OA.

Even the agent A may need to access the same OA, for instance to explain to its user the type of “diseased” is
in the figure.

5.3.2 Scenario 2 – selecting a shared ontology

Agent_SP is the Service Provider for electronic commerce of a given merchant. It has simple behaviors referring
to the “sell-products” ontology. It has other more complex behaviors referring to the “ sell-wholesale-products”
ontology. The complex behaviors are designed as extensions of the simple ones. The “sell-wholesale-products”
ontology is defined explicitly in an ontology server (e.g. Ontolingua) as an extension of the “sell-products”
ontology.

The ontology server is accessible by agents of a given FIPA compliant platform through an Ontology Agent
named OA1. Following the FIPA ontologies naming scheme, these two ontologies are named as follows:
OA1@iiop://cnet.fr/sell-products and OA1@iiop://cnet.fr/sell-wholesale-product. Both of these ontologies refer to
the electronic commerce domain.

Agent_SP would like to sell products. It makes a call for proposal using a CFP communicative act; the content of
this communicative act refers to the OA1@iiop://cnet.fr/sell-wholesale-products ontology. Agent_C is a
Customer. It has only simple behaviors referring to the OA1@iiop://cnet.fr/sell-products ontology. Agent-C does
not know the OA1@iiop://cnet.fr/sell-wholesale-products ontology and as a consequence has no precise idea of
the purpose of this Call-For-Proposals. However Agent_C believes that the Call-For-Proposals of Agent_SP is
interesting to it, for instance because:

• it believes that all Call-For-Proposals from Agent_SP are interesting to it, or

• a third party agent knowing the needs of Agent_C and understanding this CFP has recommended Agent_C
to answer this CFP, or

©FIPA (1998) FIPA 98 version 1.0 Part 12

10

• it has behavior referring to the electronic commerce domain (that is at least the case in this example).

Following the Call-For-Proposals of Agent_SP, three different protocols of interaction could be considered :

1. Agent_C queries Agent_SP to know if other ontologies can be used in this Call-For-Proposals. Agent_SP
answers that the OA1@iiop://cnet.fr/sell-products ontology can be used. If Agent_C does not know this
ontology (this general case does not apply in this example), the process of interaction is repeated.

2. Agent_C queries the DF to determine if it knows OAs providing access to electronic commerce domain.
DF answers to Agent_C with a list of OAs including OA1. Agent-C queries all these OAs about
ontologies related to the OA1@iiop://cnet.fr/sell-wholesale-products. OA1 informs Agent_C that the
“ OA1@iiop://cnet.fr/sell-wholesale-products ” ontology is an extension of “ OA1@iiop://cnet.fr/sell-
wholesale-product ” ontology. Agent_C asks Agent_SP if it can use the “ OA1@iiop://cnet.fr/sell-
product ” ontology.

3. Agent_C queries the DF to determine if it knows OA1’s address. DF gives back the OA1’s address.
Agent-C queries OA1 about ontologies. OA1 informs Agent_C that the OA1@iiop://cnet.fr/ sell-wholesale-
products ontology is an extension of OA1@iiop://cnet.fr/ sell-product ontology. Agent_C asks Agent_SP
if it can use the OA1@iiop://cnet.fr/sell-product ontology.

5.3.3 Scenario 3 – testing equivalence

In this scenario an agent has to check the logical equivalence of two ontologies.

- An ontology designer in U.S declares the ontology "car-product” to the ontology agent OA2, which is referred
within the OA2 under the name OA2@http://makers.ford.com/car-product, following the FIPA ontologies
naming scheme;

- The ontology designer declares a complete French translation of its ontology “car-product” to the ontology
agent OA1 in France under the name OA1@http://www.ford.fr/voiture. Moreover these two ontologies are
declared equivalent to OA1. The exact mapping is provided to the OA1;

- Agent A2 (in US) requests OA2 to provide an ontology of domain “cars”; the ontology name OA2@http://
makers.ford.com/car-product is returned;

- Agent A2 wants to communicate with A1 in France about “cars” with the ontology OA2@http://
makers.ford.com/car-product. Note that agent A1 does not know this ontology.

- Agent A1 queries if OA1 is able to provide an ontology equivalent to OA2@http://makers.ford.com/car-
product;

- OA1 returns OA1@http://www.ford.fr/voiture to A1;

- A1 informs A2 that these two ontologies OA1@http://www.ford.fr/voiture and OA2@http://
makers.ford.com/car-producare equivalent. And that OA1 can be used as a translator.

- The dialogue between A1 and A2 can then start.

5.3.4 Scenario 4 – finding ontologies

In this scenario, an agent A wants to know the list of ontologies referring to the “car” term. The agent believes that
such ontology exists because it has received a natural language request from a user including this term.
However, it has no idea of the kind of concepts underlying this symbol, and it would like to access its definition
without any human intervention.

- A1 wants to know the list of ontologies referring to a given term

- A1 queries the DF for the list of OAs available.

- A1 queries each OA for the list of ontologies that include the given term.

©FIPA (1998) FIPA 98 version 1.0 Part 12

11

- OA queries all the ontologies that it is able to access, about an object, a property and a class labeled with
the given term

5.3.5 Scenario 5 - translation of terms

This scenario gives a pragmatic example illustrating the "use of translation of terms" in a multi-agent context. It
involves naming of terms. Consider a project integrating two legacy databases. Users of the integrated system
want to continue seeing the integrated databases in the terms they are used to, the terms of the legacy database
they were using. The first database contains information about the aircraft parts owned by the aircraft
manufacturer; the second database describes aircraft parts owned by the aircraft operator. In each database an
aircraft part has a name. However, one database calls it a name, and the other calls it nomenclature. In other
words, name and nomenclature are based on the same concept definition (the name of a part). A query server
answers queries from user agents (user interfaces and agents acting for users). The query server uses a domain
ontology that integrates the data source ontologies. The user interface is based on a user model with user
ontologies. This permits one user to specify and see part nomenclature in his user interface while another will
see part name. We translate terms to answer queries based on each user ontology, and we also translate
queries for each database.

User Agent
A1

Ontology
Agent

Ontology
Server #1

Ontology
Server #2

DB #1 DB #2

Directory
Facilitator

Figure 2 - Model of scenario 5

- An agent, A1, wants to translate a given term from a first ontology into the corresponding term from a second
one.

- A1 queries DF for an OA which supports the translation between these ontologies

- DF returns the name of a given OA; this OA knows the format of the ontologies involved (XML, OKBC, ..) and
has capabilities to make translation between these ones

- A1 queries this OA

- OA translates the requested term from Ontology Server #1 to Ontology Server #2 where Ontologies 1 and 2
contain the terms defined respectively in databases #1 and #2.

©FIPA (1998) FIPA 98 version 1.0 Part 12

12

6 Specification of the Ontology Service

6.1 Reference Model

OKBC

Agent

Ontology
Server

OQL

Ontology
Server

Ontology Agent

(Ontolingua) (DB of ODL definitions)

http

Ontology
Server

 (XML)

FIPA
components

DFAgent

Ontology designer

OA-2

Non-FIPA
components

ACL Channel

Figure 3 - Reference Model

The figure above shows the reference model of this specification.

Ontologies are stored at an ontology server. In general, several servers may exist with different interfaces and
different capabilities. The Ontology Agent allows agents to discover ontologies and servers and to access their
services in a unique way, that is more suitable to the agent communication mechanism. Furthermore, it can
implement extra functionalities such as a translation service or it can bring to the agent community knowledge
about relationships between the different ontologies. This reference model does not preclude that in some
particular implementations, the Ontology Agent might wrap directly one Ontology Server.

The scope of this FIPA specification is ACL level communication between agents and not communication
between the Ontology Agent and the Ontology Servers (e.g. OKBC, OQL, any other proprietary protocol).
Therefore, a FIPA compliant OA will have to be developed on a custom basis to support interfaces with the non-
FIPA compliant ontology severs to be used.

6.1.1 Services provided by the Ontology Agent

The OA must be able to participate in a communication about the following tasks, possibly responding that it is
not able to execute these tasks:

• Help a FIPA agent in selecting a shared (sub)ontology for communication,

• Create and update an ontology, or only some terms of an ontology.

• translate expressions between different ontologies (different names with same meanings),

• Respond to query for relationships between terms or between ontologies,

©FIPA (1998) FIPA 98 version 1.0 Part 12

13

• discovery of public ontologies in order to access them.

Furthermore, the OA allows the Ontology Server to make its ontologies publicly available in the agent domain.

6.2 Naming and referring Ontologies

Each ontology is stored at an ontology server. The Ontology Agent (OA) registers the list of supported ontologies
with the Directory Facilitator (DF). Within an OA each ontology is uniquely named, registered and identified by a
logical name managed by the Ontology Agent. It hides from the agent community the physical name of the
ontology, both the name of the server (e.g. Ontolingua) and the actual name of the ontology itself. The OA is only
responsible for knowing the mapping to the physical name, while all ACL messages and references are assumed
to refer directly to this ontology identifier.

The following grammar defines the syntax for the ontology identifier in EBNF notation.

OntologyName = [OntologyAgentName Delimiter] OntologyLogicalName .
OntologyAgentName = AgentName .
OntologyLogicalName = Word .
Delimiter = ‘?’ .
Word = see Fipa97 Part 2
AgentName = see Fipa97 Part 1

Note: It is required that the OntologyName does not include the character ‘?’ in order to be able to separate the name of
the OntologyAgent.

Example: The following is an example of a communicative act naming the car-ontol ontology which is
managed by the ontology agent OA1@iiop://cselt.it:50/acc

(inform ... :ontology OA1@iiop://cselt.it:50/acc?car-ontol)

Note: Based on these assumptions, it might happen that two OAs register the same physical ontology with different
logical names, or that two OAs register the same logical name for two different physical ontologies. The assumption is
here that the OAs are themselves responsible for discovering such equivalence and exploiting this knowledge in the
service they provide.

Note: The grammar allows the ability to include both the version and the name space in the ontology logical name. The
way this is done is not mandated by this specification.

6.3 Relationships between Ontologies

In an open environment, agents may benefit, in some applications, from knowing the existence of some
relationships between ontologies, for instance to decide if and how to communicate with other agents. Even if in
principle every agent may believe such relationships, the ontology agent has the most adequate role in the
community to know that. It can be then queried for the value of such relationships and it can use that for
translation or for facilitating the selection of a shared ontology for agent communication. The following predicate
must be used for this purpose

(ontol-relationship ?O1 ?O2 ?level)

which is defined to be true when a relationship of level level exists between the two ontologies in the arguments
O1 and O2. The argument level may assume one of the following values:

Extension when O1 extends the ontology O2

Identical when the two ontologies O1 and O2 are identical

Equivalent when the two ontologies O1 and O2 are equivalent

Strongly-translatable when the source ontology O1 is strongly -translatable to
the target ontology O2

©FIPA (1998) FIPA 98 version 1.0 Part 12

14

the target ontology O2

Weakly-translatable When the source ontology O1 is weakly-translatable to
the target ontology O2

Approx-translatable when the source ontology O1 is approximately
translatable to the target ontology O2

Note : The problem of deciding if two logical theories (as ontologies in general are) have relationships to each other, is
in general computationally very difficult. For instance, it can quickly become undecidable if two ontologies are identical
when the expressive power of the ontologies concerned is high enough. Therefore, asserting that two ontologies have a
relationship to each other as defined in this section, will often require manual intervention.

6.3.1 Level = extension

It is common and good engineering practice to build a new ontology by extending or combining existing ones.
The extension level of relationship captures this reuse practice.

When (ontol-relationship O1 O2 extension) holds, then the ontology O1 extends or includes the
ontology O2. Informally this means that all the symbols that are defined within the O2 ontology are found in the
O1 ontology, with the very important restriction that the properties expressed between the entities in the O2
ontology are conserved in the O1 ontology.

This specification makes no distinction between extension and inclusion relationships between ontologies.

Ontology O1

apple lemon orange

fruit

Ontology O2

apple

orange lemon

citrus

fruit

Figure 4 - Example of extension of ontology

Example 1 (extension): In the Ontology O1 the class “fruit” is split into the “apple”, “lemon” and “orange”
classes. The ontology O2 extends O1 by inserting the class “citrus” between the class “fruit” and both classes
“orange” and “lemon”. In this case the predicate holds since all entities in O1 are in O2 and since all relations in
O1 still hold. For instance, in O1 “lemon is a fruit”, and in O2 “lemon is a citrus” and “citrus is a fruit” implies that
“lemon is a fruit”.

Example 2 (inclusion): O1 defines “cars”, O2 defines “cars” and “vans” by reusing without any modification all
classes involved in the “cars” class defined in O1. Once more (ontol-relationship O2 O1 extension)
holds.

6.3.2 Level = identical

This level is used to assert that two ontologies O1 and O2 are identical. By identical, we mean that the
vocabulary, the axiomatization and the representation language used are physically identical, like are for instance
two mirror copies of a file. However two identical ontologies could be named and referred under different names.

©FIPA (1998) FIPA 98 version 1.0 Part 12

15

Note: It may be important to notice that two identical ontologies may still commit to different conceptualizations, since
they may differ in the way their axiomatizations reflect the intended models (see Annex A). Consider for instance two
ontologies identical to O1, consisting only of the axioms that reflect the ISA relationships between kinds of fruit: one may
commit to a conceptualization where the instances of fruit classes are intended as solid things, while the other one may
assume that fruits are amounts of fruit stuff. As long as the commitments with respect to the object/stuff distinction are
not made explicit, the two ontologies, although identical, may be used by different applications for very different things.
Recognizing the different conceptualizations may not be a problem as long as the vocabulary is the same, but it may
lead to serious troubles in case of translatable ontologies, where a wrong ontology translation may be performed on the
basis of a mapping between the axiomatizations. This problem is in principle unavoidable, and can be limited only by
resorting to a common top-level ontology, used to make explicit the intended conceptualization without the need of
detailed axiomatizations.

6.3.3 Level = equivalent

Two ontologies O1 and O2 are said to be equivalent whenever they share the same vocabulary and the same
logical axiomatization, but possibly are expressed using different representation languages (for instance
Ontolingua and XML). If we consider a particular ontology server with given deduction capabilities, every thing that
is provable or deductible from O1 will be provable from O2 and vice versa. Moreover, the following property holds: if
O1 and O2 are equivalent then O1 and O2 are strongly -translatable in both ways. In this case only a mapping
between the representation languages is required.

Note: It must be noticed that equivalent ontologies may still be served by different ontology servers with different
deduction capabilities. That means, in turn, that equivalence between ontologies does not guarantee equivalence of
results: what an agent can do or cannot do when using an ontology does not only depend on the ontology but on the
couple (ontology, ontology server).

6.3.4 Level = weakly-translatable

This level relates two ontologies Osource and Odest when it is possible to translate from Osource to Odest ,
even if with a possible loss of information. Odest is then supposed to share a subset of the vocabulary and
axiomatization of Osource . It means that some terms or relationships from Osource will be possibly simplified
when translated to Odest . It means also that some terms or relationships will not be translatable to Odest ,
because they do not appear in the Odest axiomatization. Nevertheless, a weak translation should not introduce
any inconsistency.

Example: let us consider the French (Osource) and English (Odest) simple ontologies on fruit such as:

- In Osource : a “fruit” is an “agrume” or “pomme” or “poire”, and an “agrume” is either a “citron” an “orange” or
a “pamplemousse”

- In Odest : a “fruit” is either a “lemon”, an “orange” or an “apple”

Osource is weakly-translatable to Odest with the vocabulary mapping (“pomme” -> “apple”; “citron”->”lemon”;
“orange” -> “orange”; “fruit” -> “fruit”) with a loss of information concerning “pamplemousse”, “poire” and the
conceptualization of “agrume” as the subclass of “fruit” containing “citron”, “pamplemousse” and “orange”.
Nevertheless after translation “lemons” and “oranges” are still “fruits”.

Ontology French

citron orange pamplemousse

agrume pomme poire

fruit

Ontology English

lemon orange apple

fruit

Figure 5 - Example of ontologies weakly-translatable

©FIPA (1998) FIPA 98 version 1.0 Part 12

16

6.3.5 Level = strongly-translatable

An ontology Osource is said to be related with level strongly-translatable to ontology Odest if 1/ the
vocabulary of Osource can be totally translated to the vocabulary of Odest , 2/ the axiomatization of Osource
holds in Odest, 3/ there is no loss of information from Osource to Odest , 4/ there is no introduction of
inconsistency. However, the representation languages used by Osource and Odest can still be different.

Example: let us consider the English(Osource) and French(Odest) ontologies, such as:

- In Osource : a “fruit” is a either a “citrus”, an “apple” or a “pear”, and a “citrus” is either a “lemon” or an
“orange”.

- In Odest : a “fruit” is an “agrume” or a “pomme” or a “poire”, and an “agrume” is either a “citron” an “orange” or
a “pamplemousse”

Osource is strongly-translatable to Odest with the vocabulary mapping (“apple” -> “pomme”; “ lemon”->” citron”;
“orange” -> “orange”; “fruit” -> “fruit”, “pear” -> “poire”, “citrus”->”agrume”). Moreover every property that holds in
Osource holds in Odest after translation. Thus this is an example of a strongly-translatable predicate.
The reverse translation i.e. Odest to Osource is not strongly-translatable since “pamplemousse” is not
defined in Osource .

Ontology French

citron orange pamplemousse

agrume pomme poire

fruit

Ontology English

lemon orange

citrus pear apple

fruit

Figure 6 - Example of ontologies strongly-translatable

6.3.6 Level = approx-translatable

This level is the less restrictive. Two ontologies Osource and Odest are said to be related with level approx-
translatable if they are weakly-translatable with introduction of possible inconsistencies, e.g. some of
the relations become no more valid and some constraints do not apply anymore.

Example: This example shows two ontologies that refer to a term which has slightly different meanings
according to the context in which it is used. The two ontologies are respectively “ingredients for Chinese Cooking”
and “ingredients for European Cooking”. In both ontologies, we consider the two following classes “parsley” and
“pepper”. The difference is that in “Chinese cooking” ontology, “coriander” is classified as a sort of “parsley”,
because its leaves are used and that in European cooking “coriander” is classified as a sort of pepper, because
only its seeds (called “Chinese” pepper) are used. The term “coriander” enjoys different properties in the two
ontologies, even if it refers to the same plant.

If we consider a translation between these two ontologies, the translation of “coriander” (in the Chinese Cooking
ontology) by “coriander” (in the European Cooking ontology) can be useful mainly because as said previously the
term designates the same plant. Nevertheless, some of the properties expressed in the “Chinese Cooking”
ontology do not hold any more in the “European Cooking” ontology and vice versa.

6.3.7 General properties

The following properties hold between level of relationships:

©FIPA (1998) FIPA 98 version 1.0 Part 12

17

- strongly -translatable ⇒ weakly-translatable ⇒ approx-translatable

- equivalent(O1,O2) ⇒ strongly-translatable(O1,O2) ∧ strongly -translatable(O2,O1)

- identical ⇒ equivalent

6.4 Registration of the Ontology Agent with the DF

In order for an agent to advertise its willingness to provide a set of ontology services to an agent domain, it must
register with a DF (as described in [1]). Of course, the DF is not responsible for ensuring the validity of the
provided service.

As part of this registration process a number of constant values are introduced which universally identify the
ontology services:

- the :service-type must be declared as a fipa-oa service;

- the :service-ontology is identified by the constant fipa-ontol-service-ontology, which
identifies the set of actions that can be requested to be performed by a FIPA Ontology Agent;

- the :fixed-properties list must include the set of supported-ontologies
(:supported-ontologies <ontology-description>+)
The ontology description must include the following attributes:

- :ontology-name - the logical reference to the ontology. This reference is used as the ontology
parameter in ACL messages. Only the OA knows the physical name i.e. the physical location of the
ontology server;

- :version – this optional parameter allows to register with the DF the version of the ontology;

- :source-languages - the languages in which the ontology is stored on the ontology server;

- :domains - the type of application domains in which the ontology is considered suitable.
Syntactically this is an expression.

In addition to the set of supported ontologies, the OA may also register its translation capabilities between
different ontologies (if it has any). Notice that the specification does not prevent non-OA agents to also have
translation capabilities. The translation capabilities may include ontology translation, language translation or both.
The following constant values must be used to register translation services:

- the :service-type must be declared as a translation-service ;

- the :service-ontology must include the fipa-meta-ontology, which identifies the set of actions
that can be requested to be performed by a FIPA Ontology Agent, regarding translation services;

- the :fixed-properties list must include the list of available ontology -translation-types
(:ontology-translation-types <translation description>+)
and/or the list of available language translation types
(:language-translation-types <translation description>+)

As a consequence, the Agent Management Grammar [section 9.1 of 5] is enriched as follows:

FIPA-Service-Desc-Item = … (see Fipa97 Part 1)
 |“(“ “:fixed-properties” FixedProperties “)”

FixedProperties = SLTerm
 |“(“ “:supported-ontologies” OntologyDescription + “)”
 |“(“ “:ontology-translation-types” TranslationDescr + “)”
 |“(“ “:language-translation-types” TranslationDescr + “)”.

©FIPA (1998) FIPA 98 version 1.0 Part 12

18

OntologyDescription = “(“ “:ontology-name” OntologyName
 [OntologyVersion]
 “:source-languages” SLTerm
 “:domains” SLTerm “)” .

OntologyName = (see section 6.2)

TranslationDescr = “(“ “:from” OntologyName [OntologyVersion]
 “:to” OntologyName [OntologyVersion]
 [“:level” TranslationLevel] “)”
 | “(“ “:from” LanguageName “:to” LanguageName
 [“:level” TranslationLevel] “)”.

OntologVersion = “:version” SLConstant.

LanguageName = Word.

TranslationLevel = “weakly-translatable” | “strongly-translatable” |
 “approx-translatable” | “equivalent”

The default value for TranslationLevel is equivalent.

Example: The following is an example of registration of an OA with the DF:

(request
 :sender oa@iiop://agentland.com:50/acc
 :receiver df@iiop://fipa.org:50/acc
 :ontology fipa-agent-management
 :language SL0
 :protocol fipa-request
 :content
 (action df@iiop://fipa.org:50/acc
 (register
 (:df-description
 (:agent-name oa@iiop://agentland.com:50/acc)
 (:agent-type fipa-oa)
 (:address (iiop://fipa.org/acc iiop://agentland.com/acc))
 (:agent-services
 (:service-description
 (:service-type fipa-oa)
 (:service-ontology fipa-ontol-service-ontology)
 (:service-name Serv_Name1)
 (:fixed-properties
 (:supported-ontologies
 (:ontology-name fipa-vpn-provisioning
 :version a1
 :source-languages xml
 :domains telecoms)
 (:ontology-name product
 :source-languages kif
 :domains commerce))))
 (:service-description
 (:service-type translation-service)
 (:service-ontology fipa-ontol-service-ontology)
 (:service-name Serv_Name2)
 (:fixed proporties

©FIPA (1998) FIPA 98 version 1.0 Part 12

19

 (:ontology-translation-types
 (:from fipa-vpn-provisioning :to product
 :level weakly-translatable)
 (:from product :to italianproduct
 :level strongly-translatable))
 (:language-translation-types
 (:from SL :to KIF :level weakly-translatable)
 (:from OntoLingua :to LOOM :level strongly-translatable)))))
 (:interaction-protocols (fipa-request))
 (:ontology fipa-ontol-service-ontology)
 (:df-state active)))))
6.4.1 Querying the DF

The agent management search action described in FIPA 97 part 1 enables an agent to query the DF for available
ontology related services, namely:

- the list of registered OAs;

- the list of OAs that support ontologies in a given domain;

- the basic properties of a given ontology (e.g. domain, source-language);

- the list of OAs that provide a specific translation service

It is also possible for an agent to query a DF to establish what agents claim to understand a given ontology. The
reply could be a list of OA who offer such an ontology, the requesting agent can then use it intelligence to decide
which ontology service is wishes to use.

Example: The following example describes the case where an agent (the pca-agent in the example) queries a
DF to establish what OA agents can support the fipa-vpn-provisioning ontology.

 (request
 :sender pca-agent@iiop://agentland.com:50/acc
 :receiver df@iiop://fipa.org:50/acc
 :ontology fipa-agent-management
 :language SL0

 :protocol fipa-request
 :reply-with search-123

 :content
(action df@iiop://fipa.org:50/acc

 (search
 (:df-description
 (:agent-services

(:service-description
 (:service-type fipa-oa)
 (:service-ontology fipa-ontol-service-ontology)
 (:fixed-properties
 (:supported-ontologies
 (:ontology-name fipa-vpn-provisioning)))))

 (:df-state active))))

The DF responds listing the details of the appropriate OAs registered in a ACL message of the form:

(inform
 :sender df@iiop://fipa.org:50/acc
 :receiver pca-agent@iiop://agentland.com:50/acc
 :ontology fipa-agent-management
 :language SL0

©FIPA (1998) FIPA 98 version 1.0 Part 12

20

 :protocol fipa-request
 :in-reply-to search-123
 :content
 (result (action df search)
 (:df-description
 (:agent-name oa@iiop://agentland.com:50/acc)
 (:agent-type fipa-oa)
 (:address (iiop://fipa.org/acc iiop://agentland.com/acc))
 (:agent-services
 (:service-description
 (:service-type fipa-oa)
 (:service-ontology fipa-ontol-service-ontology)
 (:service-name Serv_Name1)
 (:fixed-properties
 (:supported-ontologies
 (:ontology-name fipa-vpn-provisioning
 :source-languages xml
 :domains telecoms)
 (:ontology-name product
 :source-languages kif
 :domains commerce))))
 (:service-description
 (:service-type translation-service)
 (:service-ontology fipa-ontol-service-ontology)
 (:service-name Serv_Name2)
 (:fixed proporties
 (:ontology-translation-types
 (:from fipa-vpn-provisioning :to product
 :level weakly-translatable)
 (:from product :to italianproduct
 :level strongly-translatable))
 (:language-translation-types
 (:from SL :to KIF :level weakly-translatable)
 (:from OntoLingua :to LOOM :level strongly-translatable)))))
 (:interaction-protocols (fipa-request))
 (:ontology fipa-ontol-service-ontology)
 (:df-state active)))))

6.5 FIPA Knowledge Model and FIPA meta-ontology

One of the goals of this specification is to allow agents to talk about and manipulate knowledge, for instance to
query for the definition of a concept or to define a new concept. A standard meta-ontology and knowledge model
is necessary for this purpose, which describes the primitives used by a knowledge representation language, like
concepts, attributes, relations, …

FIPA adopts for its specification the knowledge model of the OKBC version 2.0.4 document (chapter 2 of [3]),
which is hereafter defined and referred with the reserved constant Fipa-meta-ontology. The adopted
Knowledge Model supports an object-oriented representation of knowledge and provides a set of representational
constructs commonly found in object-oriented knowledge representation systems.

It must be noticed that the adoption of this meta-ontology does not prevent the usage of whatever knowledge
representation language a designer wants to use. Instead, for a FIPA compliant agent, this is mandated and
serves the purpose of the interlingua for knowledge that is being communicated, that is knowledge obtained from
or provided to an Ontology Agent must be expressed in this Knowledge Model. It is left to agents, then, the
responsibility to translate knowledge from the actual knowledge representation language into and out of this
interlingua, as needed.

For an accurate understanding of this knowledge model, the reader should directly refer to [3]. However, for quick
reference and to simplify the reading of this document, the following box is an integral reproduction of the Chapter

©FIPA (1998) FIPA 98 version 1.0 Part 12

21

2 of the OKBC specifications, version 2.0.4. This has been added to the specification for the convenience of the
reader.

©FIPA (1998) FIPA 98 version 1.0 Part 12

22

The OKBC Knowledge Model
The Open Knowledge Base Connectivity provides operations for manipulating knowledge expressed in an implicit
representation formalism called the OKBC Knowledge Model, which we specify in this chapter. The OKBC
Knowledge Model supports an object-oriented representation of knowledge and provides a set of representational
constructs commonly found in object-oriented knowledge representation systems (KRSs) [4]. Knowledge
obtained from an KRS using OKBC or provided to an KRS using OKBC is assumed in the specification of the
OKBC operations to be expressed in the Knowledge Model. The OKBC Knowledge Model therefore serves as an
implicit interlingua for knowledge that is being communicated using OKBC, and systems that use OKBC
translate knowledge into and out of that interlingua as needed.

The OKBC Knowledge Model includes constants, frames, slots, facets, classes, individuals, and knowledge
bases. We describe each of these constructs in the sections below. To provide a precise and succinct
description of the OKBC Knowledge Model, we use the Knowledge Interchange Format (KIF) [2] as a formal
specification language. KIF is a first-order predicate logic language with set theory, and has a linear prefix syntax.

Constants
The OKBC Knowledge Model assumes a universe of discourse consisting of all entities about which knowledge is
to be expressed. Each OKBC knowledge base may have a different universe of discourse. However, OKBC
assumes that the universe of discourse always includes all constants of the following basic types :

• integers

• floating point numbers

• strings

• symbols

• lists

• classes

Classes are sets of entities 1, and all sets of entities are considered to be classes. OKBC also assumes that the
domain of discourse includes the logical constants true and false .

Frames, Own Slots, and Own Facets
A frame is a primitive object that represents an entity in the domain of discourse. Formally, a frame corresponds
to a KIF constant. A frame that represents a class is called a class frame, and a frame that represents an
individual is called an individual frame.

A frame has associated with it a set of own slots, and each own slot of a frame has associated with it a set of
entities called slot values. Formally, a slot is a binary relation, and each value V of an own slot S of a frame F

1 We use the term class synonymously with the te rm concept as used in the description logic community.

©FIPA (1998) FIPA 98 version 1.0 Part 12

23

represents the assertion that the relation S holds for the entity represented by F and the entity represented by V
(i.e., (S F V)2). For example, the assertion that Fred's favorite foods are potato chips and ice cream could be
represented by the own slot Favorite-Food of the frame Fred having as values the frame Potato-Chips
and the string ``ice cream'' .

An own slot of a frame has associated with it a set of own facets, and each own facet of a slot of a frame has
associated with it a set of entities called facet values . Formally, a facet is a ternary relation, and each value V of
own facet Fa of slot S of frame Fr represents the assertion that the relation Fa holds for the relation S, the entity
represented by Fr, and the entity represented by V (i.e., (Fa S Fr V)). For example, the assertion that the
favorite foods of Fred must be edible foods could be represented by the facet :VALUE-TYPE of the Favorite-
Food slot of the Fred frame having the value Edible-Food.

Relations may optionally be entities in the domain of discourse and therefore representable by frames. Thus, a
slot or a facet may be represented by a frame. Such a frame describes the properties of the relation represented
by the slot or facet. A frame representing a slot is called a slot frame, and a frame representing a facet is called a
facet frame.

Classes and Individuals
A class is a set of entities. Each of the entities in a class is said to be an instance of the class. An entity can be
an instance of multiple classes, which are called its types. A class can be an instance of a class. A class which
has instances that are themselves classes is called a meta-class .

Entities that are not classes are referred to as individuals. Thus, the domain of discourse consists of individuals
and classes. The unary relation class is true if and only if its argument is a class and the unary relation

individual is true if and only if its argument is an individual. The following axiom holds:3

 (<=> (class ?X) (not (individual ?X)))
The class membership relation (called instance-of) that holds between an instance and a class is a binary
relation that maps entities to classes. A class is considered to be a unary relation that is true for each instance
of the class. That is,4

 (<=> (holds ?C ?I) (instance-of ?I ?C))
The relation type-of is defined as the inverse of relation instance-of. That is,

 (<=> (type-of ?C ?I) (instance-of ?I ?C))
The subclass-of relation for classes is defined in terms of the relation instance-of, as follows. A class Csub
is a subclass of class Csuper if and only if all instances of Csub are also instances of Csuper. That is,5

2 KIF syntax note: Relational sentences in KIF have the form (<relation name> <argument>*)

3 Notes on KIF syntax: Names whose first character is ``?'' are variables. If no explicit quantifier is specified, variables
are assumed to be universally quantified. <=> means ``if and only if''.

4 Note on KIF syntax: holds means ``relation is true for''. One must use the form (holds ?C ?I) rather than (?C
?I) when the relation is a variable because KIF has a f irst-order logic syntax and therefore does not allow a variable in
the first position of a relational sentence.

©FIPA (1998) FIPA 98 version 1.0 Part 12

24

 (<=> (subclass-of ?Csub ?Csuper)
 (forall ?I (=> (instance-of ?I ?Csub)
 (instance-of ?I ?Csuper))))
Note that this definition implies that subclass-of is transitive. (I.e., If A is a subclass of B and B is a subclass
of C, then A is a subclass of C.)

The relation superclass-of is defined as the inverse of the relation subclass-of. That is,

 (<=> (superclass-of ?Csuper ?Csub) (subclass-of ?Csub ?Csuper))

Class Frames, Template Slots, and Template
Facets
A class frame has associated with it a collection of template slots that describe own slot values considered to
hold for each instance of the class represented by the frame. The values of template slots are said to inherit to
the subclasses and to the instances of a class. Formally, each value V of a template slot S of a class frame C
represents the assertion that the relation template-slot-value holds for the relation S, the class represented by C,
and the entity represented by V (i.e., (template-slot-value S C V)). That assertion, in turn, implies that
the relation S holds between each instance I of class C and value V (i.e., (S I V)). It also implies that the
relation template-slot-value holds for the relation S, each subclass Csub of class C, and the entity
represented by V (i.e., (template-slot-value S Csub V)). That is, the following slot value inheritance
axiom holds for the relation template-slot-value :

 (=> (template-slot-value ?S ?C ?V)
 (and (=> (instance-of ?I ?C) (holds ?S ?I ?V))
 (=> (subclass-of ?Csub ?C)
 (template-slot-value ?S ?Csub ?V))))
Thus, the values of a template slot are inherited to subclasses as values of the same template slot and to
instances as values of the corresponding own slot. For example, the assertion that the gender of all female
persons is female could be represented by template slot Gender of class frame Female-Person having the
value Female . Then, if we created an instance of Female-Person called Mary, Female would be a value of
the own slot Gender of Mary.

A template slot of a class frame has associated with it a collection of template facets that describe own facet
values considered to hold for the corresponding own slot of each instance of the class represented by the class
frame. As with the values of template slots, the values of template facets are said to inherit to the subclasses and
instances of a class. Formally, each value V of a template facet F of a template slot S of a class frame C
represents the assertion that the relation template-facet-value holds for the relations F and S, the class
represented by C, and the entity represented by V (i.e., (template-facet-value F S C V)). That
assertion, in turn, implies that the relation F holds for relation S, each instance I of class C, and value V (i.e., (F
S I V)). It also implies that the relation template-facet-value holds for the relations S and F, each
subclass Csub of class C, and the entity represented by V (i.e., (template-facet-value F S Csub V)).

In general, the following facet value inheritance axiom holds for the relation template-facet-value:

5 Note on KIF syntax: => means ``implies''

©FIPA (1998) FIPA 98 version 1.0 Part 12

25

 (=> (template-facet-value ?F ?S ?C ?V)
 (and (=> (instance-of ?I ?C) (holds ?F ?S ?I ?V))
 (=> (subclass-of ?Csub ?C)
 (template-facet-value ?F ?S ?Csub ?V))))
Thus, the values of a template facet are inherited to subclasses as values of the same template facet and to
instances as values of the corresponding own facet.

Note that template slot values and template facet values necessarily inherit from a class to its subclasses and
instances. Default values and default inheritance are specified separately, as described in Section 2.8.

Primitive and Non-Primitive Classes
Classes are considered to be either primitive or non-primitive by OKBC. The template slot values and template
facet values associated with a non-primitive class are considered to specify a set of necessary and sufficient
conditions for being an instance of the class. For example, the class Triangle could be a non-primitive class
whose template slots and facets specify three-sided polygons. All triangles are necessarily three-sided polygons,
and knowing that an entity is a three-sided polygon is sufficient to conclude that the entity is a triangle.

The template slot values and template facet values associated with a primitive class are considered to specify
only a set of necessary conditions for an instance of the class. For example, all classes of ``natural kinds'' - such
as Horse and Building - are primitive concepts. A KB may specify many properties of horses and buildings,
but will typically not contain sufficient conditions for concluding that an entity is a horse or building.

Formally:

 (=> (and (class ?C) (not (primitive ?C)))
 (=> (and (=> (template-slot-value ?S ?C ?V) (holds ?S ?I ?V))
 (=> (template-facet-value ?F ?S ?C ?V)
 (holds ?F ?S ?I ?V)))
 (instance-of ?I ?C)))

Associating Slots and Facets with Frames
Each frame has associated with it a collection of slots, and each frame-slot pair has associated with it a
collection of facets. A facet is considered to be associated with a frame-slot pair if the facet has a value for the
slot at the frame. A slot is considered to be associated with a frame if the slot has a value at that frame or there
is a facet that is associated with the slot at the frame. For example, if the template facet :NUMERIC-MINIMUM
of template slot Age of frame Person had a value 0, then facet :NUMERIC-MINIMUM would be associated with
the frame Person slot Age pair and the slot Age would be associated with the frame Person. In addition,
OKBC contains operations for explicitly associating slots with frames and associating facets with frame-slot
pairs, even though there are no values for the slots or facets at the frame.

We formalize the association of slots with frames and facets with frame-slot pairs by defining the relations slot-
of, template-slot-of, facet-of, and template-facet-of as follows:

 (=> (exists ?V (holds ?Fa ?S ?F ?V)) (facet-of ?Fa ?S ?F))

 (=> (exists ?V (template-facet-value ?Fa ?S ?C ?V))
 (template-facet-of ?Fa ?S ?C))

 (=> (or (exists ?V (holds ?S ?F ?V))
 (exists ?Fa (facet-of ?Fa ?S ?F)))

©FIPA (1998) FIPA 98 version 1.0 Part 12

26

 (slot-of ?S ?F))

 (=> (or (exists ?V (template-slot-value ?S ?C ?V))
 (exists ?Fa (template-facet-of ?Fa ?S ?C)))
 (template-slot-of ?S ?C))
So, in the example given above, the following sentences would be true: (template-slot-of Age Person)
and (template-facet-of :NUMERIC-MINIMUM Age Person) .

As with template facet values and template slot values, the template-slot-of and template-facet-of
relations inherit from a class to its subclasses and from a class to its instances as the slot-of and facet-of
relations. That is, the following slot-of inheritance axioms hold.

 (=> (template-slot-of ?S ?C)
 (and (=> (instance-of ?I ?C) (slot-of ?S ?I))
 (=> (subclass-of ?Csub ?C) (template-slot-of ?S ?Csub))))

 (=> (template-facet-of ?Fa ?S ?C)
 (and (=> (instance-of ?I ?C) (facet-of ?Fa ?S ?I))
 (=> (subclass-of ?Csub ?C)
 (template-facet-of ?Fa ?S ?Csub))))

Collection Types for Slot and Facet Values
OKBC allows multiple values of a slot or facet to be interpreted as a collection type other than a set. The protocol
recognizes three collection types: set, bag, and list . A bag is an unordered collection with possibly multiple
occurrences of the same value in the collection. A list is an ordered bag.

The OKBC Knowledge Model considers multiple slot and facet values to be sets throughout because of the lack
of a suitable formal interpretation for (1) multiple slot or facet values treated as bags or lists, (2) the ordering of
values in lists of values that result from multiple inheritance, and (3) the multiple occurrence of values in bags that
result from multiple inheritance. In addition, the protocol itself makes no commitment as to how values expressed
in collection types other than set are combined during inheritance. Thus, OKBC guarantees that multiple slot
and facet values of a frame stored as a bag or a list are retrievable as an equivalent bag or list at that frame.
However, when the values are inherited to a subclass or instance, no guarantees are provided regarding the
ordering of values for lists or the repeating of multiple occurrences of values for bags. The collection types
supported by a KRS can be specified by a behavior and the collection type of a slot of a specific frame can be
specified by using the :COLLECTION-TYPE facet (see Section 2.10.2).

Default Values
The OKBC knowledge model includes a simple provision for default values for slots and facets. Template slots
and template facets have a set of default values associated with them. Intuitively, these default values inherit to
instances unless the inherited values are logically inconsistent with other assertions in the KB, the values have
been removed at the instance, or the default values have been explicitly overridden by other default values. OKBC
does not require a KRS to be able to determine the logical consistency of a KB, nor does it provide a means of
explicitly overriding default values. Instead, OKBC leaves the inheritance of default values unspecified. That is, no
requirements are imposed on the relationship between default values of template slots and facets and the values
of the corresponding own slots and facets. The default values on a template slot or template facet are simply
available to the KRS to use in whatever way it chooses when determining the values of own slots and facets.
OKBC guarantees that, unless the value of the :default behavior is :none , default values for a template slot or
template facet asserted at a class frame will be retrievable at that frame. However, no guarantees are made as to
how or whether the default values are inherited to a subclass or instance.

©FIPA (1998) FIPA 98 version 1.0 Part 12

27

Knowledge Bases
A knowledge base (KB) is a collection of classes, individuals, frames, slots, slot values, facets, facet values,
frame-slot associations, and frame-slot-facet associations. KBs are considered to be entities in the universe of
discourse and are represented by frames. All frames reside in some KB. The frames representing KBs are
considered to reside in a distinguished KB called the meta-k b, which is accessible to OKBC applications.

Standard Classes, Facets, and Slots
The OKBC Knowledge Model includes a collection of classes, facets, and slots with specified names and
semantics. It is not required that any of these standard classes, facets, or slots be represented in any given KB,
but if they are, they must satisfy the semantics specified here.

The purpose of these standard names is to allow for KRS- and KB-independent canonical names for frequently
used classes, facets, and slots. The canonical names are needed because an application cannot in general
embed literal references to frames in a KB and still be portable. This mechanism enables such literal references
to be used without compromising portability.

Classes
Whether the classes described in this section are actually present in a KB or not, OKBC guarantees that all of
these class names are valid values for the :VALUE-TYPE facet described in Section 2.10.2.

:THING class
:THING is the root of the class hierarchy for a KB, meaning that :THING is the superclass of every class in
every KB.

:CLASS class
:CLASS is the class of all classes. That is, every entity that is a class is an instance of :CLASS .

:INDIVIDUAL class
:INDIVIDUAL is the class of all entities that are not classes. That is, every entity that is not a class is an
instance of :INDIVIDUAL.

:NUMBER class
:NUMBER is the class of all numbers. OKBC makes no guarantees about the precision of numbers. If precision is
an issue for an application, then the application is responsible for maintaining and validating the format of
numerical va lues of slots and facets. :NUMBER is a subclass of :INDIVIDUAL .

:INTEGER class
:INTEGER is the class of all integers and is a subclass of :NUMBER. As with numbers in general, OKBC makes
no guarantees about the precision of integers.

©FIPA (1998) FIPA 98 version 1.0 Part 12

28

:STRING class
:STRING is the class of all text strings. :STRING is a subclass of :INDIVIDUAL .

:SYMBOL class
:SYMBOL is the class of all symbols. :SYMBOL is a subclass of :SEXPR.

:LIST class
:LIST is the class of all lists. :LIST is a subclass of :INDIVIDUAL.

Facets
The standard facet names in OKBC have been derived from the Knowledge Representation System Specification
(KRSS) [6] and the Ontolingua Frame Ontology. KRSS is a common denominator for description logic systems
such as LOOM[5], CLASSIC [1], and BACK [7]. The Ontolingua Frame Ontology defines a frame language as an
extension to KIF. KIF plus the Ontolingua Frame Ontology is the representation language used in Stanford
University's Ontolingua System [3]. Both KRSS and Ontolingua were developed as part of DARPA's Knowledge
Sharing Effort.

:VALUE-TYPE facet
The :VALUE-TYPE facet specifies a type restriction on the values of a slot of a frame. Each value of the
:VALUE-TYPE facet denotes a class. A value C for facet :VALUE-TYPE of slot S of frame F means that every
value of slot S of frame F must be an instance of the class C. That is,

 (=> (:VALUE-TYPE ?S ?F ?C)
 (and (class ?C)
 (=> (holds ?S ?F ?V) (instance-of ?V ?C))))

 (=> (template-facet-value :VALUE-TYPE ?S ?F ?C)
 (and (class ?C)
 (=> (template-slot-value ?S ?F ?V) (instance-of ?V ?C))))
The first axiom provides the semantics of the :VALUE-TYPE facet for own slots and the second provides the
semantics for template slots. Note that if the :VALUE-TYPE facet has multiple values for a slot S of a frame F,
then the values of slot S of frame F must be an instance of every class denoted by the values of :VALUE-TYPE.

A value for :VALUE-TYPE can be a KIF term of the following form:

 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |
 OKBC-class
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of
classes (e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly
enumerated set of possible values for the slot (e.g., either Clyde, Fred, or Robert).

:INVERSE facet
The :INVERSE facet of a slot of a frame specifies inverses for that slot for the values of the slot of the frame.
Each value of this facet is a slot. A value S2 for facet :INVERSE of slot S1 of frame F means that if V is a value
of S1 of F, then F is a value of S2 of V. That is,

©FIPA (1998) FIPA 98 version 1.0 Part 12

29

 (=> (:INVERSE ?S1 ?F ?S2)
 (and (:SLOT ?S2)
 (=> (holds ?S1 ?F ?V) (holds ?S2 ?V ?F))))

 (=> (template-facet-value :INVERSE ?S1 ?F ?S2)
 (and (:SLOT ?S2)
 (=> (template-slot-value ?S1 ?F ?V)
 (template-slot-value ?S2 ?V ?F))))

:CARDINALITY facet
The :CARDINALITY facet specifies the exact number of values that may be asserted for a slot on a frame. The
value of this facet must be a nonnegative integer. A value N for facet :CARDINALITY on slot S on frame F
means that slot S on frame F has N values. That is,6

 (=> (:CARDINALITY ?S ?F ?N)
 (= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))

 (=> (template-facet-value :CARDINALITY ?S ?F ?C)
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))
 ?N)))
For example, one could represent the assertion that Fred has exactly four brothers by asserting 4 as the value of
the :CARDINALITY own facet of the Brother own slot of frame Fred. Note that all the values for slot S of
frame F need not be known in the KB. That is, a KB could use the :CARDINALITY facet to specify that Fred has
4 brothers without knowing who the brothers are and therefore without providing values for Fred's Brother slot.

Also, note that a value for :CARDINALITY as a template facet of a template slot of a class only constrains the
maximum number of values of that template slot of that class, since the corresponding own slot of each instance
of the class may inherit values from multiple classes and have locally asserted values.

:MAXIMUM-CARDINALITY facet
The :MAXIMUM-CARDINALITY facet specifies the maximum number of values that may be asserted for a slot of
a frame. Each value of this facet must be a nonnegative integer. A value N for facet MAXIMUM-CARDINALITY of
slot S of frame F means that slot S of frame F can have at most N values. That is,

 (=> (:MAXIMUM-CARDINALITY ?S ?F ?N)
 (=< (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))

 (=> (template-facet-value :MAXIMUM-CARDINALITY ?S ?F ?C)
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))
 ?N)))
Note that if facet :MAXIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S in F
can have at most (min N1 … Nk) values. Also, it is appropriate for a value for :MAXIMUM-CARDINALITY as a
template facet of a template slot of a class to constrain the number of values of that template slot of that class as
well as the number of values of the corresponding own slot of each instance of that class since an excess of

6 cardinality is a unary function whose argument is a finite set and whose value is the number of elements in the
set. setofall is a set-valued term expression in KIF that takes a variable as a first argument and a sentence
containing that variable as a second argument. The value of setofall is the set of all values of the variable for which
the sentence is true. =< means ``less than or equal''.

©FIPA (1998) FIPA 98 version 1.0 Part 12

30

values for a template slot of a class will cause an excess of values for the corresponding own slot of each
instance of the class.

:MINIMUM-CARDINALITY facet
The :MINIMUM-CARDINALITY facet specifies the minimum number of values that may be asserted for a slot of
a frame. Each value of this facet must be a nonnegative integer. A value N for facet MINIMUM-CARDINALITY of
slot S of frame F means that slot S of frame F has at least N values. That is,7

 (=> (:MINIMUM-CARDINALITY ?S ?F ?N)
 (>= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))
Note that if facet :MINIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S of F
has at least (max N1 … Nk) values. Also, as is the case with the :CARDINALITY facet, all the values for slot
S of frame F do not need be known in the KB.

Note that a value for :MINIMUM-CARDINALITY as a template facet of a template slot of a class does not
constrain the number of values of that template slot of that class, since the corresponding own slot of each
instance of the class may inherit values from multiple classes and have locally asserted values. Instead, the value
for the template facet :MINIMUM-CARDINALITY constrains only the number of values of the corresponding own
slot of each instance of that class, as specified by the axiom.

:SAME-VALUES facet
The :SAME-VALUES facet specifies that a slot of a frame has the same values as other slots of that frame or as
the values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. A
value S2 for facet :SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot
S1 of F is equal to the set of values of slot S2 of F. That is,

 (=> (:SAME-VALUES ?S1 ?F ?S2)
 (= (setofall ?V (holds ?S1 ?F ?V))
 (setofall ?V (holds ?S2 ?F ?V))))
A slot chain is a list of slots that specifies a nesting of slots. That is, the values of the slot chain S1, … ,Sn of
frame F are the values of the Sn slot of the values of the Sn-1 slot of … of the values of the S1 slot in F. For
example, the values of the slot chain (parent brother) of Fred are the brothers of the parents of Fred.
Formally, we define the values of a slot chain recursively as follows: Vn is a value of slot chain S1,…,Sn of frame
F if there is a value V1 of slot S1 of F such that Vn is a value of slot chain S2,…,Sn of frame V1. That is,8

 (<=> (slot-chain-value (listof ?S1 ?S2 @Sn) ?F ?Vn)
 (exists ?V1 (and (holds ?S1 ?F ?V1)
 (slot-chain-value (listof ?S2 @Sn) ?V1 ?Vn))))

 (<=> (slot-chain-value (listof ?S) ?F ?V) (holds ?S ?F ?V))
A value (S1 … Sn) for facet :SAME-VALUES of slot S of frame F means that the set of values of slot S of F is
equal to the set of values of slot chain (S1 … Sn) of F. That is,

7 KIF syntax note: >= means ``greater than or equal''.

8 Note on KIF syntax: listof is a function whose value is a list of its arguments. Names whose first character is "@"
are sequence variables that bind to a sequence of 0 or more entities. For example, the expression (F @X) binds to (F
14 23) and in general to any list whose first element is F.

©FIPA (1998) FIPA 98 version 1.0 Part 12

31

 (=> (:SAME-VALUES ?S ?F (listof @Sn))
 (= (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))
For example, one could assert that a person's uncles are the brothers of their parents by putting the value
(parent brother) on the template facet :SAME-VALUES of the Uncle slot of class Person .

:NOT-SAME-VALUES facet
The :NOT-SAME-VALUES facet specifies that a slot of a frame does not have the same values as other slots of
that frame or as the values specified by slot chains starting at that frame. Each value of this facet is either a slot
or a slot chain. A value S2 for facet :NOT-SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that
the set of values of slot S1 of F is not equal to the set of values of slot S2 of F. That is,

 (=> (:NOT-SAME-VALUES ?S1 ?F ?S2)
 (not (= (setofall ?V (holds ?S1 ?F ?V))
 (setofall ?V (holds ?S2 ?F ?V)))))
A value (S1 … Sn) for facet :NOT-SAME-VALUES of slot S of frame F means that the set of values of slot S of
F is not equal to the set of values of slot chain (S1 … Sn) of F. That is,

 (=> (:NOT-SAME-VALUES ?S ?F (listof @Sn))
 (not (= (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V)))))

:SUBSET-OF-VALUES facet
The :SUBSET-OF-VALUES facet specifies that the values of a slot of a frame are a subset of the values of other
slots of that frame or of the values of slot chains starting at that frame. Each value of this facet is either a slot or a
slot chain. A value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F, where S2 is a slot, means that the
set of values of slot S1 of F is a subset of the set of values of slot S2 of F. That is,

 (=> (:SUBSET-OF-VALUES ?S1 ?F ?S2)
 (subset (setofall ?V (holds ?S1 ?F ?V))
 (setofall ?V (holds ?S2 ?F ?V))))
A value (S1 … Sn) for facet :SUBSET-OF-VALUES of slot S of frame F means that the set of values of slot S
of F is a subset of the set of values of the slot chain (S1 … Sn) of F. That is,

 (=> (:SUBSET-OF-VALUES ?S ?F (listof @Sn))
 (subset (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))

:NUMERIC-MINIMUM facet
The :NUMERIC-MINIMUM facet specifies a lower bound on the values of a slot whose values are numbers. Each
value of the :NUMERIC-MINIMUM facet is a number. This facet is defined as follows:

 (=> (:NUMERIC-MINIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (holds ?S ?F ?V) (>= ?V ?N))))

 (=> (template-facet-value :NUMERIC-MINIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (template-slot-value ?S ?F ?V) (>= ?V ?N))))

:NUMERIC-MAXIMUM facet

©FIPA (1998) FIPA 98 version 1.0 Part 12

32

The :NUMERIC-MAXIMUM facet specifies an upper bound on the values of a slot whose values are numbers.
Each value of this facet is a number. This facet is defined as follows:

 (=> (:NUMERIC-MAXIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (holds ?S ?F ?V) (=< ?V ?N))))

 (=> (template-facet-value :NUMERIC-MAXIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (template-slot-value ?S ?F ?V) (=< ?V ?N))))

:SOME-VALUES facet
The :SOME-VALUES facet specifies a subset of the values of a slot of a frame. This facet of a slot of a frame can
have any value that can also be a value of the slot of the frame. A value V for own facet :SOME-VALUES of own
slot S of frame F means that V is also a value of own slot S of F. That is,

 (=> (:SOME-VALUES ?S ?F ?V) (holds ?S ?F ?V))

:COLLECTION-TYPE facet
The :COLLECTION-TYPE facet specifies whether multiple values of a slot are to be treated as a set, list, or bag.
No axiomatization is provided for treating multiple values as lists or bags because of the lack of a suitable formal
interpretation for the ordering of values in lists of values that result from multiple inheritance and the multiple
occurrence of values in bags that result from multiple inheritance.

The protocol itself makes no commitment as to how values expressed in collection types other than set are
combined during inheritance. Thus, OKBC guarantees that multiple slot and facet values stored at a frame as a
bag or a list are retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a
subclass or instance, no guarantees are provided regarding the ordering of values for lists or the repeating of
multiple occurrences of values for bags.

:DOCUMENTATION-IN-FRAME facet
:DOCUMENTATION-IN-FRAME is a facet whose values at a slot for a frame are text strings providing
documentation for that slot on that frame. The only requirement on the :DOCUMENTATION facet is that its values
be strings.

Slots

:DOCUMENTATION slot
:DOCUMENTATION is a slot whose values at a frame are text strings providing documentation for that frame. Note
that the documentation describing a class would be values of the own slot :DOCUMENTATION on the class. The
only requirement on the :DOCUMENTATION slot is that its values be strings. That is,

 (=> (:DOCUMENTATION ?F ?S) (:STRING ?S))

Slots on Slot Frames
The slots described in this section can be associated with frames that represent slots. In general, these slots
describe properties of a slot which hold at any frame that can have a value for the slot.

:DOMAIN slot
:DOMAIN specifies the domain of the binary relation represented by a slot frame. Each value of the slot :DOMAIN
denotes a class. A slot frame S having a value C for own slot :DOMAIN means that every frame that has a value

©FIPA (1998) FIPA 98 version 1.0 Part 12

33

for own slot S must be an instance of C, and every frame that has a value for template slot S must be C or a
subclass of C. That is,

 (=> (:DOMAIN ?S ?C)
 (and (:SLOT ?S)
 (class ?C)
 (=> (holds ?S ?F ?V) (instance-of ?F ?C))
 (=> (template-slot-value ?S ?F ?V)
 (or (= ?F ?C) (subclass-of ?F ?C))))
If a slot frame S has a value C for own slot :DOMAIN and I is an instance of C, then I is said to be in the domain
of S.

A value for slot :DOMAIN can be a KIF expression of the following form:

 <domain-expr> ::= (union <OKBC-class>*) | OKBC-class
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in
Section 2.10.1.

Note that if slot :DOMAIN of a slot frame S has multiple values C1,…,Cn, then the domain of slot S is
constrained to be the intersection of classes C1,…,Cn. Every slot is considered to have :THING as a value of its
:DOMAIN slot. That is,

 (=> (:SLOT ?S) (:DOMAIN ?S :THING))

:SLOT-VALUE-TYPE slot
:SLOT-VALUE-TYPE specifies the classes of which values of a slot must be an instance (i.e., the range of the
binary relation represented by a slot). Each value of the slot :SLOT-VALUE-TYPE denotes a class. A slot frame
S having a value V for own slot :SLOT-VALUE-TYPE means that the own facet :VALUE-TYPE has value V for
slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-VALUE-TYPE ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:VALUE-TYPE ?S ?F ?V))))
As is the case for the :VALUE-TYPE facet, the value for the :SLOT-VALUE-TYPE slot can be a KIF expression
of the following form:

 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |
 OKBC-class
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of
classes (e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly
enumerated set of values (e.g., either Clyde, Fred, or Robert).

:SLOT-INVERSE slot
:SLOT-INVERSE specifies inverse relations for a slot. Each value of :SLOT-INVERSE is a slot. A slot frame S
having a value V for own slot :SLOT-INVERSE means that own facet :INVERSE has value V for slot S of any
frame that is in the domain of S. That is,

 (=> (:SLOT-INVERSE ?S ?V)
 (and (:SLOT ?S)

©FIPA (1998) FIPA 98 version 1.0 Part 12

34

 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:INVERSE ?S ?F ?V))))

:SLOT-CARDINALITY slot
:SLOT-CARDINALITY specifies the exact number of values that may be asserted for a slot for entities in the
slot's domain. The value of slot :SLOT-CARDINALITY is a nonnegative integer. A slot frame S having a value V
for own slot :SLOT-CARDINALITY means that own facet :CARDINALITY has value V for slot S of any frame
that is in the domain of S. That is,

 (=> (:SLOT-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:CARDINALITY ?S ?F ?V))))

:SLOT-MAXIMUM-CARDINALITY slot
:SLOT-MAXIMUM-CARDINALITY specifies the maximum number of values that may be asserted for a slot for
entities in the slot's domain. The value of slot :SLOT-MAXIMUM-CARDINALITY is a nonnegative integer. A slot
frame S having a value V for own slot :SLOT-MAXIMUM-CARDINALITY means that own facet :MAXIMUM-
CARDINALITY has value V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-MAXIMUM-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:MAXIMUM-CARDINALITY ?S ?Csub ?V))))

:SLOT-MINIMUM-CARDINALITY slot
:SLOT-MINIMUM-CARDINALITY specifies the minimum number of values for a slot for entities in the slot's
domain. The value of slot :SLOT-MINIMUM-CARDINALITY is a nonnegative integer. A slot frame S having a
value V for own slot :SLOT-MINIMUM-CARDINALITY means that own facet :MINIMUM-CARDINALITY has
value V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-MINIMUM-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:MINIMUM-CARDINALITY ?S ?F ?V))))

:SLOT-SAME-VALUES slot
:SLOT-SAME-VALUES specifies that a slot has the same values as either other slots or as slot chains for
entities in the slot's domain. Each value of slot :SLOT-SAME-VALUES is either a slot or a slot chain. A slot
frame S having a value V for own slot :SLOT-SAME-VALUES means that own facet :SAME-VALUES has value V
for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-SAME-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SAME-VALUES ?S ?F ?V)))

:SLOT-NOT-SAME-VALUES slot
:SLOT-NOT-SAME-VALUES specifies that a slot does not have the same values as either other slots or as slot
chains for entities in the slot's domain. Each value of slot :SLOT-NOT-SAME-VALUES is either a slot or a slot
chain. A slot frame S having a value V for own slot :SLOT-NOT-SAME-VALUES means that own facet :NOT-
SAME-VALUES has value V for slot S of any frame that is in the domain of S. That is,

©FIPA (1998) FIPA 98 version 1.0 Part 12

35

 (=> (:SLOT-NOT-SAME-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NOT-SAME-VALUES ?S ?F ?V)))

:SLOT-SUBSET-OF-VALUES slot
:SLOT-SUBSET-OF-VALUES specifies that the values of a slot are a subset of either other slots or of slot
chains for entities in the slot's domain. Each value of slot :SLOT-SUBSET-OF-VALUES is either a slot or a slot
chain. A slot frame S having a value V for own slot :SLOT-SUBSET-OF-VALUES means that own facet
:SUBSET-OF-VALUES has value V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-SUBSET-OF-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SUBSET-OF-VALUES ?S ?F ?V)))

:SLOT-NUMERIC-MINIMUM slot
:SLOT-NUMERIC-MINIMUM specifies a lower bound on the values of a slot for entities in the slot's domain.
Each value of slot :SLOT-NUMERIC-MINIMUM is a number. A slot frame S having a value V for own slot
:SLOT-NUMERIC-MINIMUM means that own facet :NUMERIC-MINIMUM has value V for slot S of any frame
that is in the domain of S. That is,

 (=> (:SLOT-NUMERIC-MINIMUM ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NUMERIC-MINIMUM ?S ?F ?V)))

:SLOT-NUMERIC-MAXIMUM slot
:SLOT-NUMERIC-MAXIMUM specifies an upper bound on the values of a slot for entities in the slot's domain.
Each value of slot :SLOT-NUMERIC-MAXIMUM is a number. A slot frame S having a value V for own slot
:SLOT-NUMERIC-MAXIMUM means that own facet :NUMERIC-MAXIMUM has value V for slot S of any frame
that is in the domain of S. That is,

 (=> (:SLOT-NUMERIC-MAXIMUM ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NUMERIC-MAXIMUM ?S ?F ?V)))

:SLOT-SOME-VALUES slot
:SLOT-SOME-VALUES specifies a subset of the values of a slot for entities in the slot's domain. Each value of
slot :SLOT-SOME-VALUES of a slot frame must be in the domain of the slot represented by the slot frame. A
slot frame S having a value V for own slot :SLOT-SOME-VALUES means that own facet :SOME-VALUES has
value V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-SOME-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SOME-VALUES ?S ?F ?V)))

:SLOT-COLLECTION-TYPE slot
:SLOT-COLLECTION-TYPE specifies whether multiple values of a slot are to be treated as a set, list, or bag.
Slot :SLOT-COLLECTION-TYPE has one value, which is either set , list or bag. A slot frame S having a

©FIPA (1998) FIPA 98 version 1.0 Part 12

36

value V for own slot :SLOT-COLLECTION-TYPE means that own facet :COLLECTION-TYPE has value V for
slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-COLLECTION-TYPE ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:COLLECTION-TYPE ?S ?F ?V)))

Bibliography
1 Alexender Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperine Resnick.
CLASSIC: A Structural Data Model for Objects.
In Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, pages
58-67, Portland, OR, 1989.

2 Michael R. Genesereth and Richard E. Fikes.
Knowledge Interchange Format, Version 3.0 Reference Manual.
Technical Report Logic -92-1, Computer Science Department, Stanford University, 1992.

3 Thomas R. Gruber.
A translation approach to portable ontology specifications.
In R. Mizoguchi, editor, Proceedings of the Second Japanese Knowledge Acquisition for Knowledge-
Based Systems Workshop, Kobe, 1992.
To appear in Knowledge Acquisition, June 1993.

4 P.D. Karp.
The Design Space of Frame Knowledge Representation Systems.
Technical Report 520, SRI International Artificial Intelligence Center, 1992.

5 R. MacGregor.
The Evolving Technology of Classification-based Knowledge Representation Systems.
In J. Sowa, editor, Principles of semantic networks, pages 385-400. Morgan Kaufmann Publishers, 1991.

6 Peter F. Patel-Schneider and Bill Swartout.
Description-Logic Knowledge Representation System Specification, from the KRSS Group of the DARPA
Knowledge Sharing Effort.
Technical report, November 1993.

7 Christof Peltason, Albrecht Schmiedel, Carsten Kindermann, and Joachim Quantz.
The BACK System Revisited.
Technical Report KIT - Report 75, Tecnische Universitat Berlin, September 1989.

©FIPA (1998) FIPA 98 version 1.0 Part 12

37

About this document ...
Open Knowledge Base Connectivity 2.0.49
-- Proposed --

This document was generated using the LaTeX2HTML translator Version 98.1p1 release (March 2nd, 1998)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos , Computer Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html -address For questions regarding OKBC -split 2 km.tex .

The translation was initiated by Vinay K. Chaudhri on 1998-11-24

For questions regarding OKBC

9 The Open Knowledge Base Connectivity protocol is a result of the joint work between the Artificial Intelligence Center of
SRI International and the Knowledge Systems Laboratory of Stanford University. At Stanford University, this work was
supported by the Department of Navy contracts titled Technology for Developing Network-based Information Brokers
(Contract Number N66001-96-C-8622-P00004) and Large-Scale Repositories of Highly Expressive Reusable
Knowledge (Contract Number N66001-97-C-8554). At SRI International, it was supported by a Rome Laboratory contract
titled Reusable Tools for Knowledge Base and Ontology Development (Contract Number F30602-96-C-0332), a DARPA
contract entitled Ontology Construction Toolkit, and NIH Grant R29-LM-05413-01A1.

©FIPA (1998) FIPA 98 version 1.0 Part 12

38

6.5.1 Symbols in the FIPA-meta-ontology

The following is the normative list of predicates and constants that compose the Fipa-meta-ontology and that
must be used by a FIPA agent when talking about and manipulating ontologies. It is here reported as a quick
reference for the programmer of this specification.

Note: If readers find this list incomplete they are welcome to send additional symbols for FIPA consideration.

6.5.1.1 List of predicates

Standard predicates Informal description

(<classname> ?class) Is true if and only if ?class is an instance of the class <classname>

(<facetname> ?class ?slot
?value)

Is true if and only if value is the value of the facet <facetname> of the slot
slot of the class class

(<slotname> ?class ?value) Is true if and only if value is the value of the slot <slotname> of the class
class

(CLASS ?X) Is true if and only if its argument X is a class

(FACET ?X) Is true if and only if its argument X is a facet

(FACET-OF ?facet ?slot
?frame)

Is true if and only if the argument facet is a facet of the slot slot of the
frame frame

(FRAME-SENTENCE ?frame
?predicate)

Is true if and only if the predicate ?predicate is asserted within the frame
?frame

(INDIVIDUAL ?X) Is true if and only if its argument X is an individual

(INSTANCE-OF ?I ?C) Predicate expressing the instance relation between an instance I and a class C
it belongs to.

(PRIMITIVE ?x) Is true if and only if its argument X is a primitive class.

(SLOT ?X) Is true if and only if its argument X is a slot

(SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a slot of the frame frame

(SUBCLASS-OF ?Csub ?Csuper) Is true if and only if all instances of the class Csub are also instances of
Csuper

(SUPERCLASS-OF ?Csuper
?Csub)

Is true if and only if all instances of the class Csub are also instances of
Csuper. It is the inverse of the relation SUBCLASS-OF

(TEMPLATE-FACET-OF ?facet
?slot ?frame)

Is true if and only if the argument facet is a template facet of the slot
slot of the frame frame

(TEMPLATE-FACET-VALUE
?facet ?slot ?frame ?value)

Is true if and only if the argument value is the value of the facet facet of
the slot slot of the frame frame

(TEMPLATE-SLOT-OF ?slot
?frame)

Is true if and only if the argument slot is a template slot of the frame
frame

(TEMPLATE-SLOT-VALUE ?slot
?frame ?value)

Is true if and only if the argument value is the value of the slot slot of

©FIPA (1998) FIPA 98 version 1.0 Part 12

39

?frame ?value) the frame frame

(TYPE-OF ?C ?I) Predicate expressing the instance relation between an instance I and a class C
it belongs to. It is the inverse of the relation INSTANCE-OF

6.5.1.2 List of standard classes

:THING

:CLASS

:INDIVIDUAL

:NUMBER

:INTEGER

:STRING

:SYMBOL

:LIST

6.5.1.3 List of standard facets

:VALUE-TYPE

:INVERSE

:CARDINALITY

:MAXIMUM-CARDINALITY

:MINIMUM-CARDINALITY

:SAME-VALUES

:NOT-SAME-VALUES

:SUBSET-OF-VALUES

:NUMERIC-MAXIMUM

:NUMERIC-MINIMUM

:SOME-VALUES

:COLLECTION-TYPE

:DOCUMENTATION-IN-FRAME

6.5.1.4 List of standard slots

:DOCUMENTATION

6.5.1.5 List of standard slots on slot frames

:DOMAIN

©FIPA (1998) FIPA 98 version 1.0 Part 12

40

:SLOT-VALUE-TYPE

:SLOT-INVERSE

:SLOT-CARDINALITY

:SLOT-MAXIMUM-CARDINALITY

:SLOT-MINIMUM-CARDINALITY

:SLOT-SAME-VALUES

:SLOT-NOT-SAME-VALUES

:SLOT-SUBSET-OF-VALUES

:SLOT-NUMERIC-MINIMUM

:SLOT-NUMERIC-MAXIMUM

:SLOT-SOME-VALUES

:SLOT-COLLECTION-TYPE

6.6 Responsibilities, Actions and Predicates Supported by the Ontology Agent

This section describes responsibilities, actions and predicates supported by the ontology agent. They compose
the fipa-ontol-service-ontology, whose symbols are listed in section 6.8.

An action can be REQUESTed or CANCELed using FIPA ACL.

Example:
 (request
 :sender client-agent
 :receiver ontology-agent
 :content (action ontology-agent
 (assert (subclass-of whale mammal)))
 :language sl2
 :ontology (fipa-ontol-service-ontology animal-ontology)
 ...)

In the above example, agent client-agent requests ontology-agent the action of assertion (see below)
that whale is an instance of mammal in an ontology called animal-ontology with language sl2 and ontology
fipa-ontol-service-ontology.

Predicates can be INFORMed, CONFIRMed, DISCONFIRMed or QUERY-IF/REF 'ed.

Example:

 (inform
 :sender ontology-agent
 :receiver client-agent
 :content (subclass-of whale mammal)
 :language sl2
 :ontology (fipa-ontol-service-ontology animal-ontology)
 ...)
In the above example ontology-agent informs client-agent that (it believes it is true that) whale is a
subclass of mammal.

©FIPA (1998) FIPA 98 version 1.0 Part 12

41

For more details about actions and predicates, see FIPA 97 Part 2: Agent Communication Language [2].

6.6.1 Responsibilities of the Ontology Agent

The ontology agent maintains ontology by defining, modifying or removing terms and definitions contained in the
ontology. It responds to queries about the terms in an ontology or relationship between ontologies. Ontology
agent can provide the translation service of expressions between different ontologies or different content
languages by itself, possibly as a wrapper to an ontology server. The actions and predicates described in this
section are used in conjunction with FIPA ACL to perform these functions.

6.6.2 Assertion

The action ASSERT must be used to request to assert a predicate in an ontology. The syntax of ASSERT action
is as follows:

 (ASSERT (predicate))

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter
of the ACL message. The effect of asserting a predicate is to add, create or define the said predicate in the
ontology definition. The OA is responsible to respect the consistency of the ontology and it can refuse (using
REFUSE communicative act) to do the action if the result would produce an inconsistent ontology.

All predicates in the Fipa-meta-ontology can be passed as parameter of this action.

6.6.3 Retraction

The action RETRACT must be used to request the OA to retract a predicate in an ontology. The syntax of
RETRACT action is as follows:

 (RETRACT (predicate))

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter
of the ACL message. The effect of retracting a predicate is to remove, delete or detach the said predicate in the
ontology definition. The OA is responsible to respect consistency of the ontology and it can refuse (using
REFUSE communicative act) to do the action if the result would produce an inconsistent ontology .

All predicates in the Fipa-meta-ontology can be passed as parameter of this action.

6.6.4 Query

This section describes the actions and predicates for querying and identifying the ontologies. Typical queries
include questions about relationship between terms or between ontologies, and identifying a shared sub-ontology
for communication.

QUERY-IF standard ACL communicative act is used to query a proposition, which is either true or false.
QUERY-REF is used to ask for identifying referencing expression, which denotes an object.

Note: The reader might ask why the query is not an action, as the previous ones, but a communicative act. It must then
be noticed that the previous actions correspond to an administrative request to actually modify an ontology. In this case,
the intention of the sender agent is instead to query the knowledge base of the Ontology Agent.

All predicates in the Fipa-meta-ontology can be used in the content of these communicative acts.

The :ontology parameter of the ACL message should include both fipa-ontol-service-ontology and the identifier of
the ontology being queried.

Example: the following is a query from client-agent to ontology-agent asking for the reference of
instances of a class citrus:

©FIPA (1998) FIPA 98 version 1.0 Part 12

42

 (query-ref
 :sender client-agent
 :receiver ontology-agent
 :content (iota ?x (instance-of ?x citrus))
 :language sl
 :ontology (fipa-ontol-service-ontology fruits-ontology)
 :reply-with citrus-query
 ...)

The ontology-agent can then reply with the following INFORM message answering that the queried instances
of the class citrus are orange , lemon and grapefruit :

 (inform
 :sender ontology-agent
 :receiver client-agent
 :content (= (iota ?x (instance-of ?x citrus))
 (orange lemon grapefruit))
 :language sl
 :ontology (fipa-ontol-service-ontology fruits-ontology)
 :in-reply-to citrus-query
 ...)
6.6.5 Modify

This section describes the action for modifying ontologies. Basically, this kind of action is a combination of
querying, removing and adding predicates about the symbols in the ontology. However, different from doing these
actions one by one, the execution of the sequence of actions must be atomic, that is other actions cannot
intervene in the modify action during the execution of it in order to assure the consistency of the transaction. If at
least one of the atomic actions in the modify action fails, the ontology agent must recover the situation just before
the modify action commences. Actions must be executed in sequence. The sequence of actions is independent
from other actions that are running at the same time on the same ontology agent. Other agents cannot see the
interim status of the modify action.

To enable such an action, the following action operator

 (ATOMIC-SEQUENCE action*)

is introduced. The semantics of ATOMIC-SEQUENCE is a sequence of actions with guaranteed atomicity,
consistency, independence and durability (ACID property). Some locking mechanism is assumed but the kind of
lock is implementation dependent.

Example:

 (action OA
 (atomic-sequence

 (action OA (assert animal (class mammal)))
 (action OA (retract animal (subclass-of whale fish)))
 (action OA (retract animal (class fish)))
 (action OA (assert animal (subclass-of whale mammal)))))

6.6.6 Translation of the Terms and Sentences between Ontologies

TRANSLATE is an action of translating the terms and sentences between translatable ontologies. Before issuing
the translate action, the agent must check whether the ontologies are translatable or not, using the predicate
described in the next section. The following is the syntax of TRANSLATE action:

 (TRANSLATE expression TranslationDescr)

©FIPA (1998) FIPA 98 version 1.0 Part 12

43

where the syntax of TranslationDescr is that defined in section 6.4

This action has always a result and should be used in a FIPA-request interaction protocol in order to receive the
result of the translation of an expression.

Example: For example, if agent client-agent wants to translate a US-English sentence to Italian, it will use
the following ACL:

 (request
 :sender client-agent
 :receiver ontology-agent

 :content (action ontology-agent
 (translate (temperature today (F 50)
 (:from us-english-ontology :to italian-ontology)))
 :ontology fipa-ontol-service-ontology
 :protocol FIPA-request
 :language sl2
 :reply-with translation-query-1123234
 ...)

Ontology-agent will reply with an INFORM:

 (inform
 :sender ontology-agent
 :receiver client-agent
 :content (= (iota ?i
 (result (action ontology-agent

 (translate (temperature today (F 50)))
 (:from us-english-ontology
 :to italian-ontology)))
 ?i))

 (temperatura oggi (C 10)))
 :ontology fipa-ontology-service
 :language sl2
 :in-reply-to translation-query-1123234
 ...)

The following predicate can be used to determine the relationship between source-ontology and destination-
ontology:

 (ontol-relationship ?source-ontology ?destination-ontology ?level)

where ontol-relationship is the predicate described in section 6.3.

Example: An agent wishing to know if there exists a translation between two ontologies may use the following
communicative act:

(query-ref
 :sender Agent1
 :receiver OA
 :language SL
 :ontology Fipa-ontol-service-ontology
 :content (iota ?level (ontol-relationship O1 O2 ?level)))

An Ontology Agent that is not able to provide any translation between the two ontologies may answer

(inform
 :sender OA

©FIPA (1998) FIPA 98 version 1.0 Part 12

44

 :receiver Agent1
 :language SL
 :ontology Fipa-ontol-service-ontology
 :content nil)

6.6.7 Error handling

Not-understood reasons

 The not-understood reasons are not specific to the OA specs. The reader should directly refer to FIPA97
Specifications Part 2.

Failure reasons

 The following failure reasons can be used by the OA in accordance to the FIPA97 Part 1 specification

 UNAUTHORISED
 UNWILLING-TO-PERFORM

Refuse reasons

 The following refuse reasons can be used by the OA to refuse to modify a frame when it is read-only or
when it creates an inconsistency in the ontology.

(READ-ONLY <frame-name>)
 (INCONSISTENT <frame-name>)

Example:

Agent client-agent requests ontology-agent to assert a predicate but it is refused.

 (request
 :sender client-agent
 :receiver ontology-agent
 :content (action ontology-agent

 (assert animal-ontology (instance-of whale fish))))

 (refuse
 :sender ontology-agent
 :receiver client-agent
 :content ((action ontology-agent

 (assert animal-ontology (instance-of whale fish)))
 UNWILLING-TO-PERFORM))

Example 2:

Agent client-agent queries ontology-agent the result of asserting a predicate. It is rejected by
ontology-agent because of an error.

 (query-ref
 :sender client-agent
 :receiver ontology-agent
 :content (iota ?r (result (action ontology-agent

 (assert animal-ontology
 (instance-of whale fish)))

 ?r))))

©FIPA (1998) FIPA 98 version 1.0 Part 12

45

 (inform
 :sender ontology-agent
 :receiver client-agent
 :content (= (iota ?r (result (action ontology-agent

 (assert animal-ontology
 (instance-of whale fish)))

 ?r))
 UNWILLING-TO-PERFORM))
6.7 Interaction Protocol to agree on a shared ontology

Agents must agree on an ontology in order to communicate.

Consider an agent A that commits to ontology O1 and requests a service provided by agent B. The simplest
approach is for agent A to request the service from agent B, specifying ontology O1. If agent B understands
ontology O1, it will perform the service, otherwise it will answer not-understood . In the latter case the
communication cannot be achieved because the two partners do not share a common understanding of the
symbols used in the domain of discourse.

The most simple alternative to this situation, and probably also the most used, is that an agent, who is searching
for a specific service, queries the DF for agents which provide that specific service and that, in addition, support a
specific ontology. Provided that such an agent exists, the ontology sharing is guaranteed.

A second approach allows agent A to communicate with agent B when the agents share two ontologies with
different names but that are identical or equivalent (see section 6.3). The knowledge about the existing
relationships between two ontologies can be accessed in general from the OA by querying with the ontol-
relationship predicate. Provided that such an identical or equivalent relationship exists, the communication
is again guaranteed because of the sharing of both the vocabulary and the logical axiomatization. As a sub-case
of the previous one, if O1 is a sub-ontology of one of the ontologies known by B, the agent A can still
communicate with B, even if the vice-versa is not guaranteed.

Finally, an other approach is when a translation relationship exists between O1 and one of the ontologies to
which B commits. In this case, A can query the DF for an agent who provides such a translation service and it
can still communicate with B by using the translation as a proxy service.

6.8 FIPA-Ontol-service -Ontology

This is the ontology that should be used by agents to request the services of an Ontology Agent. It extends the
FIPA-meta-ontology described in section 6.5 by including all the symbols in it plus the following.

All the following keywords are case-insensitive.

6.8.1 List of predicates

Standard predicates Informal description (see section 6.3 for a detailed description)

(ontol-relationship ?o1 ?o2
 ?level)

Is true if and only if there is a relationship of type level between
the ontology o1 and the ontology o2. See section 6.3 for a
detailed description of this predicate

6.8.2 List of actions

Standard actions Informal description (see section 6.6 for a detailed description)

(assert predicate) Asserts the predicate in the ontology specified by :ontology
parameter

©FIPA (1998) FIPA 98 version 1.0 Part 12

46

(retract predicate) Retracts the predicate in the ontology specified by :ontology
parameter

(atomic-sequence <action>*) Introduces a transaction-type sequence of actions which is
treated as if to be a single action. It is used to modify an existing
ontology by combining the actions of retraction and assertion, for
example. The mechanism to maintain the consistency inside the
sequence and to protect values from outside the sequence is
dependent on the implementation.

(translate <expression>
 <translation-description>)

Translates the expression as specified by the translation-
description. Should be used with FIPA-Request protocol.

6.8.3 List of objects and constant values

Fipa-meta-ontology The :ontology parameter of the ACL message may assume
this constant value to indicate the fipa-meta-ontology

Fipa-ontol-service-ontology The :ontology parameter of the ACL message may assume
this constant value to indicate the fipa-ontol-service-
ontology

Fipa-oa Every OA must register with the DF this constant value for
its :agent-type and its :service-type.

Extension The parameter ?level in the onto-relationship predicate
may assume this value when one ontology extends the other

Identical The parameter ?level in the onto-relationship predicate may
assume this value when two ontologies are identical

Equivalent The parameter ?level in the onto-relationship predicate
may assume this value when two ontologies are equivalent

Strongly-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is strongly-translatable
into another

Weakly-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is weakly-translatable
into another

Approx-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is approximately
translatable into another

:supported-ontologies This object must be registered with the DF as one of
the :fixed-properties of an ontology agent.

:ontology-name This slot contains the name of the ontology

:version This slot contains the version of the ontology

:source-languages This slot contains the source languages in which the ontology is
stored on the server

©FIPA (1998) FIPA 98 version 1.0 Part 12

47

:domains This slot contains the list of domains for which the ontology can
be used

:ontology-translation-types This object must be registered with the DF as one of
the :fixed-properties to indicate the types of ontology
translations available

:language-translation-types This object must be registered with the DF as one of
the :fixed-properties to indicate the types of language
translations available

:from This slot contains the source ontology of language for a
translation

:to This slot contains the destination ontology of language for a
translation

:level This slot contains the supported level of translation between
ontologies or languages

7 References

[1] FIPA 97 specification, part 1, Agent Management

[2] FIPA 97 specification, part 2, Agent Communication Language

[3] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, James P. Rice, Open Knowledge Base
Connectivity 2.0.4, April 9, 1998.

[4] InfoSlueth: Agent-Based Sematic Intergration of Information in Open and Dynamic Enviroments. R.J.Bayardo
Jr., W.Boher, R.Brice, A.Ciehocki, J.Fowler, A.Helal, V. Kashyap, T.Ksiezyk, G.Martin, M. Nodine, M. Rashid,
M.Ruisnkiewicz, R. Shea, C. Unnikrishnan, A.Unruh, and D. Woelk. http://www.mcc.com/projects/infosleuth

[5] W3C, Resource Description Framework, http://www.w3.org/TR/WD-rdf-syntax/

[6] M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format, Version 3.0 Reference Manual. Technical
Report Logic -92-1, Computer Science Department, Stanford University, 1992.

©FIPA (1998) FIPA 98 version 1.0 Part 12

48

Annex A
(informative)

Ontologies and Conceptualizations 10

Despite its crucial importance for guaranteeing the exchange of content information among agents, the very
notion of ontology is not completely clear yet from a theoretical point of view (although the various definitions
proposed in the literature are slowly converging), and a suitable “reference model” for ontologies needs to be
established in order to exploit them in the FIPA architecture.

The purpose of this section is to present an overview of such a reference model, aimed to clarify the following
points:

• The distinction between an ontology and its underlying conceptualization

• The importance of axiomatic ontologies with respect to mere vocabularies

• A characterization of the ontology sharing problem

• The distinctions among the basic kinds of ontology

I. Ontologies vs. conceptualizations

In the philosophical sense, we may refer to an ontology as a particular system of categories accounting for a
certain vision of the world. As such, this system does not depend on a particular language: Aristotle’s ontology is
always the same, independently of the language used to describe it. On the other hand, in its most prevalent use
in AI, an ontology refers to an engineering artifact, constituted by a specific vocabulary used to describe a certain
reality, plus a set of explicit assumptions regarding the intended meaning of the vocabulary words. This set of
assumptions has usually the form of a first-order logical theory, where vocabulary words appear as unary or
binary predicate names, respectively called concepts and relations. In the simplest case, an ontology describes
a hierarchy of concepts related by subsumption relationships; in more sophisticated cases, suitable axioms are
added in order to express other relationships between concepts and to constrain their intended interpretation.

The two readings of “ontology” described above are indeed related to each other, but in order to solve the
terminological impasse we need to choose one of them, inventing a new name for the other: we shall adopt the AI
reading, using the word conceptualization to refer to the philosophical reading. So two ontologies can be different
in the vocabulary used (using English or Italian words, for instance) while sharing the same conceptualization.

With this terminological clarification, an ontology can be defined as a specification of a conceptualization11. The
latter concerns the way an agent structures its perceptions about the world, while the former gives a meaning to
the vocabulary used by the agent to communicate such perceptions. Two agents may share the same
conceptualization while using different vocabularies. For instance, the (usual) conceptualization underlying the
English term “apple” is the same as for the Italian term “mela”, and refers to the intrinsic nature and structure of
all possible apples. The two terms belong to two different ontologies while sharing the same conceptualization. A
clear separation between ontology and conceptualization becomes essential to address the issues related to
ontology sharing, fusion, and translation, which in general imply multiple languages and multiple world views.

10 This annex is mainly an adaptation of [Guarino 1998].

2While this expression is the same introduced in [Gruber 1995], the notion of “conceptualization” adopted here is not the
one referred to in that paper (taken from [Genesereth and Nilsson 1987]), as discussed below.

©FIPA (1998) FIPA 98 version 1.0 Part 12

49

A conceptualization is not concerned with meaning assignments, but just with the formal structure of reality as
perceived and organized by an agent, independently of

• the language used to describe it;

• the actual occurrence of a specific situation.

An ontology, on the other hand, is first of all a vocabulary. However, an ontology consisting only of a vocabulary
would be of very limited use, since its intended meaning would be not explicit. Therefore, besides specifying a
vocabulary, an ontology must specify the intended meaning of such vocabulary, i.e. its underlying
conceptualization. In some cases, the terms used belong to a very specific technical vocabulary, and their
meaning is well agreed upon within a community of human agents. Things are different however in the case of
ambiguous terms belonging to everyday natural language, or when computerized agents need to communicate.

II. A formal account of ontologies and conceptualizations

The notions introduced above require a suitable formalization in order to make clear the relationship between an
ontology, its intended models, and a conceptualization. The latter notion has been defined in a well-known AI
textbook [Genesereth and Nilsson 87] as a structure <D, R>, where D is a domain and R is a set or relevant
relations on D. This definition has been then used by Gruber, who defined an ontology as “a specification of a
conceptualization” [Gruber 95]. While maintaining the validity of Gruber’s expression, already introduced above,
we shall adopt in this document a notion of “conceptualization” different from the one introduced by Genesereth
and Nilsson, following the proposal made in [Guarino and Giaretta 95], further revised in [Guarino 98].

II.1 What is a conceptualization

The problem with Genesereth and Nilsson’s notion of conceptualization is that it refers to ordinary mathematical
relations on D, i.e. extensional relations. These relations reflect a particular state of affairs: for instance, in the
blocks world, they may reflect a particular arrangement of blocks on the table (Fig. 1). We need instead to focus
on the meaning of these relations, independently of a state of affairs: for instance, the meaning of the “above”
relation lies in the way it refers to certain couples of blocks according to their spatial arrangement. We need
therefore to speak of intensional relations: we call them conceptual relations, reserving the simple term “relation”
to ordinary mathematical relations.

a

b

c e

d a

b

c

e

d

(a) (b)

Fig. 1. Blocks on a table. (a) A possible arrangement of blocks. (b) A different arrangement. Also a different
conceptualization? (From [Guarino and Giaretta 1995])

While ordinary relations are defined on a certain domain, conceptual relations are defined on a domain space. We
shall define a domain space as a structure <D, W>, where D is a domain and W is the set of all relevant states of
affairs of such domain (which we shall also call possible worlds). For instance, D may be a set of blocks on a
table and W can be the set of all possible spatial arrangements of these blocks. Given a domain space <D, W>,

we define a conceptual relation ρ
n

 of arity n on <D, W> as a total function ρ
n
: W→2D

n
 from W into the set of all

n-ary (ordinary) relations on D. For a generic conceptual relation ρ , the set Eρ = {ρ(w) | w∈W} will contain the

©FIPA (1998) FIPA 98 version 1.0 Part 12

50

admittable extensions of ρ. A conceptualization for D can be now defined as a tuple C = <D, W, ℜ>, where ℜ is a
set of conceptual relations on <D, W>12. We can say therefore that a conceptualization is a set of conceptual
relations defined on a domain space.

Consider now the structure <D, R> introduced by Genesereth and Nilsson. Since it refers to a particular world (or
state of affairs), we shall call it a world structure. It is easy to see that a conceptualization defines many of such
world structures, one for each world: they shall be called the intended world struc tures according to such
conceptualization. Let C = <D, W, ℜ> be a conceptualization. For each possible world w∈W, the corresponding
world structure according to C is the structure SwC = <D, RwC>, where RwC ={ρ(w) | ρ∈ℜ} is the set of extensions
(relative to w) of the elements of ℜ. We shall denote with SC the set {SwC | w∈W} all the intended world structures
of C.

Let us consider now a logical language L, with vocabulary V. Rearranging the standard definition, we can define a
model for L as a structure <S, I>, where S = <D, R> is a world structure and I: V→D∪R is an interpretation
function assigning elements of D to constant symbols of V, and elements of R to predicate symbols of V. As well
known, a model fixes therefore a particular extensional interpretation of the language. Analogously, we can fix an
intensional interpretation by means of a structure <C, ℑ>, where C = <D, W, ℜ> is a conceptualization and ℑ:
V→D∪ℜ is a function assigning elements of D to constant symbols of V, and elements of ℜ to predicate symbols
of V. We shall call this intensional interpretation an ontological commitment for L. If K = <C, ℑ> is a an
ontological commitment for L, we say that L commits to C by means of K, while C is the underlying
conceptualization of K13.

Given a language L with vocabulary V, and an ontological commitment K = <C, ℑ> for L, a model <S, I> will be
compatible with K if: i) S∈SC; ii) for each constant c, I(c) = ℑ(c); iii) for each predicate symbol p, I maps such a
predicate into an admittable extension of ℑ(p), i.e. there exist a conceptual relation ρ and a world w such that
ℑ(p) = ρ ∧ ρ(w) = I(p). The set IK(L) of all models of L that are compatible with K will be called the set of intended
models of L according to K.

In general, there will be no way to reconstruct the ontological commitment of a language from a set of its intended
models, since a model does not necessarily reflect a particular world: in fact, since the relevant relations
considered may not be enough to completely characterize a state of affairs, a model may actually describe a
situation common to many states of affairs. This means that it is impossible to reconstruct the correspondence
between worlds and extensional relations established by the underlying conceptualization. A set of intended
models is therefore only a weak characterization of a conceptualization: it just excludes some absurd
interpretations, without really describing the “meaning” of the vocabulary.

II.2 What is an ontology

We can now clarify the role of an ontology, considered as a set of logical axioms designed to account for the
intended meaning of a vocabulary. Given a language L with ontological commitment K, an ontology for L is a set
of axioms designed in a way such that the set of its models approximates as best as possible the set of intended
models of L according to K (Fig. 2). In general, it is neither easy nor convenient to find an optimal set of axioms,
so that an ontology will admit other models besides the intended ones. Therefore, an ontology can “specify” a
conceptualization only in a very indirect way, since i) it can only approximate a set of intended models; ii) such a
set of intended models is only a weak characterization of a conceptualization. We shall say that an ontology O
for a language L approximates a conceptualization C if there exists an ontological commitment K = <C, ℑ> such
that the intended models of L according to K are included in the models of O. An ontology commits to C if i) it
has been designed with the purpose of characterizing C, and ii) it approximates C. A language L commits to an
ontology O if it commits to some conceptualization C such that O agrees on C. With these clarifications, we

12 In the following, symbols denoting structures and sets of sets appear in boldface.

13 The expression “ontological commitment” has been sometimes used to denote the result of the commitment itself,
i.e., in our terminology, the underlying conceptualization.

©FIPA (1998) FIPA 98 version 1.0 Part 12

51

come up to the following definition, which refines Gruber’s definition by making clear the difference between an
ontology and a conceptualization:

From a logical point of view, an ontology is a logical theory accounting for the intended meaning of a formal

vocabulary 14, i.e. its ontological commitment to a particular conceptualization of the world. The intended
models of a logical language using such a vocabulary are constrained by its ontological commitment. An
ontology indirectly reflects this commitment (and the underlying conceptualization) by approximating such
intended models.

The relationships between vocabulary, conceptualization, ontological commitment and ontology are illustrated in
Fig. 2.

Intended models IK(L)

Language L

Conceptualization C

Models M(L)

commitmen t K = <C,�ℑ>

Ontology

Fig. 2. The intended models of a logical language reflect its commitment to a conceptualization. An ontology indirectly
reflects this commitment (and the underlying conceptualization) by approximating this set of intended models. [From
Guarino 98]

III. The Ontology Integration Problem

Information integration is a major application area for ontologies. As well known, even if two agents adopt the
same vocabulary, there is no guarantee that they can agree on a certain information unless they commit to the
same conceptualization. Assuming that each agent has its own conceptualization, a necessary condition in order
to make an agreement possible is that the intended models of both conceptualizations overlap (Fig. 3).

14 Not necessarily this formal vocabulary will be part of a logical language: for example, it may be a protocol of
communication between agents.

©FIPA (1998) FIPA 98 version 1.0 Part 12

52

M(L)

IA(L)

IB(L)

Fig. 3. Two agents A and B using the same language L can communicate only if the set of intended models IA(L) and IB(L)
associated to their conceptualizations overlap. [From Guarino 98]

Supposing now that these two sets of intended models are approximated by two different ontologies, it may be
the case that the latter overlap (i.e., they have some models in common) while their intended models do not (Fig.
4). This means that a bottom-up approach to systems integration based on the integration of multiple local
ontologies may not work, especially if the local ontologies are only focused on the conceptual relations relevant
to a specific context , and therefore they are only weak and ad hoc approximations of the intended models.
Hence, it seems more convenient to agree on a single top-level ontology rather than relying on agreements based
on the intersection of different ontologies.

M(L)

IA(L)

IB(L)

Fig. 4. The sets of models of two different axiomatizations, corresponding to different ontologies, may intersect while the
sets of intended models do not. [From Guarino 98]

IV. Basic kinds of ontologies

We can classify ontologies along several dimensions:

- their degree of dependence on a particular task or domain

- the level of detail of their axiomatization

- the nature of their domain (either “object-level” or “meta-level”)

IV.1 From top-level to application-level

The first dimensions suggest the distinctions illustrated in Fig. 5 below.

©FIPA (1998) FIPA 98 version 1.0 Part 12

53

top-level ontology

domain ontology task ontology

application ontology

Fig. 5. Kinds of ontologies, according to their level of dependence on a particular task or point of view. Thick arrows
represent specialization relationships. From [Guarino 98].

• Top-level ontologies describe very general concepts like space, time, matter, object, event, action, etc.,
which are independent of a particular problem or domain: it seems therefore reasonable, at least in theory, to
have unified top-level ontologies for large communities of users. The development of a general enough top-
level ontology is a very serious task, which hasn’t been satisfactory accomplished yet (see the efforts of the
ANSI X3T2 Ad Hoc Group on Ontology). However, the adoption of a single agreed-upon top level seems to be
preferable to a “bottom-up” approach based on the integration of more specific ontologies, mainly for the
reasons discussed in the section III. The Ontology Integration Problem”.

• Domain ontologies and task ontologies describe, respectively, the vocabulary related to a generic domain
(like medicine, or automobiles) or a generic task or activity (like diagnosing or selling), by specializing the
terms introduced in the top-level ontology.

• Application ontologies describe concepts depending both on a particular domain and task, which are often
specializations of both the related ontologies. These concepts often correspond to roles played by domain
entities while performing a certain activity, like replaceable unit or spare component..

It may be important to make clear the difference between an application ontology and a knowledge base. The
answer is related to the purpose of an ontology, which is a particular knowledge base, describing facts assumed
to be always true by a community of users, in virtue of the agreed-upon meaning of the vocabulary used. A
generic knowledge base, instead, may also describe facts and assertions related to a particular state of affairs or
a particular epistemic state. Within a generic knowledge base, we can distinguish therefore two components: the
ontology (containing state-independent information) and the “core” knowledge base (containing state-dependent
information).

IV.2 Shareable Ontologies and Reference Ontologies

Another important classification dimension for ontologies is their level of detail, i.e., in other terms, the degree of
characterization of the intended models. A fine-grained ontology very rich of axioms, written in a very expressive
language like full first order logic, gets closer to specifying the intended meaning of a vocabulary (and therefore it
may be used to establish consensus about sharing that vocabulary, or a knowledge base which uses that
vocabulary), but it usually hard to develop and hard to reason on. A coarse ontology, on the other hand, may
consist of a minimal set of axioms written in a language of minimal expressivity, to support only a limited set of
specific services, intended to be shared among users which already agree on the underlying conceptualization.
We can distinguish therefore between detailed reference ontologies and coarse shareable ontologies, or maybe
between off-line and on-line ontologies: the former are only accessed from time to time for reference purposes,
while the latter support core system’s functionalities .

©FIPA (1998) FIPA 98 version 1.0 Part 12

54

IV.3 Meta-level Ontologies

A further, separate kind of ontology is constituted by what have been called representation ontologies [Van Heijst
et al. 1997] They are in fact meta-level ontologies, describing a classification of the primitives used by a
knowledge representation language (like concepts, attributes, relations...). An example of a representation
ontology is the OKBC ontology, used to support translations within different knowledge representation languages.
A further example is the ontology of meta-level primitives presented in [Guarino et al. 94], which differs from the
OKBC Ontology in assuming a non-neutral ontological commitment for the representation primitives.

V. References

Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundation of Artificial Intelligence. Morgan Kaufmann, Los Altos,
California.

Gruber, T. R. 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of
Human and Computer Studies , 43(5/6): 907-928.

Guarino, N. 1998. Formal Ontology in Information Systems. In N. Guarino (ed.) Formal Ontology in Information Systems.
Proceedings of FOIS'98, Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam: 3-15.

Guarino, N., Carrara, M., and Giaretta, P. 1994. An Ontology of Meta-Level Categories. In D. J., E. Sandewall and P.
Torasso (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International
Conference (KR94). Morgan Kaufmann, San Mateo, CA: 270-280.

Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge Bases: Towards a Terminological Clarification. In N. Mars
(ed.) Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing 1995. IOS Press,
Amsterdam: 25-32.

Van Heijst, G., Schreiber, A. T., and Wielinga, B. J. 1997. Using Explicit Ontologies in KBS Development. International
Journal of Human and Computer Studies , 46: 183-292.

©FIPA (1998) FIPA 98 version 1.0 Part 12

55

Annex B
(informative)

Guidelines to define a New Ontology 15

I. Set of principles useful in the development of ontologies

• Clarity and objectivity: The ontology should provide a glossary of the vocabulary used in providing objective
definitions and precise meaning in natural language form.

• Completeness: A definition expressed by a necessary and sufficient condition is preferred over a partial
definition.

• Coherence: It should permit inferences that are consistent with the definitions.

• Maximal monotonic extendibility: New general or specialised terms should be included in the ontology in
such a way that does not require the revision of the existing definitions.

• Minimal ontological commitment: It should make as few axioms as possible about the world being
modeled.

• Ontological Distinction Principle : Classes carrying different identity criteria should be disjoint. This principle
is discussed in more detail in [Guarino 98].

II. Ontology development process

The ontology development process refers to the tasks you carry out when building ontologies. Adapting the IEEE
software development process to ontology development process, the tasks identified are classified into three
categories as shown in Figure 1.

Project-Management

Activities

 Development-Oriented

Activities

 Integral

Activities

 Pre-development

Planning Specify Acquire Knowledge

Control Development Evaluate

 Conceptualize

15 The annex is mainly a slight adaptation of the reference [1].

©FIPA (1998) FIPA 98 version 1.0 Part 12

56

Quality Assurance Formalize Document

 Integrate

 Implement Configuration Management

 Post-development

 Maintenance

Figure 1 Ontology development process (proposition from [1])

II.1 Project Management Activities

Their main aim is to assure a well-running ontology. These tasks are usual in the classical software development
process. They are simply briefly reminded.

• Planning: It is the ordered list of the tasks to be done, represented for example by Gantt diagrams. They also
provide information on the resources allocated to the different tasks (i.e. human, budget, software tools,
hardware platform).

• Control: Its goal is to guarantee that the planned tasks are done in the way they were intended to be
performed. This should prevent typically from delays, errors and omission.

• Quality assurance: It assures that each delivery of tasks is compliant to a given quality standard.

II.2 Development Activities

The following tasks describe the practical skills, techniques and methods used to develop an ontology.

• Specify: The scope of the ontology under consideration must be defined, its goal, its foreseen usage and end-
users’ needs. The degree of formality of the writing of this requirement specification may vary, from informal
text to more structured framework (e.g. set of competence questions).

• Conceptualize : Its goal is to build a conceptual model that describes the problem and its solution.

• Formalize : This activity transforms the conceptual model into a formal model that is semi-computable.
Conceptual graphs, frame-oriented or description logic representations could be used to formalize the
ontology.

• Integrate: Ontologies are built to be reused. Accordingly, duplication of work in building ontologies has even
less sense than in the traditional object-oriented software development. So, reuse of existing ontologies is
encouraged. Nevertheless, a general method to integrate ontologically heterogeneous taxonomic knowledge
is not known. This specification allows the assertion of some relationships between ontologies, as described
in section 6.3.

• Implement: Codification of the ontology in a formal language. For a reference framework for selecting target
languages see [7].

• Maintain: Additions and modifications of an ontology should be possible.

II.3 Integral Activities

These activities are prominent tasks, since all the development-oriented tasks are fully dependent on the quality
achieved during these tasks. The interaction between development-oriented and integral activities will be
explicated in the life cycle of the ontology (below).

©FIPA (1998) FIPA 98 version 1.0 Part 12

57

• Acquire knowledge : Elicitation of knowledge will be done via KBSs knowledge elicitation techniques [8]. As
a result, the list of the sources of knowledge and the rough description of the techniques used in the elicitation
process will be available.

• Evaluate : Before publishing an ontology, make a technical judgement with respect to a framework of
reference. See [9] [10].

• Document: To allow reuse and sharing of ontologies, a well written documentation is absolutely needed.

• Configuration management: It is the task of keeping records of each release issued during the development
of the ontology. This is a classical task in software development.

II.4 Ontology Life Cycle

This indicates the order and depth in which activities and tasks should be performed. So, the life cycle will exhibit
the different states of the developed ontology: i.e. specification, conceptualization, formalization, integration,
implementation and maintenance. Excepting the integration phase which is stressed here to be placed before the
implementation for the purpose of reuse of already available ontologies, the life cycle resembles the life cycle of
traditional software development.

III. Methodology to build ontologies

In general, methodologies give you a set of guidelines of how you should carry out the activities identified in the
development process, what kinds of techniques are the most appropriate in each activity and what is produced at
the end of each activity.

One such methodology is given here as an example.

III.1 Specification

The goal of the specification is to produce either an informal, semi-formal or formal ontology specification
document written in natural language. The following information should at least be included:

1. Purpose of the ontology: its intended uses (e.g., teaching, manufacturing, arts, ...), end-users (e.g., actor
and roles) and use case scenarios (e.g., teacher, unit production manager, researcher, ...). That is the
clearly defined domain of application.

2. Degree of formality used to codify the ontology. This ranges from informal natural language to a rigorous
formal language.

3. Scope of the ontology: the detailed summary of its content.

The formality of the ontology specification document varies depending on whether a natural language,
competency questions or a middle-out approach is used.

For example in a middle-out approach, you can use a glossary of terms to define an initial set of primitive
concepts and using these concepts to define new ones. It is also advisable to group concepts in concepts
classification trees. The use of these intermediate representations will allow not only the verification, at the
earliest stage, of relevant terms missed and their inclusion in the specification document, but also the removal of
terms that are synonyms and irrelevant in the ontology. The goal of these checks is to guarantee the
conciseness and completeness of the ontology specification document. The middle-out approach, as opposed to
the classical bottom-up or top-down approaches, allows to identify some primary concepts of the ontology, in a
first stage. Then, it allows to specialize or generalize when needed. As a result, the terms in use are more stable,
and so less re-work and overall effort are required.

As mentioned by some authors, and in fact already used in traditional software development at the analysis
phase, the use of motivating scenarios (use cases), that present the problem as a story of problems or examples
and a set of intuitive solutions, are very useful. Those scenarios could consist of a set of informal competency

©FIPA (1998) FIPA 98 version 1.0 Part 12

58

questions that are the questions that an ontology must be able to answer in natural language. Then, the set of
informal competency questions are translated into a formal set of competency questions using first-order logic (or
higher). This formal set is also used to evaluate the extensions of the ontology.

Figure 2 shows a short example of such specification document in the domain of chemicals

Ontology Requirements Specification Document

Domain: Chemicals

Date :May, 15th 1996

Conceptualized-by: Chemical Products Association

Implemented-by: Software House Gmbh

Purpose :

Ontology about chemical substances to be used when information about chemical elements is required
in teaching, manufacturing and analysis. This ontology could be used to ascertain, e.g. the atomic
weight of the element Sodium.

Level of Formality: Semi-formal

Scope:

List of 103 elements of substances: Lithium, Sodium, Chlorine, ...

List of concepts: Halogens, noble-gases, semi-metal, metal,

List of properties and their values: atomic -number, atomic-weight, atomic-volume-at-20°C, ...

Sources of Knowledge :

Handbook of chemistry and Physics. 65th edition. CRC-Press Inc., 1984-1985.

Figure 2: Ontology requirements specification (from [1])

As an ontology specification document cannot be tested for overall completeness, someone may find new
relevant term to be included at any time and anywhere. A good ontology specification document must have the
following properties:

• Conciseness: each and every term is relevant, and there are no duplicated or irrelevant terms.

• Partial completeness: coverage of the terms.

• Realism : meanings of the terms and relationships making sense in the domain.

III.2 Knowledge acquisition

Knowledge acquisition is an independent phase in the ontology development process. However, it is coincident
with other phases. Most of the acquisition is done simultaneously with the requirements specifications phase,
and decreases as the ontology development process moves forward.

Experts, books, handbooks, figures, tables and even other ontologies are sources of knowledge from which the
knowledge can be elicited and acquired, used in conjunction with techniques such as: brainstorming, interviews,
questionnaires, formal and informal texts analysis, knowledge acquisition tools, etc. ... For example, if you have
no clear idea of the purpose of your ontology, the brainstorming technique, informal interviews with experts, and
examination of similar ontologies will allow you to elaborate a preliminary glossary with terms that are potentially

©FIPA (1998) FIPA 98 version 1.0 Part 12

59

relevant. To refine the list of terms and their meanings, formal and informal texts analysis techniques on books
and handbooks combined with structures and non-structured interviews with experts might help you to build
concepts classification trees and to compare them with figures given in books.

III.3 Ontology and Natural Language16

One promising approach for establishing an ontology and acquire knowledge is to incorporate results from
disciplines like linguistics. Researchers in terminology for example are interested in organizing domains from a
conceptual point of view from the analysis of terms used to name concepts in texts. On the other hand, an
ontology is based on the definition of a structured and formalized set of concepts, and a great part of it comes
from text analy sis, such as transcript of interviews, and technical documentation. In such cases, the theory of a
domain can only be found by reaching concepts from terms.

For several years, some researchers in terminology have identified a parallel between terminology as a practical
discipline and artificial intelligence, in particular knowledge engineering. From a knowledge engineering point of
view, we notice two trends. One trend is to propose to elicit knowledge by using automatic processing tools,
widely used in linguistics. Another one is to establish a synergy between research works in artificial intelligence
and in linguistics, by means of terminology. An overview of these developments is given below.

Natural language processing tools may help to support modeling from texts in two ways. First, they can help to
find the terms of a domain [Bou94], [BGG96] [OFR96]. Existing terminologies or thesauri may be reused and
increased or new ones may be created. Second, they can help to structure a terminological base by identifying
relations between concepts [Jou95] [JME95] [Gar97].

Three steps are necessary to find the terms of a domain. At the beginning, nominal groups are isolated from a
corpus considered as being representative of the studied domain. Then, those that can't be chosen as terms
because of morphological or semantic characteristics are eliminated. Finally, the nominal sequences that will be
retained as terms are chosen. Usually, this last step requires a human expertise.

Identifying relations between concepts is composed of three steps too. The first one identifies the co-occurrences
of terms. Two terms are co-occurrent if they both appear in a given text window which may be defined in several
ways: a number of words, a documentary segmentation (entire document, section), a syntactic cutting of
sentences, ... The second step computes a similarity between terms with respect to contexts they share. Then,
the third step can determine the terms that are semantically related. In most cases, identified relations are the
following: semantic proximity, meronimy, causal or more specific relations.

Some researchers have focussed on trying to benefit from approaches from both linguistics and knowledge
engineering. They have studied mutual contributions, and their work has led them to elaborate the concept of
Terminological Knowledge Base (TKB). This concept was first defined by Ingrid Meyer [SMe91] [MSB+92].

Building a TKB is seen as an intermediate model that helps toward the construction of a formal ontology. A TKB
is a computer structure that contains conceptual data, represented in a network of domain concepts, but also
linguistic data on the terms used to name the concepts. Thus a TKB contains three levels of entities: term,
concept and text. It is structured by using three kinds of links. Relations between term and concept allow
synonymy and paronimy to be considered. Relations between concepts compose the network of domain
concepts. Relations between term and/or concept and text allow normalization choices to be justified or
knowledge base to be documented. A TKB is interesting to build a KBS, especially because it gathers some
linguistic information on terms used to name concepts on. This can enhance communication between experts,
knowledge engineers and end-users, or be a great help for the knowledge engineer to choose the names of the
concepts in the system. Nevertheless, if most researchers agree with its structure, problems still remain today
about genericity and also about the construction and the exploitation of the corpus, which is very important in the
construction of the TKB because it is the reference from which modeling choices will be justified. Current
research continues in these directions.

16 Contribution from Univ. d’Orsay, Paris Sud, LRI (Chantal Reynaud)

©FIPA (1998) FIPA 98 version 1.0 Part 12

60

IV. References

[1] Assuncion Gomez -Pérez, « Knowledge Sharing and Reuse », Laboratorio de Intelligencia Artificial, Facultad
de informatica, Universidad Politécnica de Madrid.

[2] Guarino Nicola, « Understanding, building and using ontologies », International Journal of Human Computer
Studies, Incorporating Knowledge Acquisition, Vol. 46, Number 2/3, February/March 1997.

Guarino, N. 1998. Some Ontological Principles for Designing Upper Level Lexical Resources. In
Proceedings of First International Conference on Language Resources and Evaluation. Granada,
Spain, ELRA - European Language Resources Association: 527-534.

[3] Natalya Fridman Noy, Carole D. Hafner, « The State of the Art in Ontology Design: A survey and Comparative
Review », College of Computer Science, Northeastern University, Boston, MA 02115.

[4] Gruber T. « Toward Principles for the design of Ontologies used for Knowledge Sharing. Technical report KSL-
93-04. Knowledge Systems Laboratory, Stanford University, CA. 1993.

[5] Borgo S., Guarino N., Masolo C., « Stratified Ontologies: The case of Physical Objetcs. Workshop on
Ontological Engineering, ECAI’96. Budapest, Hungary, pp: 17-28.

[6] Farquar A., Fikes R., Pratt W., Rice J., « Collaborative Ontology Construction for Information Integration »,
Technical Report KSL-95-10. Knowledge Systems Laboratory, Stanford University, CA. 1995.

[7] Speel et al. « Scalability of the performance of Knowledge Representation Systems ». Towards very large
knowledge bases, N. Mars editor, IOS Press, Amsterdam 1995, pp. 173-184.

[8] Uschold M., Grüninger M., « Ontologies: Principles, Methods and Aplications », Knowledge Engineering
review, Vol. 11, N° 2, June 1996.

[9] Gomez -Pérez A, « A framework to verify knowledge sharing technology », Expert systems with application,
Vol. 11, N° 4, 1996, pp. 519-529.

[10] Gomez-Pérez A., « From Knowledge based systems to knowledge sharing technology : Evaluation and
Assessment ». Technical Report KSL-94-73. Knowledge Systems Laboratory, Stanford University, CA. 1994.

[11] Borst P. and Akkermans H. « Engineering ontologies », Special issue : Using explicit ontologies in
knowledge-based system development, HCS, Vol. 46, Number 2/3, February/March 1997, pp. 365-406.

Natural Language based Knowledge acquisition references

[BCo95] Bourigault D., Condamines A., "Réflexions autour du concept de base de connaissances
Terminologiques", Dans les actes des journées nationales du PRC-IA, Nancy, 1995.

[Bou94] Bourigault D., "LEXTER, un logiciel d'extraction de terminologie. Application ˆ l'acquisition des
connaissances ˆ partir de textes", Thèse de l'Ecole des Hautes Etudes en Sciences Sociales (Paris).

[BGG96] Bourigault D., Gonzalez -Mullier I., Gros C., "LEXTER, a natural Language Processing Tool for
Terminology Extraction", actes de EURALEX'96 (Gšteborg).

[Gar97] GARCIA D., "COATIS, an NLP System to Locate Expressions of Ations Connected by Causality Links",
in Proc. 10th European Workshop, EKAW'97, San Feliu de Guixols, Catalonia, Spain, October 97, LNAI 1319,
pp. 347-352, 1997.

[Jou95] Jouis Ch., "SEEK, un logiciel d'acquisition des connaissances utilisant un savoir linguistique sans
employer de connaissances sur le monde externe", Actes des 6èmes Journées Acquisition et Validation
(JAVA'95), Grenoble, pp. 159-172, 1995.

©FIPA (1998) FIPA 98 version 1.0 Part 12

61

[JME95] Jouis Ch., Mustafa-Elhadi W., "Conceptual Modeling of database Schema using linguitic knowledge.
Application to terminological Knowledge bases", First Workshop on Application of Natural language to Databases
(NLDB'95), Versailles, Juin 95, pp. 103-118, 1995.

[MSB+92] Meyer I., Skuce D., Bowker L., Eck K., "Toward a new generation of terminological resources: an
experiment in building a terminological knowledge base. In Proc. 14th International Conference on Computational
Linguistics. Nantes. pp. 956-960, 1992.

[OFR96] Oueslati R., Frath P., Rousselot F., "Term identification and Knowledge Extraction", International
Conference on Applied Natural Language and Artificial Intelligence. Montreal. Juin 96

[SMe91] Skuce D., Meyer I., Terminology and knowledge acquisition: exploring a symbiotic relationship. In Proc.
6th Knowledge Acquisition for Knowledge-Based System Workshop, Banff, pp. 29/1-29/21.

[HA98] Houssem Assadi, Construction of a regional ontology from text and its use within a documentary system,
FOIS’98, pp. 236-249, Trento, June 98.

