
FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 1

2

FIPA 98 Specification 3

4

Part 12 5

6

Ontology Service 7

 8

Obsolete 9

 10

Publication date: 23rd October 1998 11

Copyright © 1998 by FIPA - Foundation for Intelligent Physical Agents 12

Geneva, Switzerland 13

 14

This is one part of the first version of the FIPA 98 Specification as released in October 1998. 15
The latest version of this document may be found on the FIPA web site: 16

http://www.fipa.org 17

Comments and questions regarding this document and the specifications therein should be addressed to: 18
Specs@fipa.org 19

It is planned to introduce a web-based mechanism for submitting comments to the specifications. 20
Please refer to the web site for FIPA's latest policy and procedure for dealing with issues regarding the specification. 21

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual
property rights of FIPA Members and non-members. Nothing in this specification should be construed as granting
permission to use any of the technologies described. Anyone planning to make use of technology covered by the
intellectual property rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly
encourages anyone implementing any part of this specification to determine first whether part(s) sought to be
implemented are covered by the intellectual property of others, and, if so, to obtain appropriate licenses or other
permission from the holder(s) of such intellectual property prior to implementation. This FIPA 98 Specification is
subject to change without notice. Neither FIPA nor any of its Members accept any responsibility whatsoever for
damages or liability, direct or consequential, which may result from the use of this specification.

©FIPA (1998) FIPA 98 version 1.0 Part 12

ii

Contents 22

1 Scope..1 23

2 Normative reference(s) ...2 24

3 Terms and definitions ...2 25

4 Symbols (and abbreviated terms)..6 26

5 Overview...7 27

5.1 Rationale for having explicit ontologies ...8 28

5.2 Possible benefits for applications ...9 29

5.3 Some sample scenarios illustrating offered features..9 30

5.3.1 Scenario 1 – Querying the OA for definition of terms ...9 31

5.3.2 Scenario 2 – selecting a shared ontology...10 32

5.3.3 Scenario 3 – testing equivalence...10 33

5.3.4 Scenario 4 – finding ontologies ...11 34

5.3.5 Scenario 5 - translation of terms ...11 35

6 Specification of the Ontology Service...13 36

6.1 Reference Model..13 37

6.1.1 Services provided by the Ontology Agent..13 38

6.2 Naming and referring Ontologies ..14 39

6.3 Relationships between Ontologies..14 40

6.3.1 Level = extension..15 41

6.3.2 Level = identical..16 42

6.3.3 Level = equivalent..16 43

6.3.4 Level = weakly-translatable ..16 44

6.3.5 Level = strongly-translatable..17 45

6.3.6 Level = approx-translatable ..17 46

6.3.7 General properties...18 47

©FIPA (1998) FIPA 98 version 1.0 Part 12

iii

6.4 Registration of the Ontology Agent with the DF ..18 48

6.4.1 Querying the DF...20 49

6.5 FIPA Knowledge Model and FIPA meta-ontology ..21 50

6.5.1 Symbols in the FIPA-meta-ontology..39 51

6.6 Responsibilities, Actions and Predicates Supported by the Ontology Agent41 52

6.6.1 Responsibilities of the Ontology Agent ..42 53

6.6.2 Assertion ..42 54

6.6.3 Retraction...42 55

6.6.4 Query ..42 56

6.6.5 Modify ...43 57

6.6.6 Translation of the Terms and Sentences between Ontologies...44 58

6.6.7 Error handling..45 59

6.7 Interaction Protocol to agree on a shared ontology..46 60

6.8 FIPA-Ontol-service-Ontology ...46 61

6.8.1 List of predicates...47 62

6.8.2 List of actions ..47 63

6.8.3 List of objects and constant values ..47 64

7 References ...48 65

Annex A (informative) Ontologies and Conceptualizations ..49 66

I. Ontologies vs. conceptualizations...49 67

II. A formal account of ontologies and conceptualizations ..50 68

II.1 What is a conceptualization ...50 69

II.2 What is an ontology ..51 70

III. The Ontology Integration Problem...53 71

IV. Basic kinds of ontologies ...53 72

IV.1 From top-level to application-level ..54 73

IV.2 Shareable Ontologies and Reference Ontologies ..55 74

IV.3 Meta-level Ontologies..55 75

V. References...55 76

©FIPA (1998) FIPA 98 version 1.0 Part 12

iv

Annex B (informative) Guidelines to define a New Ontology ...56 77

I. Set of principles useful in the development of ontologies ...56 78

II. Ontology development process ..56 79

II.1 Project Management Activities ..57 80

II.2 Development Activities...57 81

II.4 Ontology Life Cycle ..58 82

III. Methodology to build ontologies ...58 83

III.1 Specification...58 84

III.2 Knowledge acquisition ..60 85

III.3 Ontology and Natural Language...60 86

IV. References..61 87

Natural Language based Knowledge acquisition references...62 88

 89

©FIPA (1998) FIPA 98 version 1.0 Part 12

v

Foreword 90

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in Geneva, Switzerland. 91
FIPA’s purpose is to promote the success of emerging agent-based applications, services and equipment. This goal is 92
pursued by making available in a timely manner, internationally agreed specifications that maximise interoperability 93
across agent-based applications, services and equipment. This is realised through the open international collaboration 94
of member organisations, which are companies and universities active in the agent field. FIPA intends to make the 95
results of its activities available to all interested parties and to contribute the results of its activities to appropriate formal 96
standards bodies. 97

This specification has been developed through direct involvement of the FIPA membership. The 48 members of FIPA 98
(October 1998) represent 13 countries world-wide. 99

Membership in FIPA is open to any corporation and individual firm, partnership, governmental body or international 100
organisation without restriction. By joining FIPA each member declares himself individually and collectively committed to 101
open competition in the development of agent-based applications, services and equipment. Associate Member status is 102
usually chosen by those entities who want to be members of FIPA without using the right to influence the precise 103
content of the specifications through voting. 104

The members are not restricted in any way from designing, developing, marketing and/or procuring agent-based 105
applications, services and equipment. Members are not bound to implement or use specific agent-based standards, 106
recommendations and FIPA specifications by virtue of their participation in FIPA. 107

This specification is published as FIPA 98 specifications ver 1.0. All these parts have undergone an intense review by 108
members as well as non-members during the past year as preliminary versions have been available on the FIPA web 109
site. FIPA members as well as many non-members have been conducting validation trials of the FIPA 97 specification 110
during 1998 and will continue to subject the new output to further validation during the coming months. During 1999 111
FIPA will publish revised versions of the current specifications and is also planning to continue work on further 112
specifications of agent based technology. 113

©FIPA (1998) FIPA 98 version 1.0 Part 12

vi

Introduction 114

The FIPA specifications represent the primary output of FIPA. It is important to appreciate that these specifications 115
have been derived from examining requirements on agent technology posed by specific industrial applications chosen 116
by FIPA so far, and described in Parts 4, 5, 6, and 7 of the FIPA 97 specifications. 117

FIPA specifies the interfaces of the different components in the environment with which an agent can interact, i.e. 118
humans, other agents, non-agent software and the physical world. FIPA produces two kinds of specifications: 119

 normative specifications mandating the external behavior of an agent and ensuring interoperability with other FIPA-120
specified subsystems; 121

 informative specifications of applications providing guidance to industry on the use of FIPA technologies. 122

In October 1997, FIPA released its first set of specifications, called FIPA 97, Version 1.0. During 1998, comments on 123
this specification were received. Based upon these comments, parts of FIPA 97 were superseded by a second version 124
released in October 1998, introducing minor changes only. 125

Furthermore, in October 1998 FIPA released a new set of specifications, called FIPA 98, version 1.0, of which this 126
document is a part. 127

128

©FIPA (1998) FIPA 98 version 1.0 Part 12

vii

The following tables provide an overview of the complete set of FIPA specifications. 128

Sorted by part: 129

 Released October 1997 Released October 1998

Part FIPA 97 Version 1.0 FIPA 97 Version 2.0 FIPA 98 Version 1.0

1 N Agent Management Agent Management Agent Management Extensions

2 N ACL ACL

3 N Agent Software Integration

4 I Personal Travel Assistant

5 I Personal Assistant

6 I Audio Visual Entertainment &
Broadcasting

7 I Network Management &
Provision

8 N Human-Agent Interaction

10 N Agent Security Management

11 N Agent Management Support for Mobility

12 N Ontology Service

13 I/M Developer’s Guide

N == normative; I == informative; M == methodology; Italicised == superseded 130
 131
Sorted by topic: 132

Topic FIPA 97(Version 1.0, unless otherwise
indicated)

FIPA 98 Version 1,0

Agent Management 1. Basic System (Version 2.0) 1. Extension to Basic System

 10. Agent Security Management

 11. Agent Management Support for Mobility

Agent Communication

2. Agent Communication Language
 (Version 2.0)

8. Human-Agent Interaction

 12. Ontology Service

Agent S/W Integration

3. Agent Software Integration

Reference Applications 4. Personal Travel Assistant

 5. Personal Assistant

 6. Audio/Visual Entertainment &
 Broadcasting

 7. Network Management &
 Provisioning

133

©FIPA (1998) FIPA 98 version 1.0 Part 12

viii

The parts of the FIPA 98 specifications are briefly described below. 133

Part 1 - Agent Management 134

This part covers agent management for inter-operable agents, and is thus primarily concerned with defining open 135
standard interfaces for accessing agent management services. It also specifies an agent management ontology and 136
agent platform message transport. This specification incorporates and further enhances the FIPA 97, Part 1, Version 137
2.0 specification. The internal design and implementation of intelligent agents and agent management infrastructure is 138
not mandated by FIPA and is outside the scope of this part. 139

Part 8 – Human-Agent Interaction 140

This part deals with the human-agent interaction part of an agent system. It specifies two agent services: User Dialog 141
Management Service (UDMS) and User Personalization Service (UPS). A UDMS wraps many types of software 142
components for user interfaces allowing for ACL level of interaction between agents and human users. A UPS can 143
maintain user models and supports their construction by either accepting explicit information about the user or by 144
learning from observations of user behavior. 145

Part 10 – Agent Security Management 146

Security risks exist throughout agent management: during registration, agent-agent interaction, agent configuration, 147
agent-agent platform interaction, user-agent interaction and agent mobility. The Security Management specification 148
identifies the key security threats in agent management and specifies facilities for securing agent-agent communication 149
via the FIPA agent platform. This specification represents the minimal set of technologies required and is 150
complementary to the existing FIPA 97 and FIPA 98, Part 1 specifications. This part does not mandate every FIPA-151
compliant agent platform to support agent security management. 152

Part 11 – Agent Management Support for Mobility 153

This specification represents a normative framework for supporting software agent mobility using the FIPA agent 154
platform. This framework represents the minimal set of technologies required and is complementary to the existing 155
FIPA 97 and FIPA 98, Part 1 specifications. Wherever possible, it refers to existing standards in this area. The 156
framework supports additional non-mobile agent management operations such as agent configuration. The 157
specification does not mandate that every FIPA-compliant agent platform must support agent mobility, nor does it cover 158
the specific requirements for agents on mobile devices with intermittent connectivity, which is covered by the scope of 159
the existing FIPA Agent Management activity. 160

Part 12 – Ontology Service 161

This part deals with technologies enabling agents to manage explicit, declaratively represented ontologies. It specifies 162
an ontology service provided to a community of agents by a dedicated Ontology Agent. It allows for discovering public 163
ontologies in order to access and maintain them; translating expressions between different ontologies and/or different 164
content languages; responding to queries for relationships between terms or between ontologies; and, facilitating 165
identification of a shared ontology for communication between two agents. 166

The specification deals only with the communicative interface to such a service while internal implementation and 167
capabilities are left to developers. The interaction protocols, communicative acts and, in general, the vocabulary that 168
agents must adopt when using this service are defined. The specification does not mandate the storage format of 169
ontologies, but only the way the ontology service is accessed. However, in order to specify the service, an explicit 170
representation formalism, or meta-ontology, has been specified allowing communication of knowledge between agents. 171

Part 13 – FIPA 97 Developer's Guide 172

The Developer’s Guide is meant to be a companion document to the FIPA 97 specifications, and is intended to clarify 173
areas of specific interest and potential confusion. Such areas include issues that span more than one of the normative 174
parts of FIPA 97. 175

©FIPA (1998) FIPA 98 version 1.0 Part 12

1

1 Scope 176

The model of agent communication in FIPA is based on the assumption that two agents, who wish to converse, share a 177
common ontology for the domain of discourse. It ensures that the agents ascribe the same meaning to the symbols 178
used in the message. For a given domain, designers may decide to use ontologies that are explicit, declaratively 179
represented (and stored somewhere) or, alternatively, ontologies that are implicitly encoded with the actual software 180
implementation of the agent themselves and thus are not formally published to an ontology service. 181

This Part of FIPA 98 specifications deals with technologies enabling agents to manage explicit, declaratively 182
represented ontologies. An ontology service for a community of agents is specified for this purpose. It is required that 183
the service be provided by a dedicated agent, hereafter called Ontology Agent (OA), whose role in the community is to 184
provide some or all of the following services: 185

- discovery of public ontologies in order to access them; 186

- maintain (e.g. register with the DF, upload, download, and modify) a set of public ontologies; 187

- translate expressions between different ontologies and/or different content languages; 188

- respond to query for relationships between terms or between ontologies; 189

- facilitate the identification of a shared ontology for communication between two agents. 190

This specification deals only with the communicative interface to such a service while internal implementation and 191
capabilities are left to developers. It is not mandated that every OA be able to execute all those tasks (e.g. translation 192
between ontologies, and identification of a shared ontology are in general very difficult and not always possible to 193
realize), but every OA must be able to participate into a communication about these tasks (possibly responding that it is 194
not able to execute the translation task). The interface is specified at the agent communication level [1,2] as opposed to 195
a computational API. Therefore, the specification defines the interaction protocols, the communicative acts and, in 196
general, the vocabulary that agents must adopt when using this service. 197

The specification enables developers to build: 198

- agents that access such a service, 199

- agents that provide it, 200

- agents able to negotiate at run-time a shared ontology for communication. 201

The application of this specification does not prevent the existence of agents that, for a given domain, use ontologies 202
implicitly encoded with the implementation of the agents themselves. In these cases full agent communication and 203
understanding can still be obtained, however the services provided by the OA cannot apply to implicit encoded 204
ontologies. 205

It is not intention of this document to mandate that every FIPA Agent Platform must include an Ontology Agent. 206
However, in order to promote interoperability, if one OA exists, then it must comply with these specification. And, if the 207
services here described are required by a specific agent platform implementation, then they must be implemented in 208
compliance with this specification. 209

In order to keep the applicability of the specification as unrestricted as possible, the approach used is platform 210
independent. In particular, this specification does not mandate the storage format of ontologies but only the way agents 211
access an ontology service. However, in order to specify the service, an explicit representation formalism has been 212
specified. It is the FIPA Knowledge Model, identified by the name Fipa-meta-ontology, that allows communication of 213

©FIPA (1998) FIPA 98 version 1.0 Part 12

2

knowledge between agents. As far as possible, care has been taken to integrate existing formalisms, such as RDF [5] 214
and OKBC [3]. 215

2 Normative reference(s) 216

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 217
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 218
However, parties to agreements based on this specification are encouraged to investigate the possibility of applying the 219
most recent editions of the normative documents indicated below. For undated references, the latest edition of the 220
normative document referred to applies. Members of ISO and IEC maintain registers of currently valid specifications, 221
term(s) and definition(s). 222

FIPA 1998. FIPA 97 specification – Part 1: Agent Management – version 2.0, October 1998. 223

FIPA 1998. FIPA 97 specification – Part 2: Agent Communication Language – version 2.0, October 1998. 224

Vinay K. Chaudhri Artificial Intelligence Center SRI International Adam Farquhar Knowledge Systems Laboratory Stanford 225
University Richard Fikes Knowledge Systems Laboratory Stanford University Peter D. Karp Artificial Intelligence Center SRI 226
International James P. Rice Knowledge Systems Laboratory Stanford University. Open Knowledge Base Connectivity 2.0.4 - 227
April 9, 1998. Chapter 2 – Knowledge Model. 228

3 Terms and definitions 229

For the purposes of this specification, the following terms and definitions apply: 230

Action 231
A basic construct which represents some activity which an agent may perform. A special class of actions is the 232
communicative acts. 233

Agent 234
An Agent is the fundamental actor in a domain. It combines one or more service capabilities into a unified and 235
integrated execution model which can include access to external software, human users and communication facilities. 236

Agent cloning 237
The process by which an agent creates a copy of itself on an agent platform. 238

Agent code 239
The set of instructions used by an agent. 240

Agent Communication Language (ACL) 241
A language with precisely defined syntax, semantics and pragmatics that is the basis of communication between 242
independently designed and developed software agents. ACL is the primary subject of the FIPA 97 specification, part 2. 243

Agent Communication Channel (ACC) 244
The Agent Communication Channel is an agent which uses information provided by the Agent Management System to 245
route messages between agents within the platform and to agents resident on other platforms. 246

Agent data 247
Any data associated with an agent. 248

Agent invocation 249
The process by which an agent can create another instance of an agent on an agent platform. 250

©FIPA (1998) FIPA 98 version 1.0 Part 12

3

Agent Management System (AMS) 251
The Agent Management System is an agent which manages the creation, deletion, suspension, resumption, 252
authentication and migration of agents on the agent platform and provides a “white pages” directory service for all 253
agents resident on an agent platform. It stores the mapping between globally unique agent names (or GUID) and local 254
transport addresses used by the platform. 255

Agent Platform 256
An Agent Platform provides an infrastructure in which agents can be deployed. An agent must be registered on a 257
platform in order to interact with other agents on that platform or indeed other platforms. An AP consists of three 258
capability sets ACC, AMS and default Directory Facilitator. 259

Agent Platform Security Manager (APSM) 260
An Agent Platform Security Manager is responsible for maintaining the agent platform security policy. The APSM is 261
responsible for providing transport-level security and creating agent audit logs. The APSM negotiates the requested 262
intra- and inter-domain security services of other APSM's in concert with the implemented distributed computing 263
architectures, such as CORBA, COM, DCE, on behalf of an agent in its domain. 264

ARB Agent 265
An agent which provides the Agent Resource Broker (ARB) service. There must be at least one such an agent in each 266
Agent Platform in order to allow the sharing of non-agent services. 267

Communicative Act 268
A special class of actions that correspond to the basic building blocks of dialogue between agents. A communicative act 269
has a well-defined, declarative meaning independent of the content of any given act. CAs are modelled on speech act 270
theory. Pragmatically, CAs are performed by an agent sending a message to another agent, using the message format 271
described in FIPA97, part 2. 272

Content 273
That part of a communicative act which represents the domain dependent component of the communication. Note that 274
"the content of a message" does not refer to "everything within the message, including the delimiters", as it does in 275
some languages, but rather specifically to the domain specific component. In the ACL semantic model, a content 276
expression may be composed from propositions, actions or IRE's. 277

Content Language 278
The content of a FIPA message refers to whatever the communicative act applies to. If, in general terms, the 279
communicative act is considered as a sentence, the content is the grammatical object of the sentence. This content can 280
be encoded in any language, the content language, denoted by the :language parameter of the communicative act. 281

Conversation 282
An ongoing sequence of communicative acts exchanged between two (or more) agents relating to some ongoing topic 283
of discourse. A conversation may (perhaps implicitly) accumulate context that is used to determine the meaning of later 284
messages in the conversation. 285

CORBA 286
Common Object Request Broker Architecture, an established standard allowing object-oriented distributed systems to 287
communicate through the remote invocation of object methods. 288

Directory Facilitator 289
The Directory Facilitator [1] is an agent that provides a “yellow pages” directory service for the agents. It stores 290
descriptions of the agents and the services they offer. 291

©FIPA (1998) FIPA 98 version 1.0 Part 12

4

Explicit & Implicit 292
An ontology is explicit when it is specified in declarative form as a set of axioms and definitions (e.g. as a set of 293
Ontolingua statements) that an agent can refer to (e.g. by means of an OKBC interface). An ontology is implicit, when 294
the assumptions on the meaning of its vocabulary are only implicitly embedded in some piece of software. 295

Feasibility Precondition (FP) 296
The conditions (i.e. one or more propositions) which need be true before an agent can (plan to) execute an action. 297

Knowledge model 298
It is a specification of the set of primitives used by a certain class of representation languages. As such, a knowledge 299
model can be considered as a meta-ontology. For instance, several ontology servers use an object oriented model of 300
knowledge based on primitive notions like classes, frames, properties, constraints, axioms and functions. FIPA adopts 301
for the specification of these notions the OKBC version 2.0.4 Knowledge Model, which is called FIPA-meta-ontology or 302
FIPA knowledge model. 303

Illocutionary effect 304
See speech act theory. 305

Knowledge Querying and Manipulation Language (KQML) 306
A de facto (but widely used) specification of a language for inter-agent communication. In practice, several 307
implementations and variations exist. 308

Local Agent Platform 309
The Local Agent Platform is the AP to which an agent is attached and which represents an ultimate destination for 310
messages directed to that agent. 311

Message 312
An individual unit of communication between two or more agents. A message corresponds to a communicative act, in 313
the sense that a message encodes the communicative act for reliable transmission between agents. Note that 314
communicative acts can be recursively composed, so while the outermost act is directly encoded by the message, 315
taken as a whole a given message may represent multiple individual communicative acts. 316

Message content 317
See content. 318

Message transport service 319
The message transport service is an abstract service provided by the agent management platform to which the agent is 320
(currently) attached. The message transport service provides for the reliable and timely delivery of messages to their 321
destination agents, and also provides a mapping from agent logical names to physical transport addresses. 322

Meta-ontology 323
For allowing a FIPA agent to communicate through ACL messages about ontologies, it is necessary to describe the 324
concepts used to speak about an ontology. This description is called the meta-ontology. It is an ontology itself as it 325
provides the ontology to refer to another ontology. Therefore, the meta-ontology should be powerful enough to deal with 326
all potentially available ontologies and make explicit, at least informally, these concepts. 327

Mobile agent 328
An agent that is not reliant upon the agent platform where it began executing and can subsequently transport itself 329
between agent platforms. 330

Mobility 331
The property or characteristic of an agent that allows it to travel between agent platforms. 332

©FIPA (1998) FIPA 98 version 1.0 Part 12

5

Ontology 333
An ontology is an explicit specification of the structure of a certain domain (e.g. e-commerce, sport, …). For the 334
practical goals of FIPA (that is enabling development and deployment of inter-operable agent-based applications), this 335
includes a vocabulary (i.e. a list of logical constants and predicate symbols) for referring to the subject area, and a set 336
of logical statements expressing the constraints existing in the domain and restricting the interpretation of the 337
vocabulary. Ontologies therefore provide a vocabulary for representing and communicating knowledge about some 338
topic and a set of relationships and properties that hold for the entities denoted by that vocabulary. 339

Ontology Agent 340
An agent that provides the Ontology Service specified in this specification. The main objective of the Ontology Agent is 341
to offer to FIPA agents a unified view of the services offered by the different ontology servers. Its second objective is to 342
allow an ontology server to be known by FIPA agents. Moreover some ontology agents can provide the agents with 343
services such as translation facilities. Like any other FIPA agent, the ontology agent has to be registered to the DF and 344
to provide the DF with the published ontologies and available services. 345

Ontology Name 346
The ontologies referred to by the agents can be provided by different ontology servers. Consequently, these ontology 347
names are constructed from: the OA name, and the ontology logical name (given by the ontology designer e.g. “car “). 348

Ontology Server 349
Provider of an Ontology Service, not necessarily in the FIPA domain, or FIPA-compliant. Examples of ontology servers 350
already existing outside FIPA are: Ontolingua, XML/RDF ontology servers, ODL databases ontologies servers. Access 351
to the services provided by these ontologies servers are based on various APIs such as the OKBC interface, the ODL 352
interface or HTTP. 353

Ontology sharing problem 354
The problem of ensuring that two agents that wish to converse do, in fact, share a common ontology for the domain of 355
discourse. Minimally, agents should be able to discover whether or not they share a mutual understanding of the 356
domain constants. 357

Perlocutionary Effect 358
See speech act theory. 359

Personalization 360
An agent’s ability to take individual preferences and characteristics of users into account and adapt its behavior to these 361
factors. 362

Proposition 363
A statement which can be either true or false. A closed proposition is one which contains no variables, other than those 364
defined within the scope of a quantifier. 365

Protocol 366
A common pattern of conversations used to perform some generally useful task. The protocol is often used to facilitate 367
a simplification of the computational machinery needed to support a given dialogue task between two agents. 368
Throughout this document, we reserve protocol to refer to dialogue patterns between agents, and networking protocol 369
to refer to underlying transport mechanisms such as TCP/IP. 370

Rational Effect (RE) 371
The rational effect of an action is a representation of the effect that an agent can expect to occur as a result of the 372
action being performed. In particular, the rational effect of a communicative act is the perlocutionary effect an agent can 373
expect the CA to have on a recipient agent. Note that the recipient is not bound to ensure that the expected effect 374
comes about; indeed it may be impossible for it to do so. Thus an agent may use its knowledge of the rational effect in 375
order to plan an action, but it is not entitled to believe that the rational effect necessarily holds having performed the act. 376

©FIPA (1998) FIPA 98 version 1.0 Part 12

6

Software Service 377
An instantiation of a connection to a software system. 378

Software System 379
A software entity which is not conformant to the FIPA Agent Management specification. 380

Speech Act 381
The notion of a speech act is derived from the linguistic analysis of human communication. It is based on the idea that 382
with language the speaker not only makes statements, but also performs actions, e.g. a request or an assertion. In this 383
context, a verb denoting a speech act, is called a performative, since saying it makes it so. See FIPA97, part 2 for more 384
details. 385

Speech Act Theory 386
A theory of communications which is used as the basis for ACL. Speech act theory is derived from the linguistic 387
analysis of human communication. It is based on the idea that with language the speaker not only makes statements, 388
but also performs actions. A speech act can be put in a stylised form that begins "I hereby request …" or "I hereby 389
declare …". In this form the verb is called the performative, since saying it makes it so. Verbs that cannot be put into 390
this form are not speech acts, for example "I hereby solve this equation" does not actually solve the equation. 391

Stationary agent 392
An agent that executes only upon the agent platform where it begins executing and is reliant upon it. 393

TCP/IP 394
A networking protocol used to establish connections and transmit data between hosts 395

User Agent 396
An agent which interacts with a human user. 397

User Dialog Management Service 398
An agent service in order for FIPA agents to interact with human users; by converting ACL into media/formats which 399
human users can understand and vice versa, managing the communication channel between agents and users, and 400
identifying users interacting with agents. 401

User ID 402
An identifier for a real user. 403

User Model 404
A user model contains assumptions about user preferences, capabilities, skills, knowledge, etc, which may be acquired 405
by inductive processing based on observations about the user. User models normally contain knowledge bases which 406
are directly manipulated and administered. 407

User Personalization Service 408
An agent service that offers abilities to support personalization, e.g. by maintaining user profiles or forming complex 409
user models by learning from observations of user behavior. 410

Wrapper Agent 411
An agent which provides the FIPA-WRAPPER service to an agent domain on the Internet. 412

4 Symbols (and abbreviated terms) 413

ACC Agent Communication Channel

©FIPA (1998) FIPA 98 version 1.0 Part 12

7

ACL Agent Communication Language

AMS Agent Management System

API Application Programming Interface

CA Communicative Act

DB Data Base

DF Directory Facilitator

EBNF Extended Backus Naur Form

FIPA Foundation for Intelligent Physical Agents

GUID Global Unique Identifier

HTTP Hyper-Text Transfer/Transmission Protocol

IRE Identifying Referring Expression

KBS Knowledge Base System

KIF Knowledge Interchange Format

OA Ontology Agent

ODL Object Definition Language

OKBC Open Knowledge Base Connectivity

OQL Object Query Language

RDF Resource Description Framework

SL Semantic Language

TCP/IP Transmission Control Protocol / Internet Protocol

TKB Terminological Knowledge Base

XML Extensible Markup Language

5 Overview 414

An Ontology Agent (OA) is an agent that provides access to one or more ontology servers and that provides the 415
ontology services, as specified in this specification, to an agent community. As well as all the other agents, the OA 416
registers its service with the DF (see section 6.4) and it is identified by the keyword FIPA-OA for the value of :agent-417
type. It also registers the list of maintained ontologies and their translation capabilities in order to allow agents to query 418
the DF (see section 6.4.1) for the specific OA that manages a specific ontology. 419

Every agent can then request the services of the OA by using the communicative interface specified in section 6. In 420
particular, they can request to define, modify or remove terms and definitions of the ontology; they can request to 421
translate expressions between two ontologies for which there exists a mapping; they can query for definitions, or 422

©FIPA (1998) FIPA 98 version 1.0 Part 12

8

relationships between terms or between ontologies; finally, they can request to find a shared ontology for 423
communication with another agent. Even if any agent requests one of the above services, the OA reserves the right to 424
refuse the request. 425

The realization of this communication obviously needs an agreement on the language to communicate facts about 426
ontologies. This is described in section 6.2 where the subsumed knowledge model and the FIPA meta-ontology is 427
specified. It describes the primitives, and normatively define their names, used in the communication, like concepts, 428
attributes, relations, … It must be noticed that this specification is neutral in respect to the language used to store and 429
represent the ontology (e.g. RDF, KIF, ODL, …), while it only specifies the language to communicate about ontologies. 430

Section 6.7 specifies the interaction protocol to be used by agents to agree on a shared ontology for communication. 431

The document concludes with two informative annexes. Annex A gives a clear definition of what is intended with the 432
term ontology and, in particular, what is the difference between a conceptualization, an ontology, and a knowledge 433
base. Annex B lists an informative set of guidelines to help developers to define well-founded new ontologies. 434

5.1 Rationale for having explicit ontologies 435

The FIPA communication model [2] is based on the assumption that communicating agents share an ontology of 436
communication defining speech acts and protocols. In order to have fruitful communication, agents must also share an 437
ontology of their domain of application. In an open environment, agents are designed around various ontologies (either 438
implicit or explicit); for allowing their communication explicit ontologies are however necessary, together with a standard 439
mechanism to access and refer to them (e.g., access protocol, naming space). 440

Without explicit ontologies, agents need to share intrinsically the same ontology to be able to communicate and this is a 441
strong constraint in an open environment where agents, designed by different programmers or organizations, may enter 442
into communication. 443

An explicit ontology is considered to be declaratively represented as opposed to implicitly, procedurally encoded. It can 444
be then considered as “a referring knowledge” and, as a consequence, could be outside the communicating agents, 445
managed by a dedicated ontology agent. 446

 447

Ontology

Agent 1 Agent 2

Ontology Query Ontology Query

ACL communication =
Ontology-based
communication 448

 Figure 1 FIPA communication model 449

As better described in Annex A, in general, an ontology is not only a vocabulary, but also contains explicit axioms to 450
approximate meaning, i.e. to constrain the set of intended models. Explicit axioms allow validation of specifications, 451
unambiguous definition of vocabulary, automation of operations like classification and translation. 452

©FIPA (1998) FIPA 98 version 1.0 Part 12

9

Several benefits can be envisioned by having explicitly represented ontologies, such as enabling querying for concepts, 453
updating an ontology, reusing ontologies by extending or specializing existing ones, translation between different 454
ontologies, sharing through referring to ontology names and locations, etc. 455

5.2 Possible benefits for applications 456

There are many applications that benefit from having a dedicated agent that manages and controls access to a set of 457
explicit ontologies. 458

In information retrieval applications, the size of some linguistic ontologies may prevent an agent to store the ontology in 459
its address space, so that agents need to remotely access and refer to ontologies for disambiguation of user queries, 460
for using information about taxonomies of terms or thesaurus to enhance the quality of retrieved results, etc. The 461
definition of a standard interface to access and query an ontology service can increase and simplify the interoperability 462
between different systems. 463
Semantic integration of heterogeneous information sources in an open and dynamic environment, such as the Web or a 464
digital library, may also benefit from an ontology service. There are already implementations [6] that use one domain 465
ontology to integrate several information sources, managed by a dedicated agent, still allowing each source to use its 466
private ontology. Every user can also have his own ontology depending on his preference, his role in the domain, or 467
simply his known language. Every used ontology is a subset of the domain ontology or there exists a map between it 468
and the domain ontology; the knowledge about these relationships (subset and mapping) is usually maintained by some 469
ontology-dedicated agents. 470

Some applications use machine learning techniques to adaptively extend an ontology based on the interaction of the 471
user with the system. In this case, at the execution time, several user agents may compete or collaborate to request to 472
a dedicated agent to modify an ontology. 473

The development of this specification tried to take into account the requirements from all these kinds of applications. 474
Hopefully, the specification should be general enough to allow even wider applicability. 475

5.3 Some sample scenarios illustrating offered features 476

5.3.1 Scenario 1 – Querying the OA for definition of terms 477

This scenario shows the usage of an Ontology Agent to access definition of terms when using large linguistic 478
ontologies. 479

Let’s consider an agent B able to index pictures based on their captions and send them on a demand basis. 480

An agent A, which for instance is a user interface agent, is willing to get pictures of “diseased citrus” for its user, who is 481
a “farmer” and wants to discover a diagnosis for his citrus trees. A, then, requests B, to send pictures of “diseased 482
citrus” by referring to a given domain ontology, e.g. the “farmer” ontology. 483

B discovers that no pictures under the name “citrus” are available. Before sending the answer to A, B queries the 484
appropriate OA (where the “farmer” ontology resides) to obtain sub-species of “citrus” (may be also sub-species of the 485
“diseased” property) within the given ontology. 486

OA answers B that “oranges” and “lemon” are sub-species of “citrus”. 487

Then, B finds pictures of “diseased lemon” and “diseased orange” and sends them to the agent A. 488

The scenario might continue with the user, i.e. the farmer, looking at the several pictures and finding a match with the 489
problem his trees have. Found the problem, may be he then asks the agent A to find for a diagnosis and a cure for it. 490
Even in this case, the service provided by the OA might be useful again. 491

©FIPA (1998) FIPA 98 version 1.0 Part 12

10

The existence of an explicit declarative ontology managed by an external agent, the OA, allows B to concentrate on its 492
actual task, indexing and sending pictures, more than on the maintenance of the ontology itself. The agent B may also 493
be more light-weighted as it is not necessary to encode in its code all the ontology but relations and definition of 494
concepts can be accessed on demand by querying the OA. 495

Even the agent A may need to access the same OA, for instance to explain to its user the type of “diseased” is in the 496
figure. 497

5.3.2 Scenario 2 – selecting a shared ontology 498

Agent_SP is the Service Provider for electronic commerce of a given merchant. It has simple behaviors referring to the 499
“sell-products” ontology. It has other more complex behaviors referring to the “ sell-wholesale-products” ontology. The 500
complex behaviors are designed as extensions of the simple ones. The “sell-wholesale-products” ontology is defined 501
explicitly in an ontology server (e.g. Ontolingua) as an extension of the “sell-products” ontology. 502

The ontology server is accessible by agents of a given FIPA compliant platform through an Ontology Agent named 503
OA1. Following the FIPA ontologies naming scheme, these two ontologies are named as follows: 504
OA1@iiop://cnet.fr/sell-products and OA1@iiop://cnet.fr/sell-wholesale-product. Both of these ontologies refer to the 505
electronic commerce domain. 506

Agent_SP would like to sell products. It makes a call for proposal using a CFP communicative act; the content of this 507
communicative act refers to the OA1@iiop://cnet.fr/sell-wholesale-products ontology. Agent_C is a Customer. It has 508
only simple behaviors referring to the OA1@iiop://cnet.fr/sell-products ontology. Agent-C does not know the 509
OA1@iiop://cnet.fr/sell-wholesale-products ontology and as a consequence has no precise idea of the purpose of this 510
Call-For-Proposals. However Agent_C believes that the Call-For-Proposals of Agent_SP is interesting to it, for instance 511
because: 512

 it believes that all Call-For-Proposals from Agent_SP are interesting to it, or 513

 a third party agent knowing the needs of Agent_C and understanding this CFP has recommended Agent_C to 514
answer this CFP, or 515

 it has behavior referring to the electronic commerce domain (that is at least the case in this example). 516

Following the Call-For-Proposals of Agent_SP, three different protocols of interaction could be considered : 517

1. Agent_C queries Agent_SP to know if other ontologies can be used in this Call-For-Proposals. Agent_SP 518
answers that the OA1@iiop://cnet.fr/sell-products ontology can be used. If Agent_C does not know this 519
ontology (this general case does not apply in this example), the process of interaction is repeated. 520

2. Agent_C queries the DF to determine if it knows OAs providing access to electronic commerce domain. DF 521
answers to Agent_C with a list of OAs including OA1. Agent-C queries all these OAs about ontologies related 522
to the OA1@iiop://cnet.fr/sell-wholesale-products. OA1 informs Agent_C that the “ OA1@iiop://cnet.fr/sell-523
wholesale-products ” ontology is an extension of “ OA1@iiop://cnet.fr/sell-wholesale-product ” ontology. 524
Agent_C asks Agent_SP if it can use the “ OA1@iiop://cnet.fr/sell-product ” ontology. 525

3. Agent_C queries the DF to determine if it knows OA1’s address. DF gives back the OA1’s address. Agent-C 526
queries OA1 about ontologies. OA1 informs Agent_C that the OA1@iiop://cnet.fr/sell-wholesale-products 527
ontology is an extension of OA1@iiop://cnet.fr/sell-product ontology. Agent_C asks Agent_SP if it can use the 528
OA1@iiop://cnet.fr/sell-product ontology. 529

5.3.3 Scenario 3 – testing equivalence 530

In this scenario an agent has to check the logical equivalence of two ontologies. 531

- An ontology designer in U.S declares the ontology "car-product” to the ontology agent OA2, which is referred within 532
the OA2 under the name OA2@http://makers.ford.com/car-product, following the FIPA ontologies naming scheme; 533

©FIPA (1998) FIPA 98 version 1.0 Part 12

11

- The ontology designer declares a complete French translation of its ontology “car-product” to the ontology agent 534
OA1 in France under the name OA1@http://www.ford.fr/voiture. Moreover these two ontologies are declared 535
equivalent to OA1. The exact mapping is provided to the OA1; 536

- Agent A2 (in US) requests OA2 to provide an ontology of domain “cars”; the ontology name OA2@http:// 537
makers.ford.com/car-product is returned; 538

- Agent A2 wants to communicate with A1 in France about “cars” with the ontology OA2@http:// 539
makers.ford.com/car-product. Note that agent A1 does not know this ontology. 540

- Agent A1 queries if OA1 is able to provide an ontology equivalent to OA2@http://makers.ford.com/car-product; 541

- OA1 returns OA1@http://www.ford.fr/voiture to A1; 542

- A1 informs A2 that these two ontologies OA1@http://www.ford.fr/voiture and OA2@http:// makers.ford.com/car-543
producare equivalent. And that OA1 can be used as a translator. 544

- The dialogue between A1 and A2 can then start. 545

5.3.4 Scenario 4 – finding ontologies 546

In this scenario, an agent A wants to know the list of ontologies referring to the “car” term. The agent believes that such 547
ontology exists because it has received a natural language request from a user including this term. However, it has no 548
idea of the kind of concepts underlying this symbol, and it would like to access its definition without any human 549
intervention. 550

- A1 wants to know the list of ontologies referring to a given term 551

- A1 queries the DF for the list of OAs available. 552

- A1 queries each OA for the list of ontologies that include the given term. 553

- OA queries all the ontologies that it is able to access, about an object, a property and a class labeled with the given 554
term 555

5.3.5 Scenario 5 - translation of terms 556

This scenario gives a pragmatic example illustrating the "use of translation of terms" in a multi-agent context. It involves 557
naming of terms. Consider a project integrating two legacy databases. Users of the integrated system want to continue 558
seeing the integrated databases in the terms they are used to, the terms of the legacy database they were using. The 559
first database contains information about the aircraft parts owned by the aircraft manufacturer; the second database 560
describes aircraft parts owned by the aircraft operator. In each database an aircraft part has a name. However, one 561
database calls it a name, and the other calls it nomenclature. In other words, name and nomenclature are based on the 562
same concept definition (the name of a part). A query server answers queries from user agents (user interfaces and 563
agents acting for users). The query server uses a domain ontology that integrates the data source ontologies. The user 564
interface is based on a user model with user ontologies. This permits one user to specify and see part nomenclature in 565
his user interface while another will see part name. We translate terms to answer queries based on each user ontology, 566
and we also translate queries for each database. 567

©FIPA (1998) FIPA 98 version 1.0 Part 12

12

User Agent
A1 Ontology

Agent

Ontology
Server #1

Ontology
Server #2

DB #1 DB #2

Directory
Facilitator

 568

Figure 2 - Model of scenario 5 569

- An agent, A1, wants to translate a given term from a first ontology into the corresponding term from a second one. 570

- A1 queries DF for an OA which supports the translation between these ontologies 571

- DF returns the name of a given OA; this OA knows the format of the ontologies involved (XML, OKBC, ..) and has 572
capabilities to make translation between these ones 573

- A1 queries this OA 574

- OA translates the requested term from Ontology Server #1 to Ontology Server #2 where Ontologies 1 and 2 contain 575
the terms defined respectively in databases #1 and #2. 576

©FIPA (1998) FIPA 98 version 1.0 Part 12

13

6 Specification of the Ontology Service 577

6.1 Reference Model 578

OKBC

Agent

Ontology
Server

OQL

Ontology
Server

Ontology Agent

(Ontolingua) (DB of ODL definitions)

http

Ontology
Server

 (XML)

FIPA
components

DFAgent

Ontology designer

OA-2

Non-FIPA
components

ACL Channel

 579

Figure 3 - Reference Model 580

The figure above shows the reference model of this specification. 581

Ontologies are stored at an ontology server. In general, several servers may exist with different interfaces and different 582
capabilities. The Ontology Agent allows agents to discover ontologies and servers and to access their services in a 583
unique way, that is more suitable to the agent communication mechanism. Furthermore, it can implement extra 584
functionalities such as a translation service or it can bring to the agent community knowledge about relationships 585
between the different ontologies. This reference model does not preclude that in some particular implementations, the 586
Ontology Agent might wrap directly one Ontology Server. 587

The scope of this FIPA specification is ACL level communication between agents and not communication between the 588
Ontology Agent and the Ontology Servers (e.g. OKBC, OQL, any other proprietary protocol). Therefore, a FIPA 589
compliant OA will have to be developed on a custom basis to support interfaces with the non-FIPA compliant ontology 590
severs to be used. 591

6.1.1 Services provided by the Ontology Agent 592

The OA must be able to participate in a communication about the following tasks, possibly responding that it is not able 593
to execute these tasks: 594

 Help a FIPA agent in selecting a shared (sub)ontology for communication, 595

©FIPA (1998) FIPA 98 version 1.0 Part 12

14

 Create and update an ontology, or only some terms of an ontology. 596

 translate expressions between different ontologies (different names with same meanings), 597

 Respond to query for relationships between terms or between ontologies, 598

 discovery of public ontologies in order to access them. 599

Furthermore, the OA allows the Ontology Server to make its ontologies publicly available in the agent domain. 600

6.2 Naming and referring Ontologies 601

Each ontology is stored at an ontology server. The Ontology Agent (OA) registers the list of supported ontologies with 602
the Directory Facilitator (DF). Within an OA each ontology is uniquely named, registered and identified by a logical 603
name managed by the Ontology Agent. It hides from the agent community the physical name of the ontology, both the 604
name of the server (e.g. Ontolingua) and the actual name of the ontology itself. The OA is only responsible for knowing 605
the mapping to the physical name, while all ACL messages and references are assumed to refer directly to this 606
ontology identifier. 607

The following grammar defines the syntax for the ontology identifier in EBNF notation. 608

OntologyName = [OntologyAgentName Delimiter] OntologyLogicalName .609
OntologyAgentName = AgentName .610
OntologyLogicalName = Word .611
Delimiter = ‘?’ .612
Word = see Fipa97 Part 2613
AgentName = see Fipa97 Part 1614

Note: It is required that the OntologyName does not include the character ‘?’ in order to be able to separate the name of the 615
OntologyAgent. 616

Example: The following is an example of a communicative act naming the car-ontol ontology which is managed by 617
the ontology agent OA1@iiop://cselt.it:50/acc618

(inform ... :ontology OA1@iiop://cselt.it:50/acc?car-ontol)619

Note: Based on these assumptions, it might happen that two OAs register the same physical ontology with different logical names, 620
or that two OAs register the same logical name for two different physical ontologies. The assumption is here that the OAs are 621
themselves responsible for discovering such equivalence and exploiting this knowledge in the service they provide. 622

Note: The grammar allows the ability to include both the version and the name space in the ontology logical name. The way this is 623
done is not mandated by this specification. 624

6.3 Relationships between Ontologies 625

In an open environment, agents may benefit, in some applications, from knowing the existence of some relationships 626
between ontologies, for instance to decide if and how to communicate with other agents. Even if in principle every agent 627
may believe such relationships, the ontology agent has the most adequate role in the community to know that. It can be 628
then queried for the value of such relationships and it can use that for translation or for facilitating the selection of a 629
shared ontology for agent communication. The following predicate must be used for this purpose 630

(ontol-relationship ?O1 ?O2 ?level)631

which is defined to be true when a relationship of level level exists between the two ontologies in the arguments O1 632
and O2. The argument level may assume one of the following values: 633

mailto:OA1@iiop://cselt.it:50/acc
mailto:OA1@iiop://cselt.it:50/acc/car-ontol

©FIPA (1998) FIPA 98 version 1.0 Part 12

15

Extension when O1 extends the ontology O2

Identical when the two ontologies O1 and O2 are identical

Equivalent when the two ontologies O1 and O2 are equivalent

Strongly-translatable when the source ontology O1 is strongly-translatable to
the target ontology O2

Weakly-translatable When the source ontology O1 is weakly-translatable to
the target ontology O2

Approx-translatable when the source ontology O1 is approximately
translatable to the target ontology O2

 634

Note : The problem of deciding if two logical theories (as ontologies in general are) have relationships to each other, is in general 635
computationally very difficult. For instance, it can quickly become undecidable if two ontologies are identical when the expressive 636
power of the ontologies concerned is high enough. Therefore, asserting that two ontologies have a relationship to each other as 637
defined in this section, will often require manual intervention. 638

6.3.1 Level = extension 639

It is common and good engineering practice to build a new ontology by extending or combining existing ones. The 640
extension level of relationship captures this reuse practice. 641

When (ontol-relationship O1 O2 extension) holds, then the ontology O1 extends or includes the ontology 642
O2. Informally this means that all the symbols that are defined within the O2 ontology are found in the O1 ontology, with 643
the very important restriction that the properties expressed between the entities in the O2 ontology are conserved in the 644
O1 ontology. 645

This specification makes no distinction between extension and inclusion relationships between ontologies. 646

Ontology O1

apple lemon orange

fruit

Ontology O2

apple

orange lemon

citrus

fruit

 647

Figure 4 - Example of extension of ontology 648

Example 1 (extension): In the Ontology O1 the class “fruit” is split into the “apple”, “lemon” and “orange” classes. The 649
ontology O2 extends O1 by inserting the class “citrus” between the class “fruit” and both classes “orange” and “lemon”. 650
In this case the predicate holds since all entities in O1 are in O2 and since all relations in O1 still hold. For instance, in 651
O1 “lemon is a fruit”, and in O2 “lemon is a citrus” and “citrus is a fruit” implies that “lemon is a fruit”. 652

©FIPA (1998) FIPA 98 version 1.0 Part 12

16

Example 2 (inclusion): O1 defines “cars”, O2 defines “cars” and “vans” by reusing without any modification all classes 653
involved in the “cars” class defined in O1. Once more (ontol-relationship O2 O1 extension) holds. 654

6.3.2 Level = identical 655

This level is used to assert that two ontologies O1 and O2 are identical. By identical, we mean that the vocabulary, the 656
axiomatization and the representation language used are physically identical, like are for instance two mirror copies of a 657
file. However two identical ontologies could be named and referred under different names. 658

Note: It may be important to notice that two identical ontologies may still commit to different conceptualizations, since they may 659
differ in the way their axiomatizations reflect the intended models (see Annex A). Consider for instance two ontologies identical to 660
O1, consisting only of the axioms that reflect the ISA relationships between kinds of fruit: one may commit to a conceptualization 661
where the instances of fruit classes are intended as solid things, while the other one may assume that fruits are amounts of fruit 662
stuff. As long as the commitments with respect to the object/stuff distinction are not made explicit, the two ontologies, although 663
identical, may be used by different applications for very different things. Recognizing the different conceptualizations may not be a 664
problem as long as the vocabulary is the same, but it may lead to serious troubles in case of translatable ontologies, where a wrong 665
ontology translation may be performed on the basis of a mapping between the axiomatizations. This problem is in principle 666
unavoidable, and can be limited only by resorting to a common top-level ontology, used to make explicit the intended 667
conceptualization without the need of detailed axiomatizations. 668

6.3.3 Level = equivalent 669

Two ontologies O1 and O2 are said to be equivalent whenever they share the same vocabulary and the same logical 670
axiomatization, but possibly are expressed using different representation languages (for instance Ontolingua and XML). 671
If we consider a particular ontology server with given deduction capabilities, every thing that is provable or deductible 672
from O1 will be provable from O2 and vice versa. Moreover, the following property holds: if O1 and O2 are equivalent 673
then O1 and O2 are strongly-translatable in both ways. In this case only a mapping between the representation 674
languages is required. 675

Note: It must be noticed that equivalent ontologies may still be served by different ontology servers with different deduction 676
capabilities. That means, in turn, that equivalence between ontologies does not guarantee equivalence of results: what an agent 677
can do or cannot do when using an ontology does not only depend on the ontology but on the couple (ontology, ontology server). 678

6.3.4 Level = weakly-translatable 679

This level relates two ontologies Osource and Odest when it is possible to translate from Osource to Odest, even if 680
with a possible loss of information. Odest is then supposed to share a subset of the vocabulary and axiomatization of 681
Osource. It means that some terms or relationships from Osource will be possibly simplified when translated to 682
Odest. It means also that some terms or relationships will not be translatable to Odest, because they do not appear in 683
the Odest axiomatization. Nevertheless, a weak translation should not introduce any inconsistency. 684

Example: let us consider the French (Osource) and English (Odest) simple ontologies on fruit such as: 685

- In Osource : a “fruit” is an “agrume” or “pomme” or “poire”, and an “agrume” is either a “citron” an “orange” or a 686
“pamplemousse” 687

- In Odest: a “fruit” is either a “lemon”, an “orange” or an “apple” 688

Osource is weakly-translatable to Odest with the vocabulary mapping (“pomme” -> “apple”; “citron”->”lemon”; “orange” 689
-> “orange”; “fruit” -> “fruit”) with a loss of information concerning “pamplemousse”, “poire” and the conceptualization of 690
“agrume” as the subclass of “fruit” containing “citron”, “pamplemousse” and “orange”. Nevertheless after translation 691
“lemons” and “oranges” are still “fruits”. 692

©FIPA (1998) FIPA 98 version 1.0 Part 12

17

Ontology French

citron orange pamplemousse

agrume pomme poire

fruit

Ontology English

lemon orange apple

fruit

 693

Figure 5 - Example of ontologies weakly-translatable 694

6.3.5 Level = strongly-translatable 695

An ontology Osource is said to be related with level strongly-translatable to ontology Odest if 1/ the 696
vocabulary of Osource can be totally translated to the vocabulary of Odest, 2/ the axiomatization of Osource holds in 697
Odest, 3/ there is no loss of information from Osource to Odest, 4/ there is no introduction of inconsistency. However, 698
the representation languages used by Osource and Odest can still be different. 699

Example: let us consider the English(Osource) and French(Odest) ontologies, such as: 700

- In Osource: a “fruit” is a either a “citrus”, an “apple” or a “pear”, and a “citrus” is either a “lemon” or an “orange”. 701

- In Odest: a “fruit” is an “agrume” or a “pomme” or a “poire”, and an “agrume” is either a “citron” an “orange” or a 702
“pamplemousse” 703

Osource is strongly-translatable to Odest with the vocabulary mapping (“apple” -> “pomme”; “ lemon”->” citron”; 704
“orange” -> “orange”; “fruit” -> “fruit”, “pear” -> “poire”, “citrus”->”agrume”). Moreover every property that holds in 705
Osource holds in Odest after translation. Thus this is an example of a strongly-translatable predicate. The 706
reverse translation i.e. Odest to Osource is not strongly-translatable since “pamplemousse” is not defined in 707
Osource. 708

Ontology French

citron orange pamplemousse

agrume pomme poire

fruit

Ontology English

lemon orange

citrus pear apple

fruit

 709

Figure 6 - Example of ontologies strongly-translatable 710

6.3.6 Level = approx-translatable 711

This level is the less restrictive. Two ontologies Osource and Odest are said to be related with level approx-712
translatable if they are weakly-translatable with introduction of possible inconsistencies, e.g. some of the 713
relations become no more valid and some constraints do not apply anymore. 714

Example: This example shows two ontologies that refer to a term which has slightly different meanings according to the 715
context in which it is used. The two ontologies are respectively “ingredients for Chinese Cooking” and “ingredients for 716

©FIPA (1998) FIPA 98 version 1.0 Part 12

18

European Cooking”. In both ontologies, we consider the two following classes “parsley” and “pepper”. The difference is 717
that in “Chinese cooking” ontology, “coriander” is classified as a sort of “parsley”, because its leaves are used and that 718
in European cooking “coriander” is classified as a sort of pepper, because only its seeds (called “Chinese” pepper) are 719
used. The term “coriander” enjoys different properties in the two ontologies, even if it refers to the same plant. 720

If we consider a translation between these two ontologies, the translation of “coriander” (in the Chinese Cooking 721
ontology) by “coriander” (in the European Cooking ontology) can be useful mainly because as said previously the term 722
designates the same plant. Nevertheless, some of the properties expressed in the “Chinese Cooking” ontology do not 723
hold any more in the “European Cooking” ontology and vice versa. 724

6.3.7 General properties 725

The following properties hold between level of relationships: 726

- strongly-translatable weakly-translatable approx-translatable 727

- equivalent(O1,O2) strongly-translatable(O1,O2) strongly-translatable(O2,O1) 728

- identical equivalent 729

6.4 Registration of the Ontology Agent with the DF 730

In order for an agent to advertise its willingness to provide a set of ontology services to an agent domain, it must 731
register with a DF (as described in [1]). Of course, the DF is not responsible for ensuring the validity of the provided 732
service. 733

As part of this registration process a number of constant values are introduced which universally identify the ontology 734
services: 735

- the :service-type must be declared as a fipa-oa service; 736

- the :service-ontology is identified by the constant fipa-ontol-service-ontology, which identifies 737
the set of actions that can be requested to be performed by a FIPA Ontology Agent; 738

- the :fixed-properties list must include the set of supported-ontologies 739
(:supported-ontologies <ontology-description>+)740
The ontology description must include the following attributes: 741

- :ontology-name - the logical reference to the ontology. This reference is used as the ontology parameter 742
in ACL messages. Only the OA knows the physical name i.e. the physical location of the ontology server; 743

- :version – this optional parameter allows to register with the DF the version of the ontology; 744

- :source-languages - the languages in which the ontology is stored on the ontology server; 745

- :domains - the type of application domains in which the ontology is considered suitable. Syntactically this 746
is an expression. 747

In addition to the set of supported ontologies, the OA may also register its translation capabilities between different 748
ontologies (if it has any). Notice that the specification does not prevent non-OA agents to also have translation 749
capabilities. The translation capabilities may include ontology translation, language translation or both. The following 750
constant values must be used to register translation services: 751

- the :service-type must be declared as a translation-service; 752

©FIPA (1998) FIPA 98 version 1.0 Part 12

19

- the :service-ontology must include the fipa-meta-ontology, which identifies the set of actions that can 753
be requested to be performed by a FIPA Ontology Agent, regarding translation services; 754

- the :fixed-properties list must include the list of available ontology-translation-types 755
(:ontology-translation-types <translation description>+) 756
and/or the list of available language translation types 757
(:language-translation-types <translation description>+) 758

As a consequence, the Agent Management Grammar [section 9.1 of 5] is enriched as follows: 759

FIPA-Service-Desc-Item = … (see Fipa97 Part 1)760
|“(“ “:fixed-properties” FixedProperties “)”761

762
FixedProperties = SLTerm763

|“(“ “:supported-ontologies” OntologyDescription + “)”764
|“(“ “:ontology-translation-types” TranslationDescr + “)”765
|“(“ “:language-translation-types” TranslationDescr + “)”.766

767
OntologyDescription = “(“ “:ontology-name” OntologyName768

[OntologyVersion]769
“:source-languages” SLTerm770
“:domains” SLTerm “)” .771

772
OntologyName = (see section 6.2)773

774
TranslationDescr = “(“ “:from” OntologyName [OntologyVersion]775

“:to” OntologyName [OntologyVersion]776
[“:level” TranslationLevel] “)”777

| “(“ “:from” LanguageName “:to” LanguageName778
[“:level” TranslationLevel] “)”.779

780
OntologVersion = “:version” SLConstant.781

782
LanguageName = Word.783

784
TranslationLevel = “weakly-translatable” | “strongly-translatable” |785

“approx-translatable” | “equivalent”786
 787

The default value for TranslationLevel is equivalent. 788

Example: The following is an example of registration of an OA with the DF: 789

(request790
:sender oa@iiop://agentland.com:50/acc791
:receiver df@iiop://fipa.org:50/acc792
:ontology fipa-agent-management793
:language SL0794
:protocol fipa-request795
:content796

(action df@iiop://fipa.org:50/acc797
(register798

(:df-description799
(:agent-name oa@iiop://agentland.com:50/acc)800
(:agent-type fipa-oa)801
(:address (iiop://fipa.org/acc iiop://agentland.com/acc))802
(:agent-services803

(:service-description804
(:service-type fipa-oa)805
(:service-ontology fipa-ontol-service-ontology)806

©FIPA (1998) FIPA 98 version 1.0 Part 12

20

(:service-name Serv_Name1)807
(:fixed-properties808

(:supported-ontologies809
(:ontology-name fipa-vpn-provisioning810
:version a1811
:source-languages xml812
:domains telecoms)813

(:ontology-name product814
:source-languages kif815
:domains commerce))))816

(:service-description817
(:service-type translation-service)818
(:service-ontology fipa-ontol-service-ontology)819
(:service-name Serv_Name2)820
(:fixed proporties821

(:ontology-translation-types822
(:from fipa-vpn-provisioning :to product823
:level weakly-translatable)824

(:from product :to italianproduct825
:level strongly-translatable))826

(:language-translation-types827
(:from SL :to KIF :level weakly-translatable)828
(:from OntoLingua :to LOOM :level strongly-translatable)))))829

(:interaction-protocols (fipa-request))830
(:ontology fipa-ontol-service-ontology)831
(:df-state active)))))832

6.4.1 Querying the DF 833

The agent management search action described in FIPA 97 part 1 enables an agent to query the DF for available 834
ontology related services, namely: 835

- the list of registered OAs; 836

- the list of OAs that support ontologies in a given domain; 837

- the basic properties of a given ontology (e.g. domain, source-language); 838

- the list of OAs that provide a specific translation service 839

It is also possible for an agent to query a DF to establish what agents claim to understand a given ontology. The reply 840
could be a list of OA who offer such an ontology, the requesting agent can then use it intelligence to decide which 841
ontology service is wishes to use. 842

Example: The following example describes the case where an agent (the pca-agent in the example) queries a DF to 843
establish what OA agents can support the fipa-vpn-provisioning ontology. 844

(request845
:sender pca-agent@iiop://agentland.com:50/acc846
:receiver df@iiop://fipa.org:50/acc847
:ontology fipa-agent-management848
:language SL0849
:protocol fipa-request850
:reply-with search-123851
:content852

(action df@iiop://fipa.org:50/acc853
(search854

(:df-description855
(:agent-services856

(:service-description857
(:service-type fipa-oa)858

©FIPA (1998) FIPA 98 version 1.0 Part 12

21

(:service-ontology fipa-ontol-service-ontology)859
(:fixed-properties860

(:supported-ontologies861
(:ontology-name fipa-vpn-provisioning)))))862

(:df-state active))))863
 864

The DF responds listing the details of the appropriate OAs registered in a ACL message of the form: 865

(inform866
:sender df@iiop://fipa.org:50/acc867
:receiver pca-agent@iiop://agentland.com:50/acc868
:ontology fipa-agent-management869
:language SL0870
:protocol fipa-request871
:in-reply-to search-123872
:content873

(result (action df search)874
(:df-description875

(:agent-name oa@iiop://agentland.com:50/acc)876
(:agent-type fipa-oa)877
(:address (iiop://fipa.org/acc iiop://agentland.com/acc))878
(:agent-services879

(:service-description880
(:service-type fipa-oa)881
(:service-ontology fipa-ontol-service-ontology)882
(:service-name Serv_Name1)883
(:fixed-properties884

(:supported-ontologies885
(:ontology-name fipa-vpn-provisioning886
:source-languages xml887
:domains telecoms)888

(:ontology-name product889
:source-languages kif890
:domains commerce))))891

(:service-description892
(:service-type translation-service)893
(:service-ontology fipa-ontol-service-ontology)894
(:service-name Serv_Name2)895
(:fixed proporties896

(:ontology-translation-types897
(:from fipa-vpn-provisioning :to product898
:level weakly-translatable)899

(:from product :to italianproduct900
:level strongly-translatable))901

(:language-translation-types902
(:from SL :to KIF :level weakly-translatable)903
(:from OntoLingua :to LOOM :level strongly-translatable)))))904

(:interaction-protocols (fipa-request))905
(:ontology fipa-ontol-service-ontology)906
(:df-state active)))))907

908
6.5 FIPA Knowledge Model and FIPA meta-ontology 909

One of the goals of this specification is to allow agents to talk about and manipulate knowledge, for instance to query for 910
the definition of a concept or to define a new concept. A standard meta-ontology and knowledge model is necessary for 911
this purpose, which describes the primitives used by a knowledge representation language, like concepts, attributes, 912
relations, … 913

©FIPA (1998) FIPA 98 version 1.0 Part 12

22

FIPA adopts for its specification the knowledge model of the OKBC version 2.0.4 document (chapter 2 of [3]), which is 914
hereafter defined and referred with the reserved constant Fipa-meta-ontology. The adopted Knowledge Model 915
supports an object-oriented representation of knowledge and provides a set of representational constructs commonly 916
found in object-oriented knowledge representation systems. 917

It must be noticed that the adoption of this meta-ontology does not prevent the usage of whatever knowledge 918
representation language a designer wants to use. Instead, for a FIPA compliant agent, this is mandated and serves the 919
purpose of the interlingua for knowledge that is being communicated, that is knowledge obtained from or provided to an 920
Ontology Agent must be expressed in this Knowledge Model. It is left to agents, then, the responsibility to translate 921
knowledge from the actual knowledge representation language into and out of this interlingua, as needed. 922

For an accurate understanding of this knowledge model, the reader should directly refer to [3]. However, for quick 923
reference and to simplify the reading of this document, the following box is an integral reproduction of the Chapter 2 of 924
the OKBC specifications, version 2.0.4. This has been added to the specification for the convenience of the reader. 925

 926

©FIPA (1998) FIPA 98 version 1.0 Part 12

23

The OKBC Knowledge Model 927

The Open Knowledge Base Connectivity provides operations for manipulating knowledge expressed in an implicit 928
representation formalism called the OKBC Knowledge Model, which we specify in this chapter. The OKBC Knowledge 929
Model supports an object-oriented representation of knowledge and provides a set of representational constructs 930
commonly found in object-oriented knowledge representation systems (KRSs) [4]. Knowledge obtained from an KRS 931
using OKBC or provided to an KRS using OKBC is assumed in the specification of the OKBC operations to be 932
expressed in the Knowledge Model. The OKBC Knowledge Model therefore serves as an implicit interlingua for 933
knowledge that is being communicated using OKBC, and systems that use OKBC translate knowledge into and out of 934
that interlingua as needed. 935

The OKBC Knowledge Model includes constants, frames, slots, facets, classes, individuals, and knowledge bases. We 936
describe each of these constructs in the sections below. To provide a precise and succinct description of the OKBC 937
Knowledge Model, we use the Knowledge Interchange Format (KIF) [2] as a formal specification language. KIF is a 938
first-order predicate logic language with set theory, and has a linear prefix syntax. 939

 940

Constants 941

The OKBC Knowledge Model assumes a universe of discourse consisting of all entities about which knowledge is to be 942
expressed. Each OKBC knowledge base may have a different universe of discourse. However, OKBC assumes that the 943
universe of discourse always includes all constants of the following basic types: 944

 integers 945

 floating point numbers 946

 strings 947

 symbols 948

 lists 949

 classes 950

Classes are sets of entities1, and all sets of entities are considered to be classes. OKBC also assumes that the domain 951
of discourse includes the logical constants true and false. 952

1 We use the term class synonymously with the term concept as used in the description logic community.

©FIPA (1998) FIPA 98 version 1.0 Part 12

24

 953

Frames, Own Slots, and Own Facets 954

A frame is a primitive object that represents an entity in the domain of discourse. Formally, a frame corresponds to a 955
KIF constant. A frame that represents a class is called a class frame, and a frame that represents an individual is called 956
an individual frame. 957

A frame has associated with it a set of own slots, and each own slot of a frame has associated with it a set of entities 958
called slot values. Formally, a slot is a binary relation, and each value V of an own slot S of a frame F represents the 959
assertion that the relation S holds for the entity represented by F and the entity represented by V (i.e., (S F V)2). For 960
example, the assertion that Fred's favorite foods are potato chips and ice cream could be represented by the own slot 961
Favorite-Food of the frame Fred having as values the frame Potato-Chips and the string ``ice cream''. 962

An own slot of a frame has associated with it a set of own facets, and each own facet of a slot of a frame has 963
associated with it a set of entities called facet values. Formally, a facet is a ternary relation, and each value V of own 964
facet Fa of slot S of frame Fr represents the assertion that the relation Fa holds for the relation S, the entity represented 965
by Fr, and the entity represented by V (i.e., (Fa S Fr V)). For example, the assertion that the favorite foods of Fred 966
must be edible foods could be represented by the facet :VALUE-TYPE of the Favorite-Food slot of the Fred frame 967
having the value Edible-Food. 968

Relations may optionally be entities in the domain of discourse and therefore representable by frames. Thus, a slot or a 969
facet may be represented by a frame. Such a frame describes the properties of the relation represented by the slot or 970
facet. A frame representing a slot is called a slot frame, and a frame representing a facet is called a facet frame. 971

 972

Classes and Individuals 973

A class is a set of entities. Each of the entities in a class is said to be an instance of the class. An entity can be an 974
instance of multiple classes, which are called its types. A class can be an instance of a class. A class which has 975
instances that are themselves classes is called a meta-class. 976

Entities that are not classes are referred to as individuals. Thus, the domain of discourse consists of individuals and 977
classes. The unary relation class is true if and only if its argument is a class and the unary relation individual is 978
true if and only if its argument is an individual. The following axiom holds:3 979

980
(<=> (class ?X) (not (individual ?X)))981

The class membership relation (called instance-of) that holds between an instance and a class is a binary relation that 982
maps entities to classes. A class is considered to be a unary relation that is true for each instance of the class. That is,4 983

2 KIF syntax note: Relational sentences in KIF have the form (<relation name> <argument>*)

3 Notes on KIF syntax: Names whose first character is ``?'' are variables. If no explicit quantifier is specified, variables are assumed
to be universally quantified. <=> means ``if and only if''.

©FIPA (1998) FIPA 98 version 1.0 Part 12

25

984
(<=> (holds ?C ?I) (instance-of ?I ?C))985

The relation type-of is defined as the inverse of relation instance-of. That is, 986

987
(<=> (type-of ?C ?I) (instance-of ?I ?C))988

The subclass-of relation for classes is defined in terms of the relation instance-of, as follows. A class Csub is a 989
subclass of class Csuper if and only if all instances of Csub are also instances of Csuper. That is,5 990

991
(<=> (subclass-of ?Csub ?Csuper)992

(forall ?I (=> (instance-of ?I ?Csub)993
(instance-of ?I ?Csuper))))994

Note that this definition implies that subclass-of is transitive. (I.e., If A is a subclass of B and B is a subclass of C, 995
then A is a subclass of C.) 996

The relation superclass-of is defined as the inverse of the relation subclass-of. That is, 997

998
(<=> (superclass-of ?Csuper ?Csub) (subclass-of ?Csub ?Csuper))999

 1000

Class Frames, Template Slots, and Template Facets 1001

A class frame has associated with it a collection of template slots that describe own slot values considered to hold for 1002
each instance of the class represented by the frame. The values of template slots are said to inherit to the subclasses 1003
and to the instances of a class. Formally, each value V of a template slot S of a class frame C represents the assertion 1004
that the relation template-slot-value holds for the relation S, the class represented by C, and the entity represented by V 1005
(i.e., (template-slot-value S C V)). That assertion, in turn, implies that the relation S holds between each 1006
instance I of class C and value V (i.e., (S I V)). It also implies that the relation template-slot-value holds for the 1007
relation S, each subclass Csub of class C, and the entity represented by V (i.e., (template-slot-value S Csub1008
V)). That is, the following slot value inheritance axiom holds for the relation template-slot-value: 1009

1010
(=> (template-slot-value ?S ?C ?V)1011

(and (=> (instance-of ?I ?C) (holds ?S ?I ?V))1012
(=> (subclass-of ?Csub ?C)1013

(template-slot-value ?S ?Csub ?V))))1014
Thus, the values of a template slot are inherited to subclasses as values of the same template slot and to instances as 1015
values of the corresponding own slot. For example, the assertion that the gender of all female persons is female could 1016
be represented by template slot Gender of class frame Female-Person having the value Female. Then, if we 1017
created an instance of Female-Person called Mary, Female would be a value of the own slot Gender of Mary. 1018

4 Note on KIF syntax: holds means ``relation is true for''. One must use the form (holds ?C ?I) rather than (?C ?I) when
the relation is a variable because KIF has a first-order logic syntax and therefore does not allow a variable in the first position of a
relational sentence.

5 Note on KIF syntax: => means ``implies''

©FIPA (1998) FIPA 98 version 1.0 Part 12

26

A template slot of a class frame has associated with it a collection of template facets that describe own facet values 1019
considered to hold for the corresponding own slot of each instance of the class represented by the class frame. As with 1020
the values of template slots, the values of template facets are said to inherit to the subclasses and instances of a class. 1021
Formally, each value V of a template facet F of a template slot S of a class frame C represents the assertion that the 1022
relation template-facet-value holds for the relations F and S, the class represented by C, and the entity represented by 1023
V (i.e., (template-facet-value F S C V)). That assertion, in turn, implies that the relation F holds for relation S, 1024
each instance I of class C, and value V (i.e., (F S I V)). It also implies that the relation template-facet-value 1025
holds for the relations S and F, each subclass Csub of class C, and the entity represented by V (i.e., (template-1026
facet-value F S Csub V)). 1027

In general, the following facet value inheritance axiom holds for the relation template-facet-value: 1028

1029
(=> (template-facet-value ?F ?S ?C ?V)1030

(and (=> (instance-of ?I ?C) (holds ?F ?S ?I ?V))1031
(=> (subclass-of ?Csub ?C)1032

(template-facet-value ?F ?S ?Csub ?V))))1033
Thus, the values of a template facet are inherited to subclasses as values of the same template facet and to instances 1034
as values of the corresponding own facet. 1035

Note that template slot values and template facet values necessarily inherit from a class to its subclasses and 1036
instances. Default values and default inheritance are specified separately, as described in Section 2.8. 1037

Primitive and Non-Primitive Classes 1038

Classes are considered to be either primitive or non-primitive by OKBC. The template slot values and template facet 1039
values associated with a non-primitive class are considered to specify a set of necessary and sufficient conditions for 1040
being an instance of the class. For example, the class Triangle could be a non-primitive class whose template slots 1041
and facets specify three-sided polygons. All triangles are necessarily three-sided polygons, and knowing that an entity 1042
is a three-sided polygon is sufficient to conclude that the entity is a triangle. 1043

The template slot values and template facet values associated with a primitive class are considered to specify only a set 1044
of necessary conditions for an instance of the class. For example, all classes of ``natural kinds'' - such as Horse and 1045
Building - are primitive concepts. A KB may specify many properties of horses and buildings, but will typically not 1046
contain sufficient conditions for concluding that an entity is a horse or building. 1047

Formally: 1048

1049
(=> (and (class ?C) (not (primitive ?C)))1050

(=> (and (=> (template-slot-value ?S ?C ?V) (holds ?S ?I ?V))1051
(=> (template-facet-value ?F ?S ?C ?V)1052

(holds ?F ?S ?I ?V)))1053
(instance-of ?I ?C)))1054

 1055

Associating Slots and Facets with Frames 1056

Each frame has associated with it a collection of slots, and each frame-slot pair has associated with it a collection of 1057
facets. A facet is considered to be associated with a frame-slot pair if the facet has a value for the slot at the frame. A 1058
slot is considered to be associated with a frame if the slot has a value at that frame or there is a facet that is associated 1059
with the slot at the frame. For example, if the template facet :NUMERIC-MINIMUM of template slot Age of frame 1060
Person had a value 0, then facet :NUMERIC-MINIMUM would be associated with the frame Person slot Age pair and 1061

©FIPA (1998) FIPA 98 version 1.0 Part 12

27

the slot Age would be associated with the frame Person. In addition, OKBC contains operations for explicitly 1062
associating slots with frames and associating facets with frame-slot pairs, even though there are no values for the slots 1063
or facets at the frame. 1064

We formalize the association of slots with frames and facets with frame-slot pairs by defining the relations slot-of, 1065
template-slot-of, facet-of, and template-facet-of as follows: 1066

1067
(=> (exists ?V (holds ?Fa ?S ?F ?V)) (facet-of ?Fa ?S ?F))1068

1069
(=> (exists ?V (template-facet-value ?Fa ?S ?C ?V))1070

(template-facet-of ?Fa ?S ?C))1071
1072

(=> (or (exists ?V (holds ?S ?F ?V))1073
(exists ?Fa (facet-of ?Fa ?S ?F)))1074

(slot-of ?S ?F))1075
1076

(=> (or (exists ?V (template-slot-value ?S ?C ?V))1077
(exists ?Fa (template-facet-of ?Fa ?S ?C)))1078

(template-slot-of ?S ?C))1079
So, in the example given above, the following sentences would be true: (template-slot-of Age Person) and 1080
(template-facet-of :NUMERIC-MINIMUM Age Person). 1081

As with template facet values and template slot values, the template-slot-of and template-facet-of relations 1082
inherit from a class to its subclasses and from a class to its instances as the slot-of and facet-of relations. That 1083
is, the following slot-of inheritance axioms hold. 1084

1085
(=> (template-slot-of ?S ?C)1086

(and (=> (instance-of ?I ?C) (slot-of ?S ?I))1087
(=> (subclass-of ?Csub ?C) (template-slot-of ?S ?Csub))))1088

1089
(=> (template-facet-of ?Fa ?S ?C)1090

(and (=> (instance-of ?I ?C) (facet-of ?Fa ?S ?I))1091
(=> (subclass-of ?Csub ?C)1092

(template-facet-of ?Fa ?S ?Csub))))1093

Collection Types for Slot and Facet Values 1094

OKBC allows multiple values of a slot or facet to be interpreted as a collection type other than a set. The protocol 1095
recognizes three collection types: set, bag, and list. A bag is an unordered collection with possibly multiple occurrences 1096
of the same value in the collection. A list is an ordered bag. 1097

The OKBC Knowledge Model considers multiple slot and facet values to be sets throughout because of the lack of a 1098
suitable formal interpretation for (1) multiple slot or facet values treated as bags or lists, (2) the ordering of values in lists 1099
of values that result from multiple inheritance, and (3) the multiple occurrence of values in bags that result from multiple 1100
inheritance. In addition, the protocol itself makes no commitment as to how values expressed in collection types other 1101
than set are combined during inheritance. Thus, OKBC guarantees that multiple slot and facet values of a frame stored 1102
as a bag or a list are retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a 1103
subclass or instance, no guarantees are provided regarding the ordering of values for lists or the repeating of multiple 1104
occurrences of values for bags. The collection types supported by a KRS can be specified by a behavior and the 1105
collection type of a slot of a specific frame can be specified by using the :COLLECTION-TYPE facet (see 1106
Section 2.10.2). 1107

 1108

©FIPA (1998) FIPA 98 version 1.0 Part 12

28

Default Values 1109

The OKBC knowledge model includes a simple provision for default values for slots and facets. Template slots and 1110
template facets have a set of default values associated with them. Intuitively, these default values inherit to instances 1111
unless the inherited values are logically inconsistent with other assertions in the KB, the values have been removed at 1112
the instance, or the default values have been explicitly overridden by other default values. OKBC does not require a 1113
KRS to be able to determine the logical consistency of a KB, nor does it provide a means of explicitly overriding default 1114
values. Instead, OKBC leaves the inheritance of default values unspecified. That is, no requirements are imposed on 1115
the relationship between default values of template slots and facets and the values of the corresponding own slots and 1116
facets. The default values on a template slot or template facet are simply available to the KRS to use in whatever way it 1117
chooses when determining the values of own slots and facets. OKBC guarantees that, unless the value of the 1118
:default behavior is :none, default values for a template slot or template facet asserted at a class frame will be 1119
retrievable at that frame. However, no guarantees are made as to how or whether the default values are inherited to a 1120
subclass or instance. 1121

 1122

Knowledge Bases 1123

A knowledge base (KB) is a collection of classes, individuals, frames, slots, slot values, facets, facet values, frame-slot 1124
associations, and frame-slot-facet associations. KBs are considered to be entities in the universe of discourse and are 1125
represented by frames. All frames reside in some KB. The frames representing KBs are considered to reside in a 1126
distinguished KB called the meta-kb, which is accessible to OKBC applications. 1127

 1128

Standard Classes, Facets, and Slots 1129

The OKBC Knowledge Model includes a collection of classes, facets, and slots with specified names and semantics. It 1130
is not required that any of these standard classes, facets, or slots be represented in any given KB, but if they are, they 1131
must satisfy the semantics specified here. 1132

The purpose of these standard names is to allow for KRS- and KB-independent canonical names for frequently used 1133
classes, facets, and slots. The canonical names are needed because an application cannot in general embed literal 1134
references to frames in a KB and still be portable. This mechanism enables such literal references to be used without 1135
compromising portability. 1136

 1137

Classes 1138

Whether the classes described in this section are actually present in a KB or not, OKBC guarantees that all of these 1139
class names are valid values for the :VALUE-TYPE facet described in Section 2.10.2. 1140

 1141
:THING class 1142
:THING is the root of the class hierarchy for a KB, meaning that :THING is the superclass of every class in every KB. 1143

©FIPA (1998) FIPA 98 version 1.0 Part 12

29

 1144
:CLASS class 1145
:CLASS is the class of all classes. That is, every entity that is a class is an instance of :CLASS. 1146

 1147
:INDIVIDUAL class 1148
:INDIVIDUAL is the class of all entities that are not classes. That is, every entity that is not a class is an instance of 1149
:INDIVIDUAL. 1150

 1151
:NUMBER class 1152
:NUMBER is the class of all numbers. OKBC makes no guarantees about the precision of numbers. If precision is an 1153
issue for an application, then the application is responsible for maintaining and validating the format of numerical values 1154
of slots and facets. :NUMBER is a subclass of :INDIVIDUAL. 1155

 1156
:INTEGER class 1157
:INTEGER is the class of all integers and is a subclass of :NUMBER. As with numbers in general, OKBC makes no 1158
guarantees about the precision of integers. 1159

 1160
:STRING class 1161
:STRING is the class of all text strings. :STRING is a subclass of :INDIVIDUAL. 1162

 1163
:SYMBOL class 1164
:SYMBOL is the class of all symbols. :SYMBOL is a subclass of :SEXPR. 1165

 1166
:LIST class 1167
:LIST is the class of all lists. :LIST is a subclass of :INDIVIDUAL. 1168

 1169

Facets 1170

The standard facet names in OKBC have been derived from the Knowledge Representation System Specification 1171
(KRSS) [6] and the Ontolingua Frame Ontology. KRSS is a common denominator for description logic systems such as 1172
LOOM[5], CLASSIC [1], and BACK [7]. The Ontolingua Frame Ontology defines a frame language as an extension to 1173
KIF. KIF plus the Ontolingua Frame Ontology is the representation language used in Stanford University's Ontolingua 1174
System [3]. Both KRSS and Ontolingua were developed as part of DARPA's Knowledge Sharing Effort. 1175

 1176
:VALUE-TYPE facet 1177
The :VALUE-TYPE facet specifies a type restriction on the values of a slot of a frame. Each value of the :VALUE-TYPE 1178
facet denotes a class. A value C for facet :VALUE-TYPE of slot S of frame F means that every value of slot S of frame 1179
F must be an instance of the class C. That is, 1180

1181
(=> (:VALUE-TYPE ?S ?F ?C)1182

(and (class ?C)1183
(=> (holds ?S ?F ?V) (instance-of ?V ?C))))1184

1185
(=> (template-facet-value :VALUE-TYPE ?S ?F ?C)1186

(and (class ?C)1187

©FIPA (1998) FIPA 98 version 1.0 Part 12

30

(=> (template-slot-value ?S ?F ?V) (instance-of ?V ?C))))1188
The first axiom provides the semantics of the :VALUE-TYPE facet for own slots and the second provides the semantics 1189
for template slots. Note that if the :VALUE-TYPE facet has multiple values for a slot S of a frame F, then the values of 1190
slot S of frame F must be an instance of every class denoted by the values of :VALUE-TYPE. 1191

A value for :VALUE-TYPE can be a KIF term of the following form: 1192

1193
<value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |1194

OKBC-class1195
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in 1196
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of classes 1197
(e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly enumerated set of 1198
possible values for the slot (e.g., either Clyde, Fred, or Robert). 1199

 1200
:INVERSE facet 1201
The :INVERSE facet of a slot of a frame specifies inverses for that slot for the values of the slot of the frame. Each 1202
value of this facet is a slot. A value S2 for facet :INVERSE of slot S1 of frame F means that if V is a value of S1 of F, 1203
then F is a value of S2 of V. That is, 1204

1205
(=> (:INVERSE ?S1 ?F ?S2)1206

(and (:SLOT ?S2)1207
(=> (holds ?S1 ?F ?V) (holds ?S2 ?V ?F))))1208

1209
(=> (template-facet-value :INVERSE ?S1 ?F ?S2)1210

(and (:SLOT ?S2)1211
(=> (template-slot-value ?S1 ?F ?V)1212

(template-slot-value ?S2 ?V ?F))))1213
 1214
:CARDINALITY facet 1215
The :CARDINALITY facet specifies the exact number of values that may be asserted for a slot on a frame. The value 1216
of this facet must be a nonnegative integer. A value N for facet :CARDINALITY on slot S on frame F means that slot S 1217
on frame F has N values. That is,6 1218

1219
(=> (:CARDINALITY ?S ?F ?N)1220

(= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))1221
1222

(=> (template-facet-value :CARDINALITY ?S ?F ?C)1223
(=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))1224

?N)))1225
For example, one could represent the assertion that Fred has exactly four brothers by asserting 4 as the value of the 1226
:CARDINALITY own facet of the Brother own slot of frame Fred. Note that all the values for slot S of frame F need 1227
not be known in the KB. That is, a KB could use the :CARDINALITY facet to specify that Fred has 4 brothers without 1228
knowing who the brothers are and therefore without providing values for Fred's Brother slot. 1229

6 cardinality is a unary function whose argument is a finite set and whose value is the number of elements in the set.
setofall is a set-valued term expression in KIF that takes a variable as a first argument and a sentence containing that variable
as a second argument. The value of setofall is the set of all values of the variable for which the sentence is true. =< means
``less than or equal''.

©FIPA (1998) FIPA 98 version 1.0 Part 12

31

Also, note that a value for :CARDINALITY as a template facet of a template slot of a class only constrains the 1230
maximum number of values of that template slot of that class, since the corresponding own slot of each instance of the 1231
class may inherit values from multiple classes and have locally asserted values. 1232

 1233
:MAXIMUM-CARDINALITY facet 1234
The :MAXIMUM-CARDINALITY facet specifies the maximum number of values that may be asserted for a slot of a 1235
frame. Each value of this facet must be a nonnegative integer. A value N for facet MAXIMUM-CARDINALITY of slot S of 1236
frame F means that slot S of frame F can have at most N values. That is, 1237

1238
(=> (:MAXIMUM-CARDINALITY ?S ?F ?N)1239

(=< (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))1240
1241

(=> (template-facet-value :MAXIMUM-CARDINALITY ?S ?F ?C)1242
(=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))1243

?N)))1244
Note that if facet :MAXIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S in F can have 1245
at most (min N1 … Nk) values. Also, it is appropriate for a value for :MAXIMUM-CARDINALITY as a template facet 1246
of a template slot of a class to constrain the number of values of that template slot of that class as well as the number of 1247
values of the corresponding own slot of each instance of that class since an excess of values for a template slot of a 1248
class will cause an excess of values for the corresponding own slot of each instance of the class. 1249

 1250
:MINIMUM-CARDINALITY facet 1251
The :MINIMUM-CARDINALITY facet specifies the minimum number of values that may be asserted for a slot of a 1252
frame. Each value of this facet must be a nonnegative integer. A value N for facet MINIMUM-CARDINALITY of slot S of 1253
frame F means that slot S of frame F has at least N values. That is,7 1254

1255
(=> (:MINIMUM-CARDINALITY ?S ?F ?N)1256

(>= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))1257
Note that if facet :MINIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S of F has at 1258
least (max N1 … Nk) values. Also, as is the case with the :CARDINALITY facet, all the values for slot S of frame F 1259
do not need be known in the KB. 1260

Note that a value for :MINIMUM-CARDINALITY as a template facet of a template slot of a class does not constrain the 1261
number of values of that template slot of that class, since the corresponding own slot of each instance of the class may 1262
inherit values from multiple classes and have locally asserted values. Instead, the value for the template facet 1263
:MINIMUM-CARDINALITY constrains only the number of values of the corresponding own slot of each instance of that 1264
class, as specified by the axiom. 1265

 1266
:SAME-VALUES facet 1267
The :SAME-VALUES facet specifies that a slot of a frame has the same values as other slots of that frame or as the 1268
values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. A value S2 1269
for facet :SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot S1 of F is equal 1270
to the set of values of slot S2 of F. That is, 1271

7 KIF syntax note: >= means ``greater than or equal''.

©FIPA (1998) FIPA 98 version 1.0 Part 12

32

1272
(=> (:SAME-VALUES ?S1 ?F ?S2)1273

(= (setofall ?V (holds ?S1 ?F ?V))1274
(setofall ?V (holds ?S2 ?F ?V))))1275

A slot chain is a list of slots that specifies a nesting of slots. That is, the values of the slot chain S1, … ,Sn of frame F 1276
are the values of the Sn slot of the values of the Sn-1 slot of … of the values of the S1 slot in F. For example, the values 1277
of the slot chain (parent brother) of Fred are the brothers of the parents of Fred. Formally, we define the values 1278
of a slot chain recursively as follows: Vn is a value of slot chain S1,…,Sn of frame F if there is a value V1 of slot S1 of F 1279
such that Vn is a value of slot chain S2,…,Sn of frame V1. That is,8 1280

1281
(<=> (slot-chain-value (listof ?S1 ?S2 @Sn) ?F ?Vn)1282

(exists ?V1 (and (holds ?S1 ?F ?V1)1283
(slot-chain-value (listof ?S2 @Sn) ?V1 ?Vn))))1284

1285
(<=> (slot-chain-value (listof ?S) ?F ?V) (holds ?S ?F ?V))1286

A value (S1 … Sn) for facet :SAME-VALUES of slot S of frame F means that the set of values of slot S of F is equal to 1287
the set of values of slot chain (S1 … Sn) of F. That is, 1288

1289
(=> (:SAME-VALUES ?S ?F (listof @Sn))1290

(= (setofall ?V (holds ?S ?F ?V))1291
(setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))1292

For example, one could assert that a person's uncles are the brothers of their parents by putting the value (parent1293
brother) on the template facet :SAME-VALUES of the Uncle slot of class Person. 1294

 1295
:NOT-SAME-VALUES facet 1296
The :NOT-SAME-VALUES facet specifies that a slot of a frame does not have the same values as other slots of that 1297
frame or as the values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot 1298
chain. A value S2 for facet :NOT-SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values 1299
of slot S1 of F is not equal to the set of values of slot S2 of F. That is, 1300

1301
(=> (:NOT-SAME-VALUES ?S1 ?F ?S2)1302

(not (= (setofall ?V (holds ?S1 ?F ?V))1303
(setofall ?V (holds ?S2 ?F ?V)))))1304

A value (S1 … Sn) for facet :NOT-SAME-VALUES of slot S of frame F means that the set of values of slot S of F is 1305
not equal to the set of values of slot chain (S1 … Sn) of F. That is, 1306

1307
(=> (:NOT-SAME-VALUES ?S ?F (listof @Sn))1308

(not (= (setofall ?V (holds ?S ?F ?V))1309
(setofall ?V (slot-chain-value (listof @Sn) ?F ?V)))))1310

 1311
:SUBSET-OF-VALUES facet 1312
The :SUBSET-OF-VALUES facet specifies that the values of a slot of a frame are a subset of the values of other slots 1313
of that frame or of the values of slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. 1314

8 Note on KIF syntax: listof is a function whose value is a list of its arguments. Names whose first character is "@" are
sequence variables that bind to a sequence of 0 or more entities. For example, the expression (F @X) binds to (F 14 23) and
in general to any list whose first element is F.

©FIPA (1998) FIPA 98 version 1.0 Part 12

33

A value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot 1315
S1 of F is a subset of the set of values of slot S2 of F. That is, 1316

1317
(=> (:SUBSET-OF-VALUES ?S1 ?F ?S2)1318

(subset (setofall ?V (holds ?S1 ?F ?V))1319
(setofall ?V (holds ?S2 ?F ?V))))1320

A value (S1 … Sn) for facet :SUBSET-OF-VALUES of slot S of frame F means that the set of values of slot S of F is a 1321
subset of the set of values of the slot chain (S1 … Sn) of F. That is, 1322

1323
(=> (:SUBSET-OF-VALUES ?S ?F (listof @Sn))1324

(subset (setofall ?V (holds ?S ?F ?V))1325
(setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))1326

 1327
:NUMERIC-MINIMUM facet 1328
The :NUMERIC-MINIMUM facet specifies a lower bound on the values of a slot whose values are numbers. Each value 1329
of the :NUMERIC-MINIMUM facet is a number. This facet is defined as follows: 1330

1331
(=> (:NUMERIC-MINIMUM ?S ?F ?N)1332

(and (:NUMBER ?N)1333
(=> (holds ?S ?F ?V) (>= ?V ?N))))1334

1335
(=> (template-facet-value :NUMERIC-MINIMUM ?S ?F ?N)1336

(and (:NUMBER ?N)1337
(=> (template-slot-value ?S ?F ?V) (>= ?V ?N))))1338

 1339
:NUMERIC-MAXIMUM facet 1340
The :NUMERIC-MAXIMUM facet specifies an upper bound on the values of a slot whose values are numbers. Each 1341
value of this facet is a number. This facet is defined as follows: 1342

1343
(=> (:NUMERIC-MAXIMUM ?S ?F ?N)1344

(and (:NUMBER ?N)1345
(=> (holds ?S ?F ?V) (=< ?V ?N))))1346

1347
(=> (template-facet-value :NUMERIC-MAXIMUM ?S ?F ?N)1348

(and (:NUMBER ?N)1349
(=> (template-slot-value ?S ?F ?V) (=< ?V ?N))))1350

 1351
:SOME-VALUES facet 1352
The :SOME-VALUES facet specifies a subset of the values of a slot of a frame. This facet of a slot of a frame can have 1353
any value that can also be a value of the slot of the frame. A value V for own facet :SOME-VALUES of own slot S of 1354
frame F means that V is also a value of own slot S of F. That is, 1355

1356
(=> (:SOME-VALUES ?S ?F ?V) (holds ?S ?F ?V))1357

 1358
:COLLECTION-TYPE facet 1359
The :COLLECTION-TYPE facet specifies whether multiple values of a slot are to be treated as a set, list, or bag. No 1360
axiomatization is provided for treating multiple values as lists or bags because of the lack of a suitable formal 1361
interpretation for the ordering of values in lists of values that result from multiple inheritance and the multiple occurrence 1362
of values in bags that result from multiple inheritance. 1363

The protocol itself makes no commitment as to how values expressed in collection types other than set are combined 1364
during inheritance. Thus, OKBC guarantees that multiple slot and facet values stored at a frame as a bag or a list are 1365

©FIPA (1998) FIPA 98 version 1.0 Part 12

34

retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a subclass or instance, 1366
no guarantees are provided regarding the ordering of values for lists or the repeating of multiple occurrences of values 1367
for bags. 1368

 1369
:DOCUMENTATION-IN-FRAME facet 1370
:DOCUMENTATION-IN-FRAME is a facet whose values at a slot for a frame are text strings providing documentation for 1371
that slot on that frame. The only requirement on the :DOCUMENTATION facet is that its values be strings. 1372

Slots 1373

 1374
:DOCUMENTATION slot 1375
:DOCUMENTATION is a slot whose values at a frame are text strings providing documentation for that frame. Note that 1376
the documentation describing a class would be values of the own slot :DOCUMENTATION on the class. The only 1377
requirement on the :DOCUMENTATION slot is that its values be strings. That is, 1378

1379
(=> (:DOCUMENTATION ?F ?S) (:STRING ?S))1380

Slots on Slot Frames 1381

The slots described in this section can be associated with frames that represent slots. In general, these slots describe 1382
properties of a slot which hold at any frame that can have a value for the slot. 1383

 1384
:DOMAIN slot 1385
:DOMAIN specifies the domain of the binary relation represented by a slot frame. Each value of the slot :DOMAIN 1386
denotes a class. A slot frame S having a value C for own slot :DOMAIN means that every frame that has a value for 1387
own slot S must be an instance of C, and every frame that has a value for template slot S must be C or a subclass of C. 1388
That is, 1389

1390
(=> (:DOMAIN ?S ?C)1391

(and (:SLOT ?S)1392
(class ?C)1393
(=> (holds ?S ?F ?V) (instance-of ?F ?C))1394
(=> (template-slot-value ?S ?F ?V)1395

(or (= ?F ?C) (subclass-of ?F ?C))))1396
If a slot frame S has a value C for own slot :DOMAIN and I is an instance of C, then I is said to be in the domain of S. 1397

A value for slot :DOMAIN can be a KIF expression of the following form: 1398

1399
<domain-expr> ::= (union <OKBC-class>*) | OKBC-class1400

A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in 1401
Section 2.10.1. 1402

Note that if slot :DOMAIN of a slot frame S has multiple values C1,…,Cn, then the domain of slot S is constrained to be 1403
the intersection of classes C1,…,Cn. Every slot is considered to have :THING as a value of its :DOMAIN slot. That is, 1404

1405
(=> (:SLOT ?S) (:DOMAIN ?S :THING))1406

 1407
:SLOT-VALUE-TYPE slot 1408
:SLOT-VALUE-TYPE specifies the classes of which values of a slot must be an instance (i.e., the range of the binary 1409

©FIPA (1998) FIPA 98 version 1.0 Part 12

35

relation represented by a slot). Each value of the slot :SLOT-VALUE-TYPE denotes a class. A slot frame S having a 1410
value V for own slot :SLOT-VALUE-TYPE means that the own facet :VALUE-TYPE has value V for slot S of any frame 1411
that is in the domain of S. That is, 1412

1413
(=> (:SLOT-VALUE-TYPE ?S ?V)1414

(and (:SLOT ?S)1415
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1416

(:VALUE-TYPE ?S ?F ?V))))1417
As is the case for the :VALUE-TYPE facet, the value for the :SLOT-VALUE-TYPE slot can be a KIF expression of the 1418
following form: 1419

1420
<value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |1421

OKBC-class1422
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in 1423
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of classes 1424
(e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly enumerated set of 1425
values (e.g., either Clyde, Fred, or Robert). 1426

 1427
:SLOT-INVERSE slot 1428
:SLOT-INVERSE specifies inverse relations for a slot. Each value of :SLOT-INVERSE is a slot. A slot frame S having a 1429
value V for own slot :SLOT-INVERSE means that own facet :INVERSE has value V for slot S of any frame that is in the 1430
domain of S. That is, 1431

1432
(=> (:SLOT-INVERSE ?S ?V)1433

(and (:SLOT ?S)1434
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1435

(:INVERSE ?S ?F ?V))))1436
 1437
:SLOT-CARDINALITY slot 1438
:SLOT-CARDINALITY specifies the exact number of values that may be asserted for a slot for entities in the slot's 1439
domain. The value of slot :SLOT-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own slot 1440
:SLOT-CARDINALITY means that own facet :CARDINALITY has value V for slot S of any frame that is in the domain 1441
of S. That is, 1442

1443
(=> (:SLOT-CARDINALITY ?S ?V)1444

(and (:SLOT ?S)1445
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1446

(:CARDINALITY ?S ?F ?V))))1447
 1448
:SLOT-MAXIMUM-CARDINALITY slot 1449
:SLOT-MAXIMUM-CARDINALITY specifies the maximum number of values that may be asserted for a slot for entities 1450
in the slot's domain. The value of slot :SLOT-MAXIMUM-CARDINALITY is a nonnegative integer. A slot frame S having 1451
a value V for own slot :SLOT-MAXIMUM-CARDINALITY means that own facet :MAXIMUM-CARDINALITY has value V 1452
for slot S of any frame that is in the domain of S. That is, 1453

1454
(=> (:SLOT-MAXIMUM-CARDINALITY ?S ?V)1455

(and (:SLOT ?S)1456
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1457

(:MAXIMUM-CARDINALITY ?S ?Csub ?V))))1458
 1459
:SLOT-MINIMUM-CARDINALITY slot 1460

©FIPA (1998) FIPA 98 version 1.0 Part 12

36

:SLOT-MINIMUM-CARDINALITY specifies the minimum number of values for a slot for entities in the slot's domain. 1461
The value of slot :SLOT-MINIMUM-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own 1462
slot :SLOT-MINIMUM-CARDINALITY means that own facet :MINIMUM-CARDINALITY has value V for slot S of any 1463
frame that is in the domain of S. That is, 1464

1465
(=> (:SLOT-MINIMUM-CARDINALITY ?S ?V)1466

(and (:SLOT ?S)1467
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1468

(:MINIMUM-CARDINALITY ?S ?F ?V))))1469
 1470
:SLOT-SAME-VALUES slot 1471
:SLOT-SAME-VALUES specifies that a slot has the same values as either other slots or as slot chains for entities in the 1472
slot's domain. Each value of slot :SLOT-SAME-VALUES is either a slot or a slot chain. A slot frame S having a value V 1473
for own slot :SLOT-SAME-VALUES means that own facet :SAME-VALUES has value V for slot S of any frame that is in 1474
the domain of S. That is, 1475

1476
(=> (:SLOT-SAME-VALUES ?S ?V)1477

(and (:SLOT ?S)1478
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1479

(:SAME-VALUES ?S ?F ?V)))1480
 1481
:SLOT-NOT-SAME-VALUES slot 1482
:SLOT-NOT-SAME-VALUES specifies that a slot does not have the same values as either other slots or as slot chains 1483
for entities in the slot's domain. Each value of slot :SLOT-NOT-SAME-VALUES is either a slot or a slot chain. A slot 1484
frame S having a value V for own slot :SLOT-NOT-SAME-VALUES means that own facet :NOT-SAME-VALUES has 1485
value V for slot S of any frame that is in the domain of S. That is, 1486

1487
(=> (:SLOT-NOT-SAME-VALUES ?S ?V)1488

(and (:SLOT ?S)1489
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1490

(:NOT-SAME-VALUES ?S ?F ?V)))1491
 1492
:SLOT-SUBSET-OF-VALUES slot 1493
:SLOT-SUBSET-OF-VALUES specifies that the values of a slot are a subset of either other slots or of slot chains for 1494
entities in the slot's domain. Each value of slot :SLOT-SUBSET-OF-VALUES is either a slot or a slot chain. A slot frame 1495
S having a value V for own slot :SLOT-SUBSET-OF-VALUES means that own facet :SUBSET-OF-VALUES has value 1496
V for slot S of any frame that is in the domain of S. That is, 1497

1498
(=> (:SLOT-SUBSET-OF-VALUES ?S ?V)1499

(and (:SLOT ?S)1500
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1501

(:SUBSET-OF-VALUES ?S ?F ?V)))1502
 1503
:SLOT-NUMERIC-MINIMUM slot 1504
:SLOT-NUMERIC-MINIMUM specifies a lower bound on the values of a slot for entities in the slot's domain. Each value 1505
of slot :SLOT-NUMERIC-MINIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-1506
MINIMUM means that own facet :NUMERIC-MINIMUM has value V for slot S of any frame that is in the domain of S. 1507
That is, 1508

1509
(=> (:SLOT-NUMERIC-MINIMUM ?S ?V)1510

(and (:SLOT ?S)1511
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1512

©FIPA (1998) FIPA 98 version 1.0 Part 12

37

(:NUMERIC-MINIMUM ?S ?F ?V)))1513
 1514
:SLOT-NUMERIC-MAXIMUM slot 1515
:SLOT-NUMERIC-MAXIMUM specifies an upper bound on the values of a slot for entities in the slot's domain. Each 1516
value of slot :SLOT-NUMERIC-MAXIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-1517
MAXIMUM means that own facet :NUMERIC-MAXIMUM has value V for slot S of any frame that is in the domain of S. 1518
That is, 1519

1520
(=> (:SLOT-NUMERIC-MAXIMUM ?S ?V)1521

(and (:SLOT ?S)1522
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1523

(:NUMERIC-MAXIMUM ?S ?F ?V)))1524
 1525
:SLOT-SOME-VALUES slot 1526
:SLOT-SOME-VALUES specifies a subset of the values of a slot for entities in the slot's domain. Each value of slot 1527
:SLOT-SOME-VALUES of a slot frame must be in the domain of the slot represented by the slot frame. A slot frame S 1528
having a value V for own slot :SLOT-SOME-VALUES means that own facet :SOME-VALUES has value V for slot S of 1529
any frame that is in the domain of S. That is, 1530

1531
(=> (:SLOT-SOME-VALUES ?S ?V)1532

(and (:SLOT ?S)1533
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1534

(:SOME-VALUES ?S ?F ?V)))1535
 1536
:SLOT-COLLECTION-TYPE slot 1537
:SLOT-COLLECTION-TYPE specifies whether multiple values of a slot are to be treated as a set, list, or bag. Slot 1538
:SLOT-COLLECTION-TYPE has one value, which is either set, list or bag. A slot frame S having a value V for own 1539
slot :SLOT-COLLECTION-TYPE means that own facet :COLLECTION-TYPE has value V for slot S of any frame that is 1540
in the domain of S. That is, 1541

1542
(=> (:SLOT-COLLECTION-TYPE ?S ?V)1543

(and (:SLOT ?S)1544
(=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))1545

(:COLLECTION-TYPE ?S ?F ?V)))1546

Bibliography 1547

1 Alexender Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperine Resnick. 1548
CLASSIC: A Structural Data Model for Objects. 1549
In Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, pages 58-67, 1550
Portland, OR, 1989. 1551

2 Michael R. Genesereth and Richard E. Fikes. 1552
Knowledge Interchange Format, Version 3.0 Reference Manual. 1553
Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992. 1554

3 Thomas R. Gruber. 1555
A translation approach to portable ontology specifications. 1556
In R. Mizoguchi, editor, Proceedings of the Second Japanese Knowledge Acquisition for Knowledge-Based 1557
Systems Workshop, Kobe, 1992. 1558
To appear in Knowledge Acquisition, June 1993. 1559

©FIPA (1998) FIPA 98 version 1.0 Part 12

38

4 P.D. Karp. 1560
The Design Space of Frame Knowledge Representation Systems. 1561
Technical Report 520, SRI International Artificial Intelligence Center, 1992. 1562

5 R. MacGregor. 1563
The Evolving Technology of Classification-based Knowledge Representation Systems. 1564
In J. Sowa, editor, Principles of semantic networks, pages 385-400. Morgan Kaufmann Publishers, 1991. 1565

6 Peter F. Patel-Schneider and Bill Swartout. 1566
Description-Logic Knowledge Representation System Specification, from the KRSS Group of the DARPA 1567
Knowledge Sharing Effort. 1568
Technical report, November 1993. 1569

7 Christof Peltason, Albrecht Schmiedel, Carsten Kindermann, and Joachim Quantz. 1570
The BACK System Revisited. 1571
Technical Report KIT - Report 75, Tecnische Universitat Berlin, September 1989. 1572

About this document ... 1573

Open Knowledge Base Connectivity 2.0.49 1574
-- Proposed -- 1575

This document was generated using the LaTeX2HTML translator Version 98.1p1 release (March 2nd, 1998) 1576

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University of Leeds. 1577

The command line arguments were: 1578
latex2html -address For questions regarding OKBC -split 2 km.tex. 1579

The translation was initiated by Vinay K. Chaudhri on 1998-11-24 1580

For questions regarding OKBC 1581

1582

9 The Open Knowledge Base Connectivity protocol is a result of the joint work between the Artificial Intelligence Center of SRI
International and the Knowledge Systems Laboratory of Stanford University. At Stanford University, this work was supported by the
Department of Navy contracts titled Technology for Developing Network-based Information Brokers (Contract Number N66001-96-
C-8622-P00004) and Large-Scale Repositories of Highly Expressive Reusable Knowledge (Contract Number N66001-97-C-8554).
At SRI International, it was supported by a Rome Laboratory contract titled Reusable Tools for Knowledge Base and Ontology
Development (Contract Number F30602-96-C-0332), a DARPA contract entitled Ontology Construction Toolkit, and NIH Grant R29-
LM-05413-01A1.

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html
mailto:okbc@ai.sri.com
mailto:okbc@ai.sri.com

©FIPA (1998) FIPA 98 version 1.0 Part 12

39

6.5.1 Symbols in the FIPA-meta-ontology 1582

The following is the normative list of predicates and constants that compose the Fipa-meta-ontology and that must be 1583
used by a FIPA agent when talking about and manipulating ontologies. It is here reported as a quick reference for the 1584
programmer of this specification. 1585

Note: If readers find this list incomplete they are welcome to send additional symbols for FIPA consideration. 1586

6.5.1.1 List of predicates 1587

Standard predicatesStandard predicatesStandard predicatesStandard predicates Informal descriptionInformal descriptionInformal descriptionInformal description

(<classname> ?class) Is true if and only if ?class is an instance of the class <classname>

(<facetname> ?class ?slot
?value)

Is true if and only if value is the value of the facet <facetname> of the
slot slot of the class class

(<slotname> ?class ?value) Is true if and only if value is the value of the slot <slotname> of the class
class

(CLASS ?X) Is true if and only if its argument X is a class

(FACET ?X) Is true if and only if its argument X is a facet

(FACET-OF ?facet ?slot
?frame)

Is true if and only if the argument facet is a facet of the slot slot of the
frame frame

(FRAME-SENTENCE ?frame
?predicate)

Is true if and only if the predicate ?predicate is asserted within the frame
?frame

(INDIVIDUAL ?X) Is true if and only if its argument X is an individual

(INSTANCE-OF ?I ?C) Predicate expressing the instance relation between an instance I and a class C
it belongs to.

(PRIMITIVE ?x) Is true if and only if its argument X is a primitive class.

(SLOT ?X) Is true if and only if its argument X is a slot

(SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a slot of the frame frame

(SUBCLASS-OF ?Csub ?Csuper) Is true if and only if all instances of the class Csub are also instances of
Csuper

(SUPERCLASS-OF ?Csuper
?Csub)

Is true if and only if all instances of the class Csub are also instances of
Csuper. It is the inverse of the relation SUBCLASS-OF

(TEMPLATE-FACET-OF ?facet
?slot ?frame)

Is true if and only if the argument facet is a template facet of the slot
slot of the frame frame

(TEMPLATE-FACET-VALUE
?facet ?slot ?frame ?value)

Is true if and only if the argument value is the value of the facet facet
of the slot slot of the frame frame

(TEMPLATE-SLOT-OF ?slot
)

Is true if and only if the argument slot is a template slot of the frame

©FIPA (1998) FIPA 98 version 1.0 Part 12

40

?frame) frame

(TEMPLATE-SLOT-VALUE ?slot
?frame ?value)

Is true if and only if the argument value is the value of the slot slot of
the frame frame

(TYPE-OF ?C ?I) Predicate expressing the instance relation between an instance I and a class C
it belongs to. It is the inverse of the relation INSTANCE-OF

6.5.1.2 List of standard classes 1588

:THING

:CLASS

:INDIVIDUAL

:NUMBER

:INTEGER

:STRING

:SYMBOL

:LIST

6.5.1.3 List of standard facets 1589

:VALUE-TYPE

:INVERSE

:CARDINALITY

:MAXIMUM-CARDINALITY

:MINIMUM-CARDINALITY

:SAME-VALUES

:NOT-SAME-VALUES

:SUBSET-OF-VALUES

:NUMERIC-MAXIMUM

:NUMERIC-MINIMUM

:SOME-VALUES

:COLLECTION-TYPE

:DOCUMENTATION-IN-FRAME

©FIPA (1998) FIPA 98 version 1.0 Part 12

41

6.5.1.4 List of standard slots 1590

:DOCUMENTATION

6.5.1.5 List of standard slots on slot frames 1591

:DOMAIN

:SLOT-VALUE-TYPE

:SLOT-INVERSE

:SLOT-CARDINALITY

:SLOT-MAXIMUM-CARDINALITY

:SLOT-MINIMUM-CARDINALITY

:SLOT-SAME-VALUES

:SLOT-NOT-SAME-VALUES

:SLOT-SUBSET-OF-VALUES

:SLOT-NUMERIC-MINIMUM

:SLOT-NUMERIC-MAXIMUM

:SLOT-SOME-VALUES

:SLOT-COLLECTION-TYPE

 1592

6.6 Responsibilities, Actions and Predicates Supported by the Ontology Agent 1593

This section describes responsibilities, actions and predicates supported by the ontology agent. They compose the fipa-1594
ontol-service-ontology, whose symbols are listed in section 6.8. 1595

An action can be REQUESTed or CANCELed using FIPA ACL. 1596

Example: 1597
(request1598

:sender client-agent1599
:receiver ontology-agent1600
:content (action ontology-agent1601

(assert (subclass-of whale mammal)))1602
:language sl21603
:ontology (fipa-ontol-service-ontology animal-ontology)1604
...)1605

In the above example, agent client-agent requests ontology-agent the action of assertion (see below) that 1606
whale is an instance of mammal in an ontology called animal-ontology with language sl2 and ontology fipa-1607
ontol-service-ontology. 1608

Predicates can be INFORMed, CONFIRMed, DISCONFIRMed or QUERY-IF/REF'ed. 1609

©FIPA (1998) FIPA 98 version 1.0 Part 12

42

Example: 1610

(inform1611
:sender ontology-agent1612
:receiver client-agent1613
:content (subclass-of whale mammal)1614
:language sl21615
:ontology (fipa-ontol-service-ontology animal-ontology)1616
...)1617

In the above example ontology-agent informs client-agent that (it believes it is true that) whale is a subclass of 1618
mammal. 1619

For more details about actions and predicates, see FIPA 97 Part 2: Agent Communication Language [2]. 1620

6.6.1 Responsibilities of the Ontology Agent 1621

The ontology agent maintains ontology by defining, modifying or removing terms and definitions contained in the 1622
ontology. It responds to queries about the terms in an ontology or relationship between ontologies. Ontology agent can 1623
provide the translation service of expressions between different ontologies or different content languages by itself, 1624
possibly as a wrapper to an ontology server. The actions and predicates described in this section are used in 1625
conjunction with FIPA ACL to perform these functions. 1626

6.6.2 Assertion 1627

The action ASSERT must be used to request to assert a predicate in an ontology. The syntax of ASSERT action is as 1628
follows: 1629

(ASSERT (predicate))1630

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter of the 1631
ACL message. The effect of asserting a predicate is to add, create or define the said predicate in the ontology 1632
definition. The OA is responsible to respect the consistency of the ontology and it can refuse (using REFUSE 1633
communicative act) to do the action if the result would produce an inconsistent ontology. 1634

All predicates in the Fipa-meta-ontology can be passed as parameter of this action. 1635

6.6.3 Retraction 1636

The action RETRACT must be used to request the OA to retract a predicate in an ontology. The syntax of RETRACT 1637
action is as follows: 1638

(RETRACT (predicate))1639

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter of the 1640
ACL message. The effect of retracting a predicate is to remove, delete or detach the said predicate in the ontology 1641
definition. The OA is responsible to respect consistency of the ontology and it can refuse (using REFUSE 1642
communicative act) to do the action if the result would produce an inconsistent ontology. 1643

All predicates in the Fipa-meta-ontology can be passed as parameter of this action. 1644

6.6.4 Query 1645

This section describes the actions and predicates for querying and identifying the ontologies. Typical queries include 1646
questions about relationship between terms or between ontologies, and identifying a shared sub-ontology for 1647
communication. 1648

©FIPA (1998) FIPA 98 version 1.0 Part 12

43

QUERY-IF standard ACL communicative act is used to query a proposition, which is either true or false. QUERY-REF is 1649
used to ask for identifying referencing expression, which denotes an object. 1650

Note: The reader might ask why the query is not an action, as the previous ones, but a communicative act. It must then be noticed 1651
that the previous actions correspond to an administrative request to actually modify an ontology. In this case, the intention of the 1652
sender agent is instead to query the knowledge base of the Ontology Agent. 1653

All predicates in the Fipa-meta-ontology can be used in the content of these communicative acts. 1654

The :ontology parameter of the ACL message should include both fipa-ontol-service-ontology and the identifier of the 1655
ontology being queried. 1656

Example: the following is a query from client-agent to ontology-agent asking for the reference of instances of a 1657
class citrus: 1658

(query-ref1659
:sender client-agent1660
:receiver ontology-agent1661
:content (iota ?x (instance-of ?x citrus))1662
:language sl1663
:ontology (fipa-ontol-service-ontology fruits-ontology)1664
:reply-with citrus-query1665
...)1666

 1667

The ontology-agent can then reply with the following INFORM message answering that the queried instances of the 1668
class citrus are orange, lemon and grapefruit: 1669

(inform1670
:sender ontology-agent1671
:receiver client-agent1672
:content (= (iota ?x (instance-of ?x citrus))1673

(orange lemon grapefruit))1674
:language sl1675
:ontology (fipa-ontol-service-ontology fruits-ontology)1676
:in-reply-to citrus-query1677
...)1678

6.6.5 Modify 1679

This section describes the action for modifying ontologies. Basically, this kind of action is a combination of querying, 1680
removing and adding predicates about the symbols in the ontology. However, different from doing these actions one by 1681
one, the execution of the sequence of actions must be atomic, that is other actions cannot intervene in the modify action 1682
during the execution of it in order to assure the consistency of the transaction. If at least one of the atomic actions in 1683
the modify action fails, the ontology agent must recover the situation just before the modify action commences. Actions 1684
must be executed in sequence. The sequence of actions is independent from other actions that are running at the 1685
same time on the same ontology agent. Other agents cannot see the interim status of the modify action. 1686

To enable such an action, the following action operator 1687

 (ATOMIC-SEQUENCE action*)1688

is introduced. The semantics of ATOMIC-SEQUENCE is a sequence of actions with guaranteed atomicity, consistency, 1689
independence and durability (ACID property). Some locking mechanism is assumed but the kind of lock is 1690
implementation dependent. 1691

Example: 1692

©FIPA (1998) FIPA 98 version 1.0 Part 12

44

(action OA1693
(atomic-sequence1694

(action OA (assert animal (class mammal)))1695
(action OA (retract animal (subclass-of whale fish)))1696
(action OA (retract animal (class fish)))1697
(action OA (assert animal (subclass-of whale mammal)))))1698

1699
6.6.6 Translation of the Terms and Sentences between Ontologies 1700

TRANSLATE is an action of translating the terms and sentences between translatable ontologies. Before issuing the 1701
translate action, the agent must check whether the ontologies are translatable or not, using the predicate described in 1702
the next section. The following is the syntax of TRANSLATE action: 1703

 (TRANSLATE expression TranslationDescr)1704

where the syntax of TranslationDescr is that defined in section 6.41705

This action has always a result and should be used in a FIPA-request interaction protocol in order to receive the result 1706
of the translation of an expression. 1707

Example: For example, if agent client-agent wants to translate a US-English sentence to Italian, it will use the 1708
following ACL: 1709

(request1710
:sender client-agent1711
:receiver ontology-agent1712
:content (action ontology-agent1713

(translate (temperature today (F 50)1714
(:from us-english-ontology :to italian-ontology)))1715

:ontology fipa-ontol-service-ontology1716
:protocol FIPA-request1717
:language sl21718
:reply-with translation-query-11232341719
...)1720

1721

Ontology-agent will reply with an INFORM:1722

(inform1723
:sender ontology-agent1724
:receiver client-agent1725
:content (= (iota ?i1726

(result (action ontology-agent1727
(translate (temperature today (F 50)))1728

(:from us-english-ontology1729
:to italian-ontology)))1730

?i))1731
(temperatura oggi (C 10)))1732

:ontology fipa-ontology-service1733
:language sl21734
:in-reply-to translation-query-11232341735
...)1736

1737
The following predicate can be used to determine the relationship between source-ontology and destination-ontology: 1738

(ontol-relationship ?source-ontology ?destination-ontology ?level)1739

where ontol-relationship is the predicate described in section 6.3. 1740

©FIPA (1998) FIPA 98 version 1.0 Part 12

45

Example: An agent wishing to know if there exists a translation between two ontologies may use the following 1741
communicative act: 1742

(query-ref1743
:sender Agent11744
:receiver OA1745
:language SL1746
:ontology Fipa-ontol-service-ontology1747
:content (iota ?level (ontol-relationship O1 O2 ?level)))1748

An Ontology Agent that is not able to provide any translation between the two ontologies may answer 1749

(inform1750
:sender OA1751
:receiver Agent11752
:language SL1753
:ontology Fipa-ontol-service-ontology1754
:content nil)1755

6.6.7 Error handling 1756

Not-understood reasons 1757

 The not-understood reasons are not specific to the OA specs. The reader should directly refer to FIPA97 1758
Specifications Part 2. 1759

Failure reasons 1760

 The following failure reasons can be used by the OA in accordance to the FIPA97 Part 1 specification 1761

 UNAUTHORISED1762
UNWILLING-TO-PERFORM1763

Refuse reasons 1764

 The following refuse reasons can be used by the OA to refuse to modify a frame when it is read-only or when it 1765
creates an inconsistency in the ontology. 1766

(READ-ONLY <frame-name>)1767
(INCONSISTENT <frame-name>)1768

Example: 1769

Agent client-agent requests ontology-agent to assert a predicate but it is refused. 1770

(request1771
:sender client-agent1772
:receiver ontology-agent1773
:content (action ontology-agent1774
(assert animal-ontology (instance-of whale fish))))1775

1776
(refuse1777

:sender ontology-agent1778
:receiver client-agent1779
:content ((action ontology-agent1780
(assert animal-ontology (instance-of whale fish)))1781
UNWILLING-TO-PERFORM))1782

 1783

©FIPA (1998) FIPA 98 version 1.0 Part 12

46

Example 2: 1784

Agent client-agent queries ontology-agent the result of asserting a predicate. It is rejected by ontology-1785
agent because of an error. 1786

1787
(query-ref1788

:sender client-agent1789
:receiver ontology-agent1790
:content (iota ?r (result (action ontology-agent1791

(assert animal-ontology1792
(instance-of whale fish)))1793

?r))))1794
 1795

(inform1796
:sender ontology-agent1797
:receiver client-agent1798
:content (= (iota ?r (result (action ontology-agent1799

(assert animal-ontology1800
(instance-of whale fish)))1801

?r))1802
UNWILLING-TO-PERFORM))1803

6.7 Interaction Protocol to agree on a shared ontology 1804

Agents must agree on an ontology in order to communicate. 1805

Consider an agent A that commits to ontology O1 and requests a service provided by agent B. The simplest approach 1806
is for agent A to request the service from agent B, specifying ontology O1. If agent B understands ontology O1, it will 1807
perform the service, otherwise it will answer not-understood. In the latter case the communication cannot be 1808
achieved because the two partners do not share a common understanding of the symbols used in the domain of 1809
discourse. 1810

The most simple alternative to this situation, and probably also the most used, is that an agent, who is searching for a 1811
specific service, queries the DF for agents which provide that specific service and that, in addition, support a specific 1812
ontology. Provided that such an agent exists, the ontology sharing is guaranteed. 1813

A second approach allows agent A to communicate with agent B when the agents share two ontologies with different 1814
names but that are identical or equivalent (see section 6.3). The knowledge about the existing relationships between 1815
two ontologies can be accessed in general from the OA by querying with the ontol-relationship predicate. 1816
Provided that such an identical or equivalent relationship exists, the communication is again guaranteed because of the 1817
sharing of both the vocabulary and the logical axiomatization. As a sub-case of the previous one, if O1 is a sub-ontology 1818
of one of the ontologies known by B, the agent A can still communicate with B, even if the vice-versa is not guaranteed. 1819

Finally, an other approach is when a translation relationship exists between O1 and one of the ontologies to which B 1820
commits. In this case, A can query the DF for an agent who provides such a translation service and it can still 1821
communicate with B by using the translation as a proxy service. 1822

6.8 FIPA-Ontol-service-Ontology 1823

This is the ontology that should be used by agents to request the services of an Ontology Agent. It extends the FIPA-1824
meta-ontology described in section 6.5 by including all the symbols in it plus the following. 1825

All the following keywords are case-insensitive. 1826

©FIPA (1998) FIPA 98 version 1.0 Part 12

47

6.8.1 List of predicates 1827

Standard predicateStandard predicateStandard predicateStandard predicatessss Informal description Informal description Informal description Informal description (see section 6.3 for a detailed description)

(ontol-relationship ?o1 ?o2
?level)

Is true if and only if there is a relationship of type level
between the ontology o1 and the ontology o2. See section
6.3 for a detailed description of this predicate

6.8.2 List of actions 1828

Standard actionsStandard actionsStandard actionsStandard actions Informal description Informal description Informal description Informal description (see section 6.6 for a detailed description)

(assert predicate) Asserts the predicate in the ontology specified by :ontology
parameter

(retract predicate) Retracts the predicate in the ontology specified by
:ontology parameter

(atomic-sequence <action>*) Introduces a transaction-type sequence of actions which is
treated as if to be a single action. It is used to modify an existing
ontology by combining the actions of retraction and assertion, for
example. The mechanism to maintain the consistency inside the
sequence and to protect values from outside the sequence is
dependent on the implementation.

(translate <expression>
<translation-description>)

Translates the expression as specified by the translation-
description. Should be used with FIPA-Request protocol.

6.8.3 List of objects and constant values 1829

Fipa-meta-ontology The :ontology parameter of the ACL message may assume
this constant value to indicate the fipa-meta-ontology

Fipa-ontol-service-ontology The :ontology parameter of the ACL message may assume
this constant value to indicate the fipa-ontol-service-
ontology

Fipa-oa Every OA must register with the DF this constant value for
its :agent-type and its :service-type.

Extension The parameter ?level in the onto-relationship predicate
may assume this value when one ontology extends the other

Identical The parameter ?level in the onto-relationship predicate may
assume this value when two ontologies are identical

Equivalent The parameter ?level in the onto-relationship predicate
may assume this value when two ontologies are equivalent

Strongly-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is strongly-
translatable into another

Weakly-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is weakly-translatable

©FIPA (1998) FIPA 98 version 1.0 Part 12

48

into another

Approx-translatable The parameter ?level in the onto-relationship predicate
may assume this value when one ontology is approximately
translatable into another

:supported-ontologies This object must be registered with the DF as one of
the :fixed-properties of an ontology agent.

:ontology-name This slot contains the name of the ontology

:version This slot contains the version of the ontology

:source-languages This slot contains the source languages in which the ontology is
stored on the server

:domains This slot contains the list of domains for which the ontology can
be used

:ontology-translation-types This object must be registered with the DF as one of
the :fixed-properties to indicate the types of ontology
translations available

:language-translation-types This object must be registered with the DF as one of
the :fixed-properties to indicate the types of language
translations available

:from This slot contains the source ontology of language for a
translation

:to This slot contains the destination ontology of language for a
translation

:level This slot contains the supported level of translation between
ontologies or languages

7 References 1830

[1] FIPA 97 specification, part 1, Agent Management 1831

[2] FIPA 97 specification, part 2, Agent Communication Language 1832

[3] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, James P. Rice, Open Knowledge Base 1833
Connectivity 2.0.4, April 9, 1998. 1834

[4] InfoSlueth: Agent-Based Sematic Intergration of Information in Open and Dynamic Enviroments. R.J.Bayardo Jr., 1835
W.Boher, R.Brice, A.Ciehocki, J.Fowler, A.Helal, V. Kashyap, T.Ksiezyk, G.Martin, M. Nodine, M. Rashid, 1836
M.Ruisnkiewicz, R. Shea, C. Unnikrishnan, A.Unruh, and D. Woelk. http://www.mcc.com/projects/infosleuth 1837

[5] W3C, Resource Description Framework, http://www.w3.org/TR/WD-rdf-syntax/ 1838

[6] M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format, Version 3.0 Reference Manual. Technical Report 1839
Logic-92-1, Computer Science Department, Stanford University, 1992. 1840

1841

©FIPA (1998) FIPA 98 version 1.0 Part 12

49

Annex A 1841

(informative) 1842

Ontologies and Conceptualizations10 1843

Despite its crucial importance for guaranteeing the exchange of content information among agents, the very notion of 1844
ontology is not completely clear yet from a theoretical point of view (although the various definitions proposed in the 1845
literature are slowly converging), and a suitable “reference model” for ontologies needs to be established in order to 1846
exploit them in the FIPA architecture. 1847

The purpose of this section is to present an overview of such a reference model, aimed to clarify the following points: 1848

 The distinction between an ontology and its underlying conceptualization 1849

 The importance of axiomatic ontologies with respect to mere vocabularies 1850

 A characterization of the ontology sharing problem 1851

 The distinctions among the basic kinds of ontology 1852

I. Ontologies vs. conceptualizations 1853

In the philosophical sense, we may refer to an ontology as a particular system of categories accounting for a certain 1854
vision of the world. As such, this system does not depend on a particular language: Aristotle’s ontology is always the 1855
same, independently of the language used to describe it. On the other hand, in its most prevalent use in AI, an ontology 1856
refers to an engineering artifact, constituted by a specific vocabulary used to describe a certain reality, plus a set of 1857
explicit assumptions regarding the intended meaning of the vocabulary words. This set of assumptions has usually the 1858
form of a first-order logical theory, where vocabulary words appear as unary or binary predicate names, respectively 1859
called concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts related by 1860
subsumption relationships; in more sophisticated cases, suitable axioms are added in order to express other 1861
relationships between concepts and to constrain their intended interpretation. 1862

The two readings of “ontology” described above are indeed related to each other, but in order to solve the 1863
terminological impasse we need to choose one of them, inventing a new name for the other: we shall adopt the AI 1864
reading, using the word conceptualization to refer to the philosophical reading. So two ontologies can be different in the 1865
vocabulary used (using English or Italian words, for instance) while sharing the same conceptualization. 1866

With this terminological clarification, an ontology can be defined as a specification of a conceptualization11. The latter 1867
concerns the way an agent structures its perceptions about the world, while the former gives a meaning to the 1868
vocabulary used by the agent to communicate such perceptions. Two agents may share the same conceptualization 1869
while using different vocabularies. For instance, the (usual) conceptualization underlying the English term “apple” is the 1870
same as for the Italian term “mela”, and refers to the intrinsic nature and structure of all possible apples. The two terms 1871

10 This annex is mainly an adaptation of [Guarino 1998].

2While this expression is the same introduced in [Gruber 1995], the notion of “conceptualization” adopted here is not the one
referred to in that paper (taken from [Genesereth and Nilsson 1987]), as discussed below.

©FIPA (1998) FIPA 98 version 1.0 Part 12

50

belong to two different ontologies while sharing the same conceptualization. A clear separation between ontology and 1872
conceptualization becomes essential to address the issues related to ontology sharing, fusion, and translation, which in 1873
general imply multiple languages and multiple world views. 1874

A conceptualization is not concerned with meaning assignments, but just with the formal structure of reality as 1875
perceived and organized by an agent, independently of 1876

 the language used to describe it; 1877

 the actual occurrence of a specific situation. 1878

An ontology, on the other hand, is first of all a vocabulary. However, an ontology consisting only of a vocabulary would 1879
be of very limited use, since its intended meaning would be not explicit. Therefore, besides specifying a vocabulary, an 1880
ontology must specify the intended meaning of such vocabulary, i.e. its underlying conceptualization. In some cases, 1881
the terms used belong to a very specific technical vocabulary, and their meaning is well agreed upon within a 1882
community of human agents. Things are different however in the case of ambiguous terms belonging to everyday 1883
natural language, or when computerized agents need to communicate. 1884

II. A formal account of ontologies and conceptualizations 1885

The notions introduced above require a suitable formalization in order to make clear the relationship between an 1886
ontology, its intended models, and a conceptualization. The latter notion has been defined in a well-known AI textbook 1887
[Genesereth and Nilsson 87] as a structure <D, R>, where D is a domain and R is a set or relevant relations on D. This 1888
definition has been then used by Gruber, who defined an ontology as “a specification of a conceptualization” [Gruber 1889
95]. While maintaining the validity of Gruber’s expression, already introduced above, we shall adopt in this document a 1890
notion of “conceptualization” different from the one introduced by Genesereth and Nilsson, following the proposal made 1891
in [Guarino and Giaretta 95], further revised in [Guarino 98]. 1892

II.1 What is a conceptualization 1893

The problem with Genesereth and Nilsson’s notion of conceptualization is that it refers to ordinary mathematical 1894
relations on D, i.e. extensional relations. These relations reflect a particular state of affairs: for instance, in the blocks 1895
world, they may reflect a particular arrangement of blocks on the table (Fig. 1). We need instead to focus on the 1896
meaning of these relations, independently of a state of affairs: for instance, the meaning of the “above” relation lies in 1897
the way it refers to certain couples of blocks according to their spatial arrangement. We need therefore to speak of 1898
intensional relations: we call them conceptual relations, reserving the simple term “relation” to ordinary mathematical 1899
relations. 1900

 1901

a

b

c e

d a

b

c

e

d

(a) (b)

 1902

Fig. 1. Blocks on a table. (a) A possible arrangement of blocks. (b) A different arrangement. Also a different conceptualization? 1903
(From [Guarino and Giaretta 1995]) 1904

©FIPA (1998) FIPA 98 version 1.0 Part 12

51

 1905
While ordinary relations are defined on a certain domain, conceptual relations are defined on a domain space. We shall 1906
define a domain space as a structure <D, W>, where D is a domain and W is the set of all relevant states of affairs of 1907
such domain (which we shall also call possible worlds). For instance, D may be a set of blocks on a table and W can be 1908
the set of all possible spatial arrangements of these blocks. Given a domain space <D, W>, we define a conceptual 1909

relation
n
 of arity n on <D, W> as a total function

n
: W 2D

n
 from W into the set of all n-ary (ordinary) relations on D. 1910

For a generic conceptual relation , the set E = { (w) | w W} will contain the admittable extensions of . A 1911
conceptualization for D can be now defined as a tuple C = <D, W, >, where is a set of conceptual relations on <D, 1912
W>12. We can say therefore that a conceptualization is a set of conceptual relations defined on a domain space. 1913

Consider now the structure <D, R> introduced by Genesereth and Nilsson. Since it refers to a particular world (or state 1914
of affairs), we shall call it a world structure. It is easy to see that a conceptualization defines many of such world 1915
structures, one for each world: they shall be called the intended world structures according to such conceptualization. 1916
Let C = <D, W, > be a conceptualization. For each possible world w W, the corresponding world structure according 1917
to C is the structure SwC = <D, RwC>, where RwC ={ (w) | } is the set of extensions (relative to w) of the elements of . 1918
We shall denote with SC the set {SwC | w W} all the intended world structures of C. 1919

Let us consider now a logical language L, with vocabulary V. Rearranging the standard definition, we can define a 1920
model for L as a structure <S, I>, where S = <D, R> is a world structure and I: V D R is an interpretation function 1921
assigning elements of D to constant symbols of V, and elements of R to predicate symbols of V. As well known, a 1922
model fixes therefore a particular extensional interpretation of the language. Analogously, we can fix an intensional 1923
interpretation by means of a structure <C, >, where C = <D, W, > is a conceptualization and : V D is a function 1924
assigning elements of D to constant symbols of V, and elements of to predicate symbols of V. We shall call this 1925
intensional interpretation an ontological commitment for L. If K = <C, > is a an ontological commitment for L, we say 1926
that L commits to C by means of K, while C is the underlying conceptualization of K13. 1927

Given a language L with vocabulary V, and an ontological commitment K = <C, > for L, a model <S, I> will be 1928
compatible with K if: i) S SC; ii) for each constant c, I(c) = (c); iii) for each predicate symbol p, I maps such a 1929
predicate into an admittable extension of (p), i.e. there exist a conceptual relation and a world w such that (p) = 1930
 (w) = I(p). The set IK(L) of all models of L that are compatible with K will be called the set of intended models of L 1931
according to K. 1932

In general, there will be no way to reconstruct the ontological commitment of a language from a set of its intended 1933
models, since a model does not necessarily reflect a particular world: in fact, since the relevant relations considered 1934
may not be enough to completely characterize a state of affairs, a model may actually describe a situation common to 1935
many states of affairs. This means that it is impossible to reconstruct the correspondence between worlds and 1936
extensional relations established by the underlying conceptualization. A set of intended models is therefore only a weak 1937
characterization of a conceptualization: it just excludes some absurd interpretations, without really describing the 1938
“meaning” of the vocabulary. 1939

II.2 What is an ontology 1940

We can now clarify the role of an ontology, considered as a set of logical axioms designed to account for the intended 1941
meaning of a vocabulary. Given a language L with ontological commitment K, an ontology for L is a set of axioms 1942

12 In the following, symbols denoting structures and sets of sets appear in boldface.

13 The expression “ontological commitment” has been sometimes used to denote the result of the commitment itself, i.e., in our
terminology, the underlying conceptualization.

©FIPA (1998) FIPA 98 version 1.0 Part 12

52

designed in a way such that the set of its models approximates as best as possible the set of intended models of L 1943
according to K (Fig. 2). In general, it is neither easy nor convenient to find an optimal set of axioms, so that an ontology 1944
will admit other models besides the intended ones. Therefore, an ontology can “specify” a conceptualization only in a 1945
very indirect way, since i) it can only approximate a set of intended models; ii) such a set of intended models is only a 1946
weak characterization of a conceptualization. We shall say that an ontology O for a language L approximates a 1947
conceptualization C if there exists an ontological commitment K = <C, > such that the intended models of L according 1948
to K are included in the models of O. An ontology commits to C if i) it has been designed with the purpose of 1949
characterizing C, and ii) it approximates C. A language L commits to an ontology O if it commits to some 1950
conceptualization C such that O agrees on C. With these clarifications, we come up to the following definition, which 1951
refines Gruber’s definition by making clear the difference between an ontology and a conceptualization: 1952

From a logical point of view, an ontology is a logical theory accounting for the intended meaning of a formal 1953

vocabulary14, i.e. its ontological commitment to a particular conceptualization of the world. The intended models of 1954
a logical language using such a vocabulary are constrained by its ontological commitment. An ontology indirectly 1955
reflects this commitment (and the underlying conceptualization) by approximating such intended models. 1956

 1957
The relationships between vocabulary, conceptualization, ontological commitment and ontology are illustrated in Fig. 2. 1958

Intended models IK(L)

Language L

Conceptualization C

Models M(L)

commitment K = <C, >

Ontology

 1959

Fig. 2. The intended models of a logical language reflect its commitment to a conceptualization. An ontology indirectly reflects this 1960
commitment (and the underlying conceptualization) by approximating this set of intended models. [From Guarino 98] 1961

14 Not necessarily this formal vocabulary will be part of a logical language: for example, it may be a protocol of communication
between agents.

©FIPA (1998) FIPA 98 version 1.0 Part 12

53

III. The Ontology Integration Problem 1962

Information integration is a major application area for ontologies. As well known, even if two agents adopt the same 1963
vocabulary, there is no guarantee that they can agree on a certain information unless they commit to the same 1964
conceptualization. Assuming that each agent has its own conceptualization, a necessary condition in order to make an 1965
agreement possible is that the intended models of both conceptualizations overlap (Fig. 3). 1966

M(L)

IA(L)

IB(L)

 1967

Fig. 3. Two agents A and B using the same language L can communicate only if the set of intended models IA(L) and IB(L) 1968
associated to their conceptualizations overlap. [From Guarino 98] 1969

Supposing now that these two sets of intended models are approximated by two different ontologies, it may be the case 1970
that the latter overlap (i.e., they have some models in common) while their intended models do not (Fig. 4). This means 1971
that a bottom-up approach to systems integration based on the integration of multiple local ontologies may not work, 1972
especially if the local ontologies are only focused on the conceptual relations relevant to a specific context, and 1973
therefore they are only weak and ad hoc approximations of the intended models. Hence, it seems more convenient to 1974
agree on a single top-level ontology rather than relying on agreements based on the intersection of different ontologies. 1975

M(L)

IA(L)

IB(L)

 1976

Fig. 4. The sets of models of two different axiomatizations, corresponding to different ontologies, may intersect while the sets of 1977
intended models do not. [From Guarino 98] 1978

IV. Basic kinds of ontologies 1979

We can classify ontologies along several dimensions: 1980

©FIPA (1998) FIPA 98 version 1.0 Part 12

54

- their degree of dependence on a particular task or domain 1981

- the level of detail of their axiomatization 1982

- the nature of their domain (either “object-level” or “meta-level”) 1983

IV.1 From top-level to application-level 1984

The first dimensions suggest the distinctions illustrated in Fig. 5 below. 1985

top-level ontology

domain ontology task ontology

application ontology

 1986

Fig. 5. Kinds of ontologies, according to their level of dependence on a particular task or point of view. Thick arrows represent 1987
specialization relationships. From [Guarino 98]. 1988

 1989

 Top-level ontologies describe very general concepts like space, time, matter, object, event, action, etc., which are 1990
independent of a particular problem or domain: it seems therefore reasonable, at least in theory, to have unified top-1991
level ontologies for large communities of users. The development of a general enough top-level ontology is a very 1992
serious task, which hasn’t been satisfactory accomplished yet (see the efforts of the ANSI X3T2 Ad Hoc Group on 1993
Ontology). However, the adoption of a single agreed-upon top level seems to be preferable to a “bottom-up” 1994
approach based on the integration of more specific ontologies, mainly for the reasons discussed in the section III. 1995
The Ontology Integration Problem”. 1996

 Domain ontologies and task ontologies describe, respectively, the vocabulary related to a generic domain (like 1997
medicine, or automobiles) or a generic task or activity (like diagnosing or selling), by specializing the terms 1998
introduced in the top-level ontology. 1999

 Application ontologies describe concepts depending both on a particular domain and task, which are often 2000
specializations of both the related ontologies. These concepts often correspond to roles played by domain entities 2001
while performing a certain activity, like replaceable unit or spare component.. 2002

It may be important to make clear the difference between an application ontology and a knowledge base. The answer is 2003
related to the purpose of an ontology, which is a particular knowledge base, describing facts assumed to be always true 2004
by a community of users, in virtue of the agreed-upon meaning of the vocabulary used. A generic knowledge base, 2005
instead, may also describe facts and assertions related to a particular state of affairs or a particular epistemic state. 2006
Within a generic knowledge base, we can distinguish therefore two components: the ontology (containing state-2007
independent information) and the “core” knowledge base (containing state-dependent information). 2008

©FIPA (1998) FIPA 98 version 1.0 Part 12

55

IV.2 Shareable Ontologies and Reference Ontologies 2009

Another important classification dimension for ontologies is their level of detail, i.e., in other terms, the degree of 2010
characterization of the intended models. A fine-grained ontology very rich of axioms, written in a very expressive 2011
language like full first order logic, gets closer to specifying the intended meaning of a vocabulary (and therefore it may 2012
be used to establish consensus about sharing that vocabulary, or a knowledge base which uses that vocabulary), but it 2013
usually hard to develop and hard to reason on. A coarse ontology, on the other hand, may consist of a minimal set of 2014
axioms written in a language of minimal expressivity, to support only a limited set of specific services, intended to be 2015
shared among users which already agree on the underlying conceptualization. We can distinguish therefore between 2016
detailed reference ontologies and coarse shareable ontologies, or maybe between off-line and on-line ontologies: the 2017
former are only accessed from time to time for reference purposes, while the latter support core system’s functionalities. 2018

IV.3 Meta-level Ontologies 2019

A further, separate kind of ontology is constituted by what have been called representation ontologies [Van Heijst et al. 2020
1997] They are in fact meta-level ontologies, describing a classification of the primitives used by a knowledge 2021
representation language (like concepts, attributes, relations...). An example of a representation ontology is the OKBC 2022
ontology, used to support translations within different knowledge representation languages. A further example is the 2023
ontology of meta-level primitives presented in [Guarino et al. 94], which differs from the OKBC Ontology in assuming a 2024
non-neutral ontological commitment for the representation primitives. 2025

V. References 2026

Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundation of Artificial Intelligence. Morgan Kaufmann, Los Altos, 2027
California. 2028

Gruber, T. R. 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human 2029
and Computer Studies, 43(5/6): 907-928. 2030

Guarino, N. 1998. Formal Ontology in Information Systems. In N. Guarino (ed.) Formal Ontology in Information Systems. 2031
Proceedings of FOIS'98, Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam: 3-15. 2032

Guarino, N., Carrara, M., and Giaretta, P. 1994. An Ontology of Meta-Level Categories. In D. J., E. Sandewall and P. Torasso 2033
(eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR94). 2034
Morgan Kaufmann, San Mateo, CA: 270-280. 2035

Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge Bases: Towards a Terminological Clarification. In N. Mars (ed.) 2036
Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing 1995. IOS Press, Amsterdam: 25-32. 2037

Van Heijst, G., Schreiber, A. T., and Wielinga, B. J. 1997. Using Explicit Ontologies in KBS Development. International Journal 2038
of Human and Computer Studies, 46: 183-292. 2039

 2040

2041

©FIPA (1998) FIPA 98 version 1.0 Part 12

56

Annex B 2041

(informative) 2042

 2043

Guidelines to define a New Ontology 15 2044

I. Set of principles useful in the development of ontologies 2045

 Clarity and objectivity: The ontology should provide a glossary of the vocabulary used in providing objective 2046
definitions and precise meaning in natural language form. 2047

 Completeness: A definition expressed by a necessary and sufficient condition is preferred over a partial definition. 2048

 Coherence: It should permit inferences that are consistent with the definitions. 2049

 Maximal monotonic extendibility: New general or specialised terms should be included in the ontology in such a 2050
way that does not require the revision of the existing definitions. 2051

 Minimal ontological commitment: It should make as few axioms as possible about the world being modeled. 2052

 Ontological Distinction Principle: Classes carrying different identity criteria should be disjoint. This principle is 2053
discussed in more detail in [Guarino 98]. 2054

II. Ontology development process 2055

The ontology development process refers to the tasks you carry out when building ontologies. Adapting the IEEE 2056
software development process to ontology development process, the tasks identified are classified into three categories 2057
as shown in Figure 1. 2058

Project-Management

Activities

 Development-Oriented

Activities

 Integral

Activities

 Pre-development

Planning Specify Acquire Knowledge

Control Development Evaluate

15 The annex is mainly a slight adaptation of the reference [1].

©FIPA (1998) FIPA 98 version 1.0 Part 12

57

 Conceptualize

Quality Assurance Formalize Document

 Integrate

 Implement Configuration
Management

 Post-development

 Maintenance

Figure 1 Ontology development process (proposition from [1]) 2059

II.1 Project Management Activities 2060

Their main aim is to assure a well-running ontology. These tasks are usual in the classical software development 2061
process. They are simply briefly reminded. 2062

 Planning: It is the ordered list of the tasks to be done, represented for example by Gantt diagrams. They also 2063
provide information on the resources allocated to the different tasks (i.e. human, budget, software tools, hardware 2064
platform). 2065

 Control: Its goal is to guarantee that the planned tasks are done in the way they were intended to be performed. 2066
This should prevent typically from delays, errors and omission. 2067

 Quality assurance: It assures that each delivery of tasks is compliant to a given quality standard. 2068

II.2 Development Activities 2069

The following tasks describe the practical skills, techniques and methods used to develop an ontology. 2070

 Specify: The scope of the ontology under consideration must be defined, its goal, its foreseen usage and end-users’ 2071
needs. The degree of formality of the writing of this requirement specification may vary, from informal text to more 2072
structured framework (e.g. set of competence questions). 2073

 Conceptualize: Its goal is to build a conceptual model that describes the problem and its solution. 2074

 Formalize: This activity transforms the conceptual model into a formal model that is semi-computable. Conceptual 2075
graphs, frame-oriented or description logic representations could be used to formalize the ontology. 2076

 Integrate: Ontologies are built to be reused. Accordingly, duplication of work in building ontologies has even less 2077
sense than in the traditional object-oriented software development. So, reuse of existing ontologies is encouraged. 2078
Nevertheless, a general method to integrate ontologically heterogeneous taxonomic knowledge is not known. This 2079
specification allows the assertion of some relationships between ontologies, as described in section 6.3. 2080

 Implement: Codification of the ontology in a formal language. For a reference framework for selecting target 2081
languages see [7]. 2082

 Maintain: Additions and modifications of an ontology should be possible. 2083

II.3 Integral Activities 2084

©FIPA (1998) FIPA 98 version 1.0 Part 12

58

These activities are prominent tasks, since all the development-oriented tasks are fully dependent on the quality 2085
achieved during these tasks. The interaction between development-oriented and integral activities will be explicated in 2086
the life cycle of the ontology (below). 2087

 Acquire knowledge: Elicitation of knowledge will be done via KBSs knowledge elicitation techniques [8]. As a 2088
result, the list of the sources of knowledge and the rough description of the techniques used in the elicitation process 2089
will be available. 2090

 Evaluate: Before publishing an ontology, make a technical judgement with respect to a framework of reference. See 2091
[9] [10]. 2092

 Document: To allow reuse and sharing of ontologies, a well written documentation is absolutely needed. 2093

 Configuration management: It is the task of keeping records of each release issued during the development of the 2094
ontology. This is a classical task in software development. 2095

II.4 Ontology Life Cycle 2096

This indicates the order and depth in which activities and tasks should be performed. So, the life cycle will exhibit the 2097
different states of the developed ontology: i.e. specification, conceptualization, formalization, integration, implementation 2098
and maintenance. Excepting the integration phase which is stressed here to be placed before the implementation for 2099
the purpose of reuse of already available ontologies, the life cycle resembles the life cycle of traditional software 2100
development. 2101

III. Methodology to build ontologies 2102

In general, methodologies give you a set of guidelines of how you should carry out the activities identified in the 2103
development process, what kinds of techniques are the most appropriate in each activity and what is produced at the 2104
end of each activity. 2105

One such methodology is given here as an example. 2106

III.1 Specification 2107

The goal of the specification is to produce either an informal, semi-formal or formal ontology specification document 2108
written in natural language. The following information should at least be included: 2109

1. Purpose of the ontology: its intended uses (e.g., teaching, manufacturing, arts, ...), end-users (e.g., actor and roles) 2110
and use case scenarios (e.g., teacher, unit production manager, researcher, ...). That is the clearly defined domain 2111
of application. 2112

2. Degree of formality used to codify the ontology. This ranges from informal natural language to a rigorous formal 2113
language. 2114

3. Scope of the ontology: the detailed summary of its content. 2115

The formality of the ontology specification document varies depending on whether a natural language, competency 2116
questions or a middle-out approach is used. 2117

For example in a middle-out approach, you can use a glossary of terms to define an initial set of primitive concepts and 2118
using these concepts to define new ones. It is also advisable to group concepts in concepts classification trees. The 2119
use of these intermediate representations will allow not only the verification, at the earliest stage, of relevant terms 2120
missed and their inclusion in the specification document, but also the removal of terms that are synonyms and irrelevant 2121
in the ontology. The goal of these checks is to guarantee the conciseness and completeness of the ontology 2122

©FIPA (1998) FIPA 98 version 1.0 Part 12

59

specification document. The middle-out approach, as opposed to the classical bottom-up or top-down approaches, 2123
allows to identify some primary concepts of the ontology, in a first stage. Then, it allows to specialize or generalize 2124
when needed. As a result, the terms in use are more stable, and so less re-work and overall effort are required. 2125

As mentioned by some authors, and in fact already used in traditional software development at the analysis phase, the 2126
use of motivating scenarios (use cases), that present the problem as a story of problems or examples and a set of 2127
intuitive solutions, are very useful. Those scenarios could consist of a set of informal competency questions that are the 2128
questions that an ontology must be able to answer in natural language. Then, the set of informal competency questions 2129
are translated into a formal set of competency questions using first-order logic (or higher). This formal set is also used 2130
to evaluate the extensions of the ontology. 2131

Figure 2 shows a short example of such specification document in the domain of chemicals 2132

Ontology Requirements Specification Document

Domain: Chemicals

Date:May, 15th 1996

Conceptualized-by: Chemical Products Association

Implemented-by: Software House Gmbh

Purpose:

Ontology about chemical substances to be used when information about chemical elements is required
in teaching, manufacturing and analysis. This ontology could be used to ascertain, e.g. the atomic
weight of the element Sodium.

Level of Formality: Semi-formal

Scope:

List of 103 elements of substances: Lithium, Sodium, Chlorine, ...

List of concepts: Halogens, noble-gases, semi-metal, metal,

List of properties and their values: atomic-number, atomic-weight, atomic-volume-at-20°C, ...

Sources of Knowledge:

Handbook of chemistry and Physics. 65th edition. CRC-Press Inc., 1984-1985.

Figure 2: Ontology requirements specification (from [1]) 2133

As an ontology specification document cannot be tested for overall completeness, someone may find new relevant term 2134
to be included at any time and anywhere. A good ontology specification document must have the following properties: 2135

 Conciseness: each and every term is relevant, and there are no duplicated or irrelevant terms. 2136

 Partial completeness: coverage of the terms. 2137

 Realism: meanings of the terms and relationships making sense in the domain. 2138

©FIPA (1998) FIPA 98 version 1.0 Part 12

60

III.2 Knowledge acquisition 2139

Knowledge acquisition is an independent phase in the ontology development process. However, it is coincident with 2140
other phases. Most of the acquisition is done simultaneously with the requirements specifications phase, and decreases 2141
as the ontology development process moves forward. 2142

Experts, books, handbooks, figures, tables and even other ontologies are sources of knowledge from which the 2143
knowledge can be elicited and acquired, used in conjunction with techniques such as: brainstorming, interviews, 2144
questionnaires, formal and informal texts analysis, knowledge acquisition tools, etc. ... For example, if you have no clear 2145
idea of the purpose of your ontology, the brainstorming technique, informal interviews with experts, and examination of 2146
similar ontologies will allow you to elaborate a preliminary glossary with terms that are potentially relevant. To refine the 2147
list of terms and their meanings, formal and informal texts analysis techniques on books and handbooks combined with 2148
structures and non-structured interviews with experts might help you to build concepts classification trees and to 2149
compare them with figures given in books. 2150

III.3 Ontology and Natural Language16 2151

One promising approach for establishing an ontology and acquire knowledge is to incorporate results from disciplines 2152
like linguistics. Researchers in terminology for example are interested in organizing domains from a conceptual point of 2153
view from the analysis of terms used to name concepts in texts. On the other hand, an ontology is based on the 2154
definition of a structured and formalized set of concepts, and a great part of it comes from text analysis, such as 2155
transcript of interviews, and technical documentation. In such cases, the theory of a domain can only be found by 2156
reaching concepts from terms. 2157

For several years, some researchers in terminology have identified a parallel between terminology as a practical 2158
discipline and artificial intelligence, in particular knowledge engineering. From a knowledge engineering point of view, 2159
we notice two trends. One trend is to propose to elicit knowledge by using automatic processing tools, widely used in 2160
linguistics. Another one is to establish a synergy between research works in artificial intelligence and in linguistics, by 2161
means of terminology. An overview of these developments is given below. 2162

Natural language processing tools may help to support modeling from texts in two ways. First, they can help to find the 2163
terms of a domain [Bou94], [BGG96] [OFR96]. Existing terminologies or thesauri may be reused and increased or new 2164
ones may be created. Second, they can help to structure a terminological base by identifying relations between 2165
concepts [Jou95] [JME95] [Gar97]. 2166

Three steps are necessary to find the terms of a domain. At the beginning, nominal groups are isolated from a corpus 2167
considered as being representative of the studied domain. Then, those that can't be chosen as terms because of 2168
morphological or semantic characteristics are eliminated. Finally, the nominal sequences that will be retained as terms 2169
are chosen. Usually, this last step requires a human expertise. 2170

Identifying relations between concepts is composed of three steps too. The first one identifies the co-occurrences of 2171
terms. Two terms are co-occurrent if they both appear in a given text window which may be defined in several ways: a 2172
number of words, a documentary segmentation (entire document, section), a syntactic cutting of sentences, ... The 2173
second step computes a similarity between terms with respect to contexts they share. Then, the third step can 2174
determine the terms that are semantically related. In most cases, identified relations are the following: semantic 2175
proximity, meronimy, causal or more specific relations. 2176

Some researchers have focussed on trying to benefit from approaches from both linguistics and knowledge 2177
engineering. They have studied mutual contributions, and their work has led them to elaborate the concept of 2178
Terminological Knowledge Base (TKB). This concept was first defined by Ingrid Meyer [SMe91] [MSB+92]. 2179

16 Contribution from Univ. d’Orsay, Paris Sud, LRI (Chantal Reynaud)

©FIPA (1998) FIPA 98 version 1.0 Part 12

61

Building a TKB is seen as an intermediate model that helps toward the construction of a formal ontology. A TKB is a 2180
computer structure that contains conceptual data, represented in a network of domain concepts, but also linguistic data 2181
on the terms used to name the concepts. Thus a TKB contains three levels of entities: term, concept and text. It is 2182
structured by using three kinds of links. Relations between term and concept allow synonymy and paronimy to be 2183
considered. Relations between concepts compose the network of domain concepts. Relations between term and/or 2184
concept and text allow normalization choices to be justified or knowledge base to be documented. A TKB is interesting 2185
to build a KBS, especially because it gathers some linguistic information on terms used to name concepts on. This can 2186
enhance communication between experts, knowledge engineers and end-users, or be a great help for the knowledge 2187
engineer to choose the names of the concepts in the system. Nevertheless, if most researchers agree with its structure, 2188
problems still remain today about genericity and also about the construction and the exploitation of the corpus, which is 2189
very important in the construction of the TKB because it is the reference from which modeling choices will be justified. 2190
Current research continues in these directions. 2191

IV. References 2192

[1] Assuncion Gomez-Pérez, « Knowledge Sharing and Reuse », Laboratorio de Intelligencia Artificial, Facultad de 2193
informatica, Universidad Politécnica de Madrid. 2194

[2] Guarino Nicola, « Understanding, building and using ontologies », International Journal of Human Computer Studies, 2195
Incorporating Knowledge Acquisition, Vol. 46, Number 2/3, February/March 1997. 2196

Guarino, N. 1998. Some Ontological Principles for Designing Upper Level Lexical Resources. In 2197
Proceedings of First International Conference on Language Resources and Evaluation. Granada, Spain, 2198
ELRA - European Language Resources Association: 527-534. 2199

[3] Natalya Fridman Noy, Carole D. Hafner, « The State of the Art in Ontology Design: A survey and Comparative 2200
Review », College of Computer Science, Northeastern University, Boston, MA 02115. 2201

[4] Gruber T. « Toward Principles for the design of Ontologies used for Knowledge Sharing. Technical report KSL-93-2202
04. Knowledge Systems Laboratory, Stanford University, CA. 1993. 2203

[5] Borgo S., Guarino N., Masolo C., « Stratified Ontologies: The case of Physical Objetcs. Workshop on Ontological 2204
Engineering, ECAI’96. Budapest, Hungary, pp: 17-28. 2205

[6] Farquar A., Fikes R., Pratt W., Rice J., « Collaborative Ontology Construction for Information Integration », Technical 2206
Report KSL-95-10. Knowledge Systems Laboratory, Stanford University, CA. 1995. 2207

[7] Speel et al. « Scalability of the performance of Knowledge Representation Systems ». Towards very large 2208
knowledge bases, N. Mars editor, IOS Press, Amsterdam 1995, pp. 173-184. 2209

[8] Uschold M., Grüninger M., « Ontologies: Principles, Methods and Aplications », Knowledge Engineering review, Vol. 2210
11, N° 2, June 1996. 2211

[9] Gomez-Pérez A, « A framework to verify knowledge sharing technology », Expert systems with application, Vol. 11, 2212
N° 4, 1996, pp. 519-529. 2213

[10] Gomez-Pérez A., « From Knowledge based systems to knowledge sharing technology : Evaluation and 2214
Assessment ». Technical Report KSL-94-73. Knowledge Systems Laboratory, Stanford University, CA. 1994. 2215

[11] Borst P. and Akkermans H. « Engineering ontologies », Special issue : Using explicit ontologies in knowledge-2216
based system development, HCS, Vol. 46, Number 2/3, February/March 1997, pp. 365-406. 2217

©FIPA (1998) FIPA 98 version 1.0 Part 12

62

Natural Language based Knowledge acquisition references 2218

[BCo95] Bourigault D., Condamines A., "Réflexions autour du concept de base de connaissances Terminologiques", 2219
Dans les actes des journées nationales du PRC-IA, Nancy, 1995. 2220

[Bou94] Bourigault D., "LEXTER, un logiciel d'extraction de terminologie. Application ˆ l'acquisition des connaissances ˆ 2221
partir de textes", Thèse de l'Ecole des Hautes Etudes en Sciences Sociales (Paris). 2222

[BGG96] Bourigault D., Gonzalez-Mullier I., Gros C., "LEXTER, a natural Language Processing Tool for Terminology 2223
Extraction", actes de EURALEX'96 (Gšteborg). 2224

[Gar97] GARCIA D., "COATIS, an NLP System to Locate Expressions of Ations Connected by Causality Links", in Proc. 2225
10th European Workshop, EKAW'97, San Feliu de Guixols, Catalonia, Spain, October 97, LNAI 1319, pp. 347-352, 2226
1997. 2227

[Jou95] Jouis Ch., "SEEK, un logiciel d'acquisition des connaissances utilisant un savoir linguistique sans employer de 2228
connaissances sur le monde externe", Actes des 6èmes Journées Acquisition et Validation (JAVA'95), Grenoble, pp. 2229
159-172, 1995. 2230

[JME95] Jouis Ch., Mustafa-Elhadi W., "Conceptual Modeling of database Schema using linguitic knowledge. 2231
Application to terminological Knowledge bases", First Workshop on Application of Natural language to Databases 2232
(NLDB'95), Versailles, Juin 95, pp. 103-118, 1995. 2233

[MSB+92] Meyer I., Skuce D., Bowker L., Eck K., "Toward a new generation of terminological resources: an experiment 2234
in building a terminological knowledge base. In Proc. 14th International Conference on Computational Linguistics. 2235
Nantes. pp. 956-960, 1992. 2236

[OFR96] Oueslati R., Frath P., Rousselot F., "Term identification and Knowledge Extraction", International Conference 2237
on Applied Natural Language and Artificial Intelligence. Montreal. Juin 96 2238

[SMe91] Skuce D., Meyer I., Terminology and knowledge acquisition: exploring a symbiotic relationship. In Proc. 6th 2239
Knowledge Acquisition for Knowledge-Based System Workshop, Banff, pp. 29/1-29/21. 2240

[HA98] Houssem Assadi, Construction of a regional ontology from text and its use within a documentary system, 2241
FOIS’98, pp. 236-249, Trento, June 98. 2242

	Scope
	Normative reference(s)
	Terms and definitions
	Symbols (and abbreviated terms)
	Rationale for having explicit ontologies
	Possible benefits for applications
	Some sample scenarios illustrating offered features
	Scenario 1 – Querying the OA for definition of terms
	Scenario 2 – selecting a shared ontology
	Scenario 3 – testing equivalence
	Scenario 4 – finding ontologies
	Scenario 5 - translation of terms

	Specification of the Ontology Service
	Reference Model
	Services provided by the Ontology Agent

	Naming and referring Ontologies
	Relationships between Ontologies
	Level = extension
	Level = identical
	Level = equivalent
	Level = weakly-translatable
	Level = strongly-translatable
	Level = approx-translatable
	General properties

	Registration of the Ontology Agent with the DF
	Querying the DF

	FIPA Knowledge Model and FIPA meta-ontology
	Symbols in the FIPA-meta-ontology
	List of predicates

	Responsibilities, Actions and Predicates Supported by the Ontology Agent
	Responsibilities of the Ontology Agent
	Assertion
	Retraction
	Query
	Modify
	Translation of the Terms and Sentences between Ontologies
	Error handling

	Interaction Protocol to agree on a shared ontology
	FIPA-Ontol-service-Ontology
	List of predicates
	List of actions
	List of objects and constant values

	References

