

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA CCL Content Language Specification

Document title FIPA CCL Content Language Specification
Document number XC00009A Document source FIPA TC C
Document status Experimental Date of this status 2000/08/22
Supersedes None
Contact fab@fipa.org
Change history
2000/08/22 Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Scope... 1
1.1 Semantic Underpinnings .. 1
1.2 Constraint Satisfaction Problem Definitions.. 1

1.2.1 Standard Definition of Constraint Satisfaction Problems ... 1
1.2.2 Expressing Choices and Choice Problems.. 2
1.2.3 Constraint Satisfaction Problem Model Used in FIPA Constraint Choice Language 2

1.3 Language Properties.. 3
1.3.1 Search Termination and Complexity ... 3

2 FIPA Constraint Choice Language Ontology ... 4
2.1 Object Descriptions ... 4

2.1.1 Choice Problem.. 4
2.1.2 Solution... 4
2.1.3 Solution List... 5
2.1.4 Identifier... 5
2.1.5 Range ... 6
2.1.6 Value .. 6
2.1.7 Value List .. 6
2.1.8 Variable... 7
2.1.9 Variable Assignments... 7
2.1.10 Variable Name ... 7
2.1.11 Exclusion .. 8
2.1.12 Relation... 8
2.1.13 Domain Range ... 9
2.1.14 Domain Role Term.. 9
2.1.15 Domain Term ... 9
2.1.16 Domain Variable Type..10
2.1.17 Symbol...10
2.1.18 Index Pair ...10

2.2 Function Descriptions ...10
2.2.1 Give Constraints for Information Gathering..11
2.2.2 Give Values for Information Gathering ..11
2.2.3 Solving to Generate Solutions ...13
2.2.4 Solving to Generate a List of Solutions ..13

2.3 Propositions ..14
2.3.1 Insoluble...14
2.3.2 Soluble...14
2.3.3 Unknown ..14
2.3.4 Is a Constraint Satisfaction Problem..14
2.3.5 Is an Action Result ..15

2.4 Ontology Requirements ..15
3 References...16
4 Normative Annex A — FIPA-CCL XML Based Concrete Syntax...17

4.1 XML DTD...17
5 Informative Annex B — Language Usage...20

5.1 Step 1: Problem Modelling ..20
5.1.1 FIPA Constraint Choice Language Constraint Representations ..20

5.2 Step 2: Information Gathering ..22
5.2.1 Using Tags to Separate Information from Different Sources ..22

5.3 Step 3: Information Fusion ..22
5.3.1 Using Tags for Information Fusion ...23
5.3.2 Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets24

5.4 Step 4: Problem Solving..25

 iv

5.4.1 Simple Constraint Satisfaction Problem Search Algorithm...26
5.5 References ..26

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 1

1 Scope
This document gives the specification of the Constraint Choice Language (CCL) which is designed as a language to be
used for agent communication, and more specifically as a content language to be used with FIPA ACL (see [FIPA00061]).

The language is primarily intended to enable agent communication for applications that involve exchanges about multiple
interrelated choices. FIPA CCL is based on the representation of choice problems as Constraint Satisfaction Problems
(CSPs) and supports:

• Problem representation,

• Information gathering,

• Information fusion, and,

• Access to problem solution techniques.

Further information and additional resources concerning the use of FIPA CCL are available at:

http://liawww.epfl.ch/CCL/

1.1 Semantic Underpinnings
As already indicated, the FIPA CCL language is based on the representation of choice problems as CSPs. The CSP
formalisms can therefore be used as a framework for defining the properties of the language and as a support for defining
its semantics.

1.2 Constraint Satisfaction Problem Definitions

1.2.1 Standard Definition of Constraint Satisfaction Problems

Constraint Satisfaction Problems have been an intensive area study for some 30 years now and the basic definition of a
CSP has remained unchanged since the early 1970s (see [Waltz75] for example). A finite binary discrete CSP is defined
by:

• A finite set of variables V,

• A finite domain Di of possible discrete values for each variable vi ∈ V, and,

• A finite set of constraints C between any pairs of variables in V.

A solution to the CSP is defined as:

An assignment of values to variables such that: each variable vi ∈ V is assigned a value d ∈ Di, and none of the
constraints c ∈ C are violated.

A solution therefore consists of finding consistent legal to assignment of values to each variable such that all the
constraints posted for the problem are respected. More formal definitions can be found in [Mackworth77] and [Dechter92]
amongst others. The basic definition has previously been extended in many ways, for example:

• Allowing dynamic sets of variables,

• Allowing dynamic, continuous or infinite variable domains, and,

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 2

• Allowing constraints of up to arity N where N = |V|.

These extensions are in general well defined and each has its own body of literature discussing appropriate solution
techniques and application areas.

1.2.2 Expressing Choices and Choice Problems

Having defined CSPs, a choice problem can be defined as a CSP in the following way:

• Variables are choices to be made, such as which brand of shampoo to use or how many roses to buy for a date. The

set of variables V is the set of interrelated choices which all need to be made to have a complete solution to the
current problem.

• Domains are the available options for each choice (variable). Thus the number of roses may be anywhere between 1

and 30 and the brands of shampoo one of X, Y and Z. The assignment of one of the values from a domain Di to a
variable vi corresponds to making a choice for vi. The set of all possible combinations of assignments of domain
values to variables define the problem search space.

• Finally Constraints are relationships between choices which express valid or invalid combinations. The set of

constraints C therefore restricts the set of all possible combinations of choices to a smaller set of desirable
assignments which meet the requirements of a solution to the choice problem.

The aim of the FIPA CCL language is therefore to leverage this formulation of a choice problem for use in agent
communication. CSP techniques have been successfully applied to domains as diverse as configuration, planning,
scheduling, design, diagnosis, truth maintenance, spatial reasoning logic programming and resource allocation. Using
such a flexible problem representation as the basis for FIPA CCL will hopefully make it useful for a wide range of agent
applications. Section 5, Informative Annex B — Language Usage gives a more detailed guide to how FIPA CCL can be
used to model, communicate about and solve choice problems.

1.2.3 Constraint Satisfaction Problem Model Used in FIPA Constraint Choice Language

The CSP model which underlies FIPA CCL has three restrictions imposed which have been made to make the model
minimal and more suitable for a communication language:

1. Binary Constraints. All constraints expressed must have an arity of no more than 2 (i.e. constraints are only ever

between two variables. This restriction is often made in the CSP field, since most powerful solving techniques only
apply to CSPs with arity 2 constraints. Furthermore, for discrete CSPs, any CSP represented in a form using n-ary
constraints can be transformed into an equivalent CSP using only binary (2-ary) constraints. The language therefore
looses none of its expressive power with this restriction.

2. Discrete Variable Domains. CSPs with only discrete sets of values in each variable domain are by far the best

understood in the literature. Solving CSPs with ranges of continuous real values for value domains requires
specialised solving techniques, therefore they are excluded in this version of the language. In practice, CSPs requiring
continuous values are often be formulated by discretizing the continuous domain (so that discrete CSP solving
techniques can be applied, see [SamHaroud96]).

3. Intensional Relations. There are two main ways of representing constraints for CSPs – as extensional relations

(consisting of a list of the valid combinations of values for a pair or tuple of variables) and as intensional relations
(consisting of relations such as equals, greater-than etc. which do not rely on an explicit list). FIPA CCL excludes the
use of extensional relations – this makes CSPs expressed in FIPA CCL much easier to compose (merge) when
fusing information from several sources. Once again, no expressive power is lost since it can be shown that for
discrete CSPs every formulation using extensional constraints has an equivalent formulation using only intensional
constraints.

There are also several implicit constraints which arise out of the fact that that CSPs represented in FIPA CCL must be
contained in a single message:

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 3

• The number of variables must be finite (since they must be encapsulated in a single message), and,

• The number of constraints must be finite (since they must be encapsulated in a single message).

1.3 Language Properties
Given the CSP representation in previous sections, the following sections make statements about the formal properties of
FIPA CCL.

1.3.1 Search Termination and Complexity

The basic underlying representation used in FIPA CCL is that of a CSP. In a sense most messages in FIPA CCL will
define a problem (a CSP) which acts as an, as yet, unexplored solution space. This allows us to make definitive
statements about when these problems have solutions, when a search is guaranteed to terminate and how long the
search might take.

Questions of termination depend upon the type of CSP represented and on the state of the variable domains as follows:

• If all variable domains are discrete (as they must be given the restrictions in Section 0) and finite, then the solution

and search spaces are both finite and search is guaranteed to terminate.

• Although the search for a solution can be shown to terminate, solving the problem is in general NP-complete. This is

to be expected since the choice problems agents using FIPA CCL are trying solve are by their very nature
combinatorially explosive.

• It has been shown that for some restricted types of CSP problem the complexity of finding a solution may be less

than NP-complete: linear or polynomial for example (for example, see [Freuder82] and [vanBeek97]).

An important advantage gained by using the underlying CSP representation is that problem solving can leverage the
powerful techniques which have been developed for CSP solving (there is extensive literature on this subject and
[Tsang94] provides a good starting point). Techniques exist which routinely solve problems of over 1000 variables and
most problems of 10-20 variables can be solved using very simple search algorithms.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 4

2 FIPA Constraint Choice Language Ontology

2.1 Object Descriptions
This section describes a set of frames, that represent the classes of objects in the domain of discourse within the
framework of the FIPA-CCL ontology.

The following terms are used to describe the objects of the domain:

• Frame. This is the mandatory name of this entity, that must be used to represent each instance of this class.

• Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the

table.

• Parameter. This is the mandatory name of a parameter of this frame.

• Description. This is a natural language description of the semantics of each parameter.

• Presence. This indicates whether each parameter is mandatory or optional.

• Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence.

• Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter.

2.1.1 Choice Problem

This object represents a choice problem. For a CSP object to be well defined, the items in the exclusion and
relations parameters must only refer to variables which are present in the Variables parameters. If the csp-ref
parameter is not empty, then the CSP referenced in this parameter is taken to be the object of the csp-identifier
object and the items in the variables, relations and exclusions fields are ignored. A CSP object which contains
no variables, relations or exclusions (directly or by reference) is known as a null CSP.

Frame
Ontology

csp
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object. Mandatory csp-identifier
variables Represents the choices which need

to be taken in the choice problem.
The variables listed in this parameter
must all have unique names. The
Variables listed in this parameter
should have unique Role/Type
combinations.

Optional Set of csp-variable

relations Represent the relationships between
the choices to be made.

Optional Set of csp-variable

exclusions Represents a list of unary relations
on single variables which exclude
certain values from variable domains

Optional Set of csp-variable

2.1.2 Solution

This object captures the notion of a solution to a choice problem. Here all the choices are assigned an appropriate value
(one of the options) and the assignment violates none of the posted constraints.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 5

Frame
Ontology

csp-solution
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object that

the solution is for.
Mandatory csp-identifier

assignments A list of variable assignments such
that the list contains one and only
one assignment for each and every
variable defined in the CSP reference
in the CSP-ref slot, and, the
assignment of these values violates
none of the constraints posted for
the CSP in the csp-ref parameter.
That is, the variable assignment
must be consistent.

Mandatory Set of csp-variable-
assignment

2.1.3 Solution List

This object captures the notion of a list of solutions to a choice problem.

Frame
Ontology

csp-solution-list
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object that

the list of solutions is for.
Mandatory csp-identifier

solutions This is a list of possible solutions to
the choice problem. The list must
contain at least one such solution
and may contain any subset of the
whole set of solutions for the CSP.

Mandatory Set of csp-solution

2.1.4 Identifier

This object represents the unique identifier of a CSP.

Frame
Ontology

csp-identifier
FIPA-CCL

Parameter Description Presence Type Reserved Values
identifier-
body

This is the unique identifier of the
CSP.

Mandatory Symbol

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 6

2.1.5 Range

This object represents a complete domain, to be used when explicit enumeration of values would be too inefficient. The
two items range and tuple-range are optional however one or the other must be present.

Frame
Ontology

csp-range
FIPA-CCL

Parameter Description Presence Type Reserved Values
range This defines complete domains such

as ordered lists of number numbers,
world-airports, etc., which must be
part of a common ontology.

Optional domain-range

tuple-range This defines a combination of all the
legal values in a tuple. A range is
given for each slot in the tuple and
this parameter specifies that all
combinations of values from the
given ranges in each slot in the
tuple are legal.

Optional Set of domain-range

2.1.6 Value

This object represents an option. In general this can be a tuple and hence, the variable is an ordered list of domain terms.

Frame
Ontology

csp-value
FIPA-CCL

Parameter Description Presence Type Reserved Values
npart This identifies the number of

elements of the tuple value which
must be identical to the number of
items in the elements parameter.

Mandatory Number

elements This gives a list of values: one for
each of the elements in the tuple.

Mandatory Set of domain-term

tags This contains a list of symbols that
allow selective constraints.

Optional Set of Symbol

2.1.7 Value List

This object represents a list of options. Each option is a tuple and each of the values in the list must have the same
number of elements in the tuple; the number of elements must in turn be equal to the value of the npart parameter.

Frame
Ontology

csp-value-list
FIPA-CCL

Parameter Description Presence Type Reserved Values
npart This identifies the number of

elements of the tuple value which
must be identical to the number of
items in the elements parameter.

Mandatory Number

value-list This gives a list of values: one for
each of the elements in the tuple.

Mandatory Set of (Set of domain-
term)

tags This contains a list of symbols that
allow selective constraints.

Optional Set of Symbol

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 7

2.1.8 Variable

This object represents a single choice to be made, along with a set of possible options for that choice. The type and
role parameters enable this object to be situated within the problem solving context.

Frame
Ontology

csp-variable
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This gives a unique symbol that is

used to make references to the
variable within the context of a single
CSP.

Mandatory Symbol

type This specifies the type of values that
the variable takes which includes
granularity. An ordered list is used
since the variable might take tuple
values. In this case, the first type
refers to the type of the first element
in the tuple, etc.

Mandatory Set of domain-
variable-type

role This identifies the position of the
variable within the problem-solving
context.

Optional Set of domain-role-
term

domain This lists the possible values this
variable object may take, that is, the
available options. These options
must be consistent with the types of
values given in the type parameter.

Optional csp-range
|
Set of csp-value

2.1.9 Variable Assignments

This object represents the assignment of a variable with a value. The variable named in the name parameter is assigned
the value given in the value parameter. This represents a variable instantiation, that is, a choice being made.

Frame
Ontology

csp-variable-assignment
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This is the name of the variable

having a value assigned to it.
Mandatory csp-variable-name

value This is value being assigned which
must match with the type of the
variable.

Mandatory csp-value

2.1.10 Variable Name

This object represents the name of a variable in a CSP.

Frame
Ontology

csp-variable-name
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This name of a variable (choice). Mandatory Symbol

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 8

2.1.11 Exclusion

This object represents a constraint on a single variable by specifying a set of values that is explicitly disallowed for this
variable.

2.1.12 Relation

This object represents a relation between two variables. Any variables named in the Relation-body must appear in the set
of Variables of the relation. The indices parameter identifies which slots in a tuple valued variable are covered by the
relation. For example, for an equality relation between two variables with 3 tuples as values (for example, (x, y, z)), setting
the set of indices to ((2,2), (3,3)) indicates that only the 2nd and 3rd slot of the value tuples need ever be equal – the
constraint is not violated even if the values in the 1st slots are unequal.

Frame
Ontology

csp-relation
FIPA-CCL

Parameter Description Presence Type Reserved Values
variables This contains two variable names

such that the named variables are
defined in the current CSP1.

Mandatory Set of csp-
variable-
name

relation-
type

This is the type of the relation
being applied.

Mandatory String Intentional-Equality
Intentional-Inequality
Intensional-GreaterThan
Intensional-LessThan
Intensional-GreaterThanEqual
Intensional-LessThanEqual
Intensional-Empty

indices This specifies what sub-fields of
variable values the relation refers
to.

Mandatory Set of
index-
pair

tags This contains a list of symbols
that allow selective constraints.

Optional Set of
Symbol

1 The restriction to two variables here (rather than 2 or more) corresponds to the restriction of FIPA -CCL to binary relations only.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 9

Table 1 describes the allowed relations which can be specified in relation-type.

Relation Type Description
Intentional-Equality This specifies that all the variables listed in the variables parameter of the

relevant CSP object and must take equal values in any instantiation.
Intentional-Inequality This specifies that all the variables listed in the variables parameter of the

relevant CSP object and must take strictly different values in any instantiation.
Intensional-GreaterThan This specifies that the variables in the variables list of the relevant CSP object

are related by a “greater than” relationship such that the order of the tuple defines
the order in the relationship; the first variable in the list is strictly greater than the
second, which is strictly greater than the third, etc. Note that this relation is only
valid for variable types which have an ordering relation defined in the domain
ontology (integers, for example).

Intensional-LessThan This specifies that the variables in the variables list of the relevant CSP object
are related by a “less than” relationship such that the order of the tuple defines the
order in the relationship; the first variable in the list is strictly less than the second,
which is strictly less than the third, etc. Note that this relation is only valid for
variable types which have an ordering relation defined in the domain ontology
(integers, for example).

Intensional-
GreaterThanEqual

Similar to the Intensional-GreaterThan relation but using a “greater than or
equals” relation.

Intensional-
LessThanEqual

Similar to the Intensional-GreaterThan relation but using a “less than or
equals” relation.

Intensional-Empty This specifies that there are no allowed combinations of values for these values.

Table 1: Variable Relationship Types

2.1.13 Domain Range

Frame
Ontology

domain-range
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
range-body

This is a symbol defined in this
ontology.

Mandatory String

2.1.14 Domain Role Term

Frame
Ontology

domain-role-term
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
role-term-
body

This is a symbol defined in this
ontology.

Mandatory String

2.1.15 Domain Term

Frame
Ontology

domain-term
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
term-body

This is a symbol defined in this
ontology.

Mandatory String

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 10

2.1.16 Domain Variable Type

Frame
Ontology

domain-variable-type
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
variable-
type-body

This is a symbol defined in this
ontology.

Mandatory String

2.1.17 Symbol

This object is used to identify particular instances of objects. Symbols should be unique in their context of use.

Frame
Ontology

Symbol
FIPA-CCL

Parameter Description Presence Type Reserved Values
symbol-body This is a unique word that is used to

identify a particular instance of an
object.

Mandatory String

2.1.18 Index Pair

This object is used in relations to reference the individual fields in tuples. Given two variables with tuple valued variables,
the this object indicates a field in the first and a field in the second which are somehow related.

Frame
Ontology

index
FIPA-CCL

Parameter Description Presence Type Reserved Values
index-body This is a pair of numeric values

which are used to identify which two
particular fields in a tuple are related

Mandatory Set of Integer

2.2 Function Descriptions
The following tables define usage and semantics of the functions that are part of the FIPA-CCL ontology.

The following terms are used to describe the functions of the FIPA-CCL domain:

• Function. This is the symbol that identifies the function in the ontology.

• Ontology. This is the name of the ontology, whose domain of discourse includes the function described in the table.

• Description. This is a natural language description of the semantics of the function.

• Domain. This indicates the domain over which the function is defined. The arguments passed to the function must

belong to the set identified by the domain.

• Range. This indicates the range to which the function maps the symbols of the domain. The result of the function is a

symbol belonging to the set identified by the range.

• Arity. This indicates the number of arguments that a function takes. If a function can take an arbitrary number of

arguments, then its arity is undefined.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 11

2.2.1 Give Constraints for Information Gathering

This action is used to collect constraints on a given set of variables and domains (that is, those specified in the CSPT).
The information is captured in a new CSP – CSPINF which is a copy of CSPT containing new constraints (and potentially
new variables which are required for expressing these new constraints). The two CSPs (CSPT and CSPINF) could now be
composed using one of the two main composition operations (conjunctive or disjunctive composition – see Section 5.3.2,
Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets). However it should be noted
that this composition is not part of the csp-give-constraints action.

• Using csp-give-constraints followed by a conjunctive composition of CSPT and CSPINF creates a CSP whose

solutions satisfy both the actor’s constraints and the constraints originally present in CSPT.

• Using csp-give-constraints followed by a disjunctive composition of CSPT and CSPINF creates a CSP whose

solutions satisfy either the original constraints in CSPT or the constraints of the actor or both.

An agent can perform the csp-give-constraints iff it knows all variables vi and all constraints ci identifying the
problem P to solve (either by understanding the CSP sent in the message or having access to the CSP referred to in the
csp-ref reference).

Function csp-give-constraints
Ontology FIPA-CCL
Description The expected effect of this function is the creation of a new CSP (CSPINF) containing information

the agent carrying out the action (the actor) wishes to express about the choice problem defined by
the CSP given in target of the action (CSPT). CSPINF consists of:
• A complete copy of CSPT , including: all the variables originally present in CSPT (with their

original roles and types), all the values in the variable domains of these variables and all the
constraints present in CSPT.

• New information in the form of constraints between variables vi specified in CSPT, i.e.:
- Relations between variables vi,
- Exclusions on variable domains of vi.

• CSPINF may also include new variables (with associated domain values) which are added as
part of the expression of constraints (when expressing ternary constraints in their binary
representation for example – see Section 5, Informative Annex B — Language Usage).

Domain csp / csp-identifier
Range If the action could be successfully performed, then a CSP object representing the new CSPINF is

generated. All new elements (those not present in CSPT), including constraints, domain values
and variables in CSPINF must include a tag in their tags field. This tag should be: the same for
each element (this identifies all added information as being the result of a single information
gathering action) and not present as a tag in the CSPT (ensuring that the information does not
become mixed with existing information).

If the csp-give-constraints function contains a csp-identifier referring to a CSP which
the receiving agent has no knowledge of, then csp-unknown proposition is the result of the
function.

Arity 1

2.2.2 Give Values for Information Gathering

This function is used to collect suitable options for a certain problem solving context. The CSP given as argument
specifies a list of variables whose types, roles and relations identify the requested values. The two CSPs (CSPT and
CSPINF) could now be composed using one of the two main composition operations (conjunctive or disjunctive composition
– see Section 5.3.2, Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets). However it
should be noted that this composition is not part of the csp-give-constraints function.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 12

• Using csp-give-values followed by a conjunctive composition of CSPT and CSPINF creates a CSP whose
solutions only contain value assignments which are acceptable to both the actor and the agent(s) creating the original
CSPT.

• Using csp-give-values followed by a disjunctive composition of CSPT and CSPINF creates a CSP which includes

an extended set of options (and possibly solutions) beyond those available in the original CSPT .

An agent can perform the csp-give-values iff it knows all variables vi and all constraints ci identifying the problem P to
solve.

Function csp-give-values
Ontology FIPA-CCL
Description The expected effect of this function is the creation of a new CSP (CSPINF) containing information the

agent carrying out the function (the actor) wishes to express about the choice problem defined by
the CSP given in target of the function (CSPT). CSPINF consists of:
• A copy of all the variables vi in CSPT including their original roles and types but not including

the values in their domains,
• New information in the form of values added to the domains of variables vi in CSPINF :

- A new value is added to the domain of variable v iff the actor considers this value suitable
as an assignment for variable v in a solution to the choice problem defined by CSPT.
Values may be taken from the original domains of the variables in CSPT or be obtained
from other sources.

- If the actor knows of no suitable values for the domain of a particular variable then the
domain is left empty.

• CSPINF may also include new constraints (exclusions and relations) between the variables
since these new constraints apply to the values being given as information by the execution of
the function. New variables may be added as part of the expression of these constraints (when
expressing ternary constraints for example).

Domain csp / csp-identifier
Range If the function could be successfully performed, then a CSP object representing the new CSPINF is

generated. All new elements (those not present in CSPT), including constraints, domain values
and variables in CSPINF must include a tag in their tags field. This tag should be: the same for
each element (this identifies all added information as being the result of a single information
gathering function) and not present as a tag in the CSPT (ensuring that the information does not
become mixed with existing information).

If the csp-give-values function contains a csp-identifier referring to a CSP which the
receiving agent has no knowledge of, then csp-unknown proposition is the result of the function.

Arity 1

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 13

2.2.3 Solving to Generate Solutions

This is the function of solving a CSP (the CSP specified as the subject parameter of the function). In order to perform this
function an agent must be able to understand the CSP problem representation, that is, all of the variables and constraints.

Function csp-solve
Ontology FIPA-CCL
Description The expected effect of having performed this function is to find an assignment of values to the

variables vi in the CSP specified as the target of the function CSPT such that none of the
constraints ci specified in CSPT are violated.

Domain csp / csp-identifier
Range If a solution to the problem identified by the csp-solve function (CSPT) exists then it is

represented by a resulting csp-solution object.

If there exist no solutions to the CSP identified of the csp-solve function, then a csp-
insoluble proposition is the result of the function.

If the csp-solve function contains a csp-identifier referring to a CSP which the receiving
agent has no knowledge of, then a csp-unknown proposition is the result of the function.

Arity 1

2.2.4 Solving to Generate a List of Solutions

This function is similar to the csp-solve function but is defined as solving the CSP given in the subject parameter to
return all of its solutions and collating these into a list of solutions.

Function csp-solve-list
Ontology FIPA-CCL
Description The expected effect of having performed this function is to find one or several sets of assignments of

values to the variables vi in the CSP specified as the target of the function CSPT such that none of
the constraints ci specified in CSPT are violated.

Domain csp / csp-identifier
Range If a solution or set of solutions to the problem identified by the csp-solve function (CSPT) exists

then it is represented by a resulting csp-solution-list object.

If there exist no solutions to the CSP identified in the csp-solve-list function, then a csp-
insoluble proposition is the result of the function.

If the csp-solve-list function contains a csp-identifier referring to a CSP which the
receiving agent has no knowledge of, then a csp-unknown proposition is the result of the function.

Arity 1

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 14

2.3 Propositions
A proposition makes a statement about the truth or falsity of a property of a CSP object. Note that the definitions given in
this section are effectively proposition schemas expressed as predicates. However, once the variables in the schemas are
instantiated the ensemble is treated as a proposition.

2.3.1 Insoluble

This states that the CSP given in the subject parameter has no solutions.

Proposition csp-insoluble
Ontology FIPA-CCL
Description This proposition is true iff ¬∃ X such that X is an assignment of values to the variables of the given

CSP consistent with the given constraints.
Domain csp / csp-identifier

2.3.2 Soluble

This states that the CSP given in the subject parameter has at least one solution.

Proposition csp-soluble
Ontology FIPA-CCL
Description This proposition is true iff ∃ at least an X such that X is an assignment of values to the variables of

the given CSP consistent with the given constraints.
Domain csp / csp-identifier

2.3.3 Unknown

This states that the CSP referred to is unknown to an agent.

Proposition csp-unknown
Ontology FIPA-CCL
Description This proposition is true iff the referred CSP is unknown to the agent making the statement.
Domain csp-identifier

2.3.4 Is a Constraint Satisfaction Problem

This proposition can be used to wrap CSPs in a proposition construct for general information passing. The semantic
meaning of the message containing such a proposition may be derived from the conversation context.

Proposition is-csp
Ontology FIPA-CCL
Description This proposition is true iff the object referred to is a well formed CSP object.
Domain csp / csp-identifier

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 15

2.3.5 Is an Action Result

The csp-action value is not mandatory since in some cases it may be unnecessary to repeat the specification of the
action that led to the result since the action is being referred to may be clear form the context.

Proposition is-action-result
Ontology FIPA-CCL
Description This proposition is true iff the object referred to is the result of an action which is either given in the

optional csp-action value or is well defined in the context of the agent conversation.
Domain ccl-object / ccl-proposition, csp-action

2.4 Ontology Requirements
To ensure that domain ontologies can be easily bound into the content language, FIPA CCL imposes some minimal
restrictions on the form of an ontology that is used with it. In particular the ontologies must define items of the following
types:

• Types of variables should correspond to the object defined in Section 2.1.16, Domain Variable Type. Variable types

define the form of information which variables of that type can express, for example, times, dates, places, airlines,
etc.

• Roles of variables should correspond to the object defined in Section 2.1.14, Domain Role Term. A variable role

corresponds to the variable’s function in the current problem solving context, for example, 'flight', 'outbound', 'meeting
location', etc. Agents can attach roles to variables to keep track of the semantic interpretation of the choice problem.

• Values are the available options for choices and correspond to the domain-term terminals defined in Section 2.1.15.

This can be any usefully defined term in the domain ontology.

• Variable domain ranges should correspond the allowed range expressions in the domain, where a range is a well

defined set or continuum of domain terms. Domain ranges correspond to the object defined Section 2.1.13, Domain
Range. Since some variable domains are often best compactly expressed as ranges rather than enumerated, an
ontology may define the legal types of ranges available. Examples include, ranges of time (“working-day” = 8.00am –
5.00pm), ranges of sizes (shoe size = 3 – 12), etc. For some ontologies, domain ranges may be parameterised
expressions, for example, a time ontology may include a expression for a range such as hours (start, end) indicating
the range of hours between the start and end hours given.

Effectively these restrictions impose typing requirements on the domain ontology to be used with FIPA CCL. How the
types are expressed in any particular ontology is application and ontology dependent and hence not addressed in this
specification.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 16

3 References
[Dechter92] Constraint Networks, Dechter, R. In: Encyclopedia of Artificial Intelligence, Wiley, pages 276-285, 1992.
[FIPA00061] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00061/
[Freuder82] A Sufficient Condition of Backtrack-Free Search, Freuder, EC. In: Journal of the ACM, 29(1), pages 24-

32, January 1982.
[Mackworth77] Consistency in Networks of Constraints, Mackworth, A. In: Artificial Intelligence, Vol. 8, 1977.
[SamHaroud96] Consistency Techniques for Continuous Constraints, Sam-Haroud, D and Faltings, B. In: Constraints,

1(1), pages 85-118, 1996.
[Tsang94] Foundations of Constraint Satisfaction, Tsang, E. Academic Press, 1994.
[vanBeek97] Constraint Tightness and Looseness Versus Local and Global Consistency, van Beek, P and Dechter, R.

In: Journal of the ACM, 44(4), pages 549-566, July 1997.
[Waltz 75] Generating Semantic Descriptions from Drawings of Scenes with Shadows, Waltz, D I. In: The

Psychology of Computer Vision, McGraw-Hill, 1975.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 17

4 Normative Annex A — FIPA-CCL XML Based Concrete Syntax
This annex gives a concrete syntax for the FIPA CCL language as an XML DTD. This syntax is the default syntax for FIPA
CCL and the only one currently defined. Any agent sending an ACL message with the :content parameter set to
FIPA-CCL is assumed to have used this syntax.

4.1 XML DTD
<?xml version="1.0" encoding="UTF-8"?>

<!--=== DTD of the Choice Content Language (CLL). This definition is based in the
document "A FIPA Content Language for Expressing Agent Choice: Constraint Choice
Language (FIPA-CCL)" ===-->

<!ELEMENT Expression (Object
 | Action
 | Proposition)>

<!--Definition of an Object in FIPA-CCL-->
<!ENTITY % objects "CSP
 | CSP-solution
 | CSP-solution-list">
<!ELEMENT Object (CSP
 | CSP-solution
 | CSP-solution-list)>
<!ATTLIST Object Name (%objects;) #REQUIRED>

<!--== CSP ===-->
<!ELEMENT CSP (CSP-variable*, CSP-relation*, CSP-exclusion*)>
<!ATTLIST CSP CSP-ref ID #IMPLIED>

<!--=== CSP-solution ===-->
<!ELEMENT CSP-solution (CSP-variable-assignment*)>
<!ATTLIST CSP-solution href CDATA #REQUIRED>

<!--=== CSP-solution-list ===-->
<!ELEMENT CSP-solution-list (CSP-solution+)>
<!ATTLIST CSP-solution-list href CDATA #REQUIRED>

<!--Definition of an Action in FIPA-CCL-->

<!ENTITY % actions "CSP-give-constraints
 | CSP-give-values
 | CSP-solve
 | CSP-solve-list">
<!ELEMENT Action (CSP-give-constraints
 | CSP-give-values
 | CSP-solve
 | CSP-solve-list)>
<!ATTLIST Action Name (%actions;) #REQUIRED>

<!--=== CSP-give-constraints ===-->
<!ELEMENT CSP-give-constraints (CSP
 | CSP-identifier)>

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 18

<!--=== CSP-give-values ===-->
<!ELEMENT CSP-give-values (CSP
 | CSP-identifier)>

<!--=== CSP-solve ===-->
<!ELEMENT CSP-solve (CSP | CSP-identifier)>
<!--ENTITY % result-values "CSP-solution
 | CSP-insoluble
 | CSP-solution-list"-->

<!--=== CSP-solve-list ===-->
<!ELEMENT CSP-solve-list (CSP
 | CSP-identifier)>

<!--Definition of a Proposition in FIPA-CCL-->

<!ENTITY % propositions "CSP-insoluble
 | CSP-soluble
 | CSP-unknown">
<!ELEMENT Proposition (CSP-insoluble
 | CSP-soluble
 | CSP-unknown)>
<!ATTLIST Proposition Name (%propositions;) #REQUIRED>

<!--=== CSP-insoluble ===-->
<!ELEMENT CSP-insoluble (CSP
 | CSP-identifier)>

<!--=== CSP-soluble ===-->
<!ELEMENT CSP-soluble (CSP
 | CSP-identifier)>

<!--=== CSP-unknown ===-->
<!ELEMENT CSP-unknown EMPTY>
<!ATTLIST CSP-unknown href CDATA #REQUIRED>

<!--=== IS-csp ===-->
<!ELEMENT IS-csp (CSP
 | CSP-identifier)>

<!--=== IS-action-result ===-->
<!ELEMENT IS-action-result (Action-performed?, Result-obtained)>
<!ELEMENT Result-obtained (Object
 | Proposition)>
<!ELEMENT Action-performed (Action)>

<!--Apart from the three main types of items listed above (Actions, Objects and
Propositions) there are also other constructs in the CL which form part of the main
objects but cannot form valid sentences by themselves.-->

<!--=== CSP-identifier ===-->
<!ELEMENT CSP-Identifier EMPTY>
<!ATTLIST CSP-Identifier href CDATA #REQUIRED>

<!--=== CSP-domain ===-->
<!ELEMENT CSP-domain (Tags*)>

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 19

<!ATTLIST CSP-domain Range CDATA #REQUIRED>
<!ELEMENT Tags EMPTY>
<!ATTLIST Tags Name CDATA #REQUIRED>

<!--=== CSP-value ===-->
<!ELEMENT CSP-value (Elements+, Tags*)>
<!ATTLIST CSP-value Npart CDATA #REQUIRED>
<!ELEMENT Elements EMPTY>
<!ATTLIST Elements Value CDATA #REQUIRED>

<!--=== CSP-variable ===-->
<!ELEMENT CSP-variable (Role*, Domain*)>
<!ATTLIST CSP-variable Name CDATA #REQUIRED
 Type CDATA #REQUIRED>
<!ELEMENT Role (#PCDATA)>
<!ELEMENT Domain (CSP-range
 | CSP-value+
 | CSP-value-list)>

<!--=== CSP-range ===-->
<!ELEMENT CSP-range (Tuple-range) >
<!ATTLIST CSP-range Range CDATA #REQUIRED>
<!ELEMENT Tuple-range EMPTY>
<!ATTLIST Tuple-range Values CDATA #REQUIRED>

<!--=== CSP-variable-assignment ===-->
<!ELEMENT CSP-variable-assignment (CSP-value)>
<!ATTLIST CSP-variable-assignment Name CDATA #REQUIRED>

<!--=== CSP-value-list===-->
<!ELEMENT CSP-value-list (List-values, Tags*) >
<!ATTLIST CSP-value-list Npart CDATA #REQUIRED>
<!ELEMENT List-values EMPTY>
<!ATTLIST List-values Values CDATA #REQUIRED>

<!--Constraint Related Items-->

<!--=== CSP-exclusion ===-->
<!ELEMENT CSP-exclusion (Excluded-Values+, Tags*)>
<!ATTLIST CSP-exclusion Variable-name CDATA #REQUIRED>
<!ELEMENT Excluded-Values (CSP-value)>

<!--=== CSP-relation ===-->
<!ENTITY % relation "intentional-Equality
 | intentional-Inequality
 | Intensional-GreatherThan
 | Intensional-LessThan
 | Intensional-GreatherThanEqual
 | Intensional-LessThanEqual
 | Intensional-Empty">
<!ELEMENT CSP-relation (Tags*)>
<!ATTLIST CSP-relation Variables CDATA #REQUIRED
 Relation-type (%relation;) #REQUIRED
 Indices CDATA #REQUIRED>

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 20

5 Informative Annex B — Language Usage
FIPA CCL is primarily intended for information gathering and problem solving for tasks involving multiple interrelated
choices. In general information gathering and problem solving tasks can be broken down into four steps2:

1. Problem modelling,

2. Information gathering,

3. Information fusion, and,

4. Problem solution.

This section gives a brief overview of using FIPA CCL in each of these steps.

5.1 Step 1: Problem Modelling
Modelling a choice problem in the FIPA CCL language requires the problem to be formulated as a CSP:

• Identifying what the choices are which become the variables in the problem formulation,

• Identifying which options are available for each of the choice which generates the domains of values for each of the

variables, and,

• Specifying how choices are related which generates the constraints (relations and exclusions) which apply to problem

solutions.

This process is exactly what would be required when formulating problems so that they can be expressed in FIPA CCL
messages. The process is in general intuitive, although there may also exist multiple formulations of a particular problem
all of which are equivalent in the solution space they describe (although they may be easier or harder to solve depending
upon the solution techniques applied).

5.1.1 FIPA Constraint Choice Language Constraint Representations

FIPA CCL uses a particular style of representation for constraints which allows only two types of constraints:

• Exclusions which act on a single variable and are specified as a no-good list, that is, a list of values which this

variable may not take.

• Binary intensional relations which act on two variables and are restricted to a closed set of eight general types of

relations, that is, the set {=, ≠, <, >, ≤, ≥, ⊥ , null}.

The use of tuple-valued variables allows the language to handle arbitrary n-ary constraints by introducing variables whose
values represent the tuples allowed by the constraint and then linking the n variables involved in the n-ary constraints to
the tuple valued variable using binary relations. The advantage of this implementation is that solving or consistency
engines can be restricted to unary and binary constraints.

As an example of representing n-ary constraints in terms of binary constraints consider a ternary constraint over three
variables (Hotel, City and Room-Type):

• Variable: Hotel, Values: {Marriott, Intercontinental, Hyatt-Regency}.

• Variable: City, Values: {New York, Washington, Chicago}.

2 [Dechter92] and [Tsang94] provide good introductions to modelling problems as CSPs.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 21

• Variable: Room-Type, Values: {standard, suite}.

• Constraint: Good-list: {(Hotel: Marriott, City: New York, Room-Type: suite), (Hotel: Intercontinental, City:

Washington, Room-Type: standard)}.

This can be converted into the following binary CSP by adding a tuple valued variable which represents the good-list:

• Variable: Hotel, Values: {Marriott, Intercontinental, Hyatt-Regency}.

• Variable: City, Values: {New York, Washington, Chicago}.

• Variable: Room-Type, Values: {standard, suite}.

• Variable: Constraint-1, Values: {(Marriott, New-York, suite), (Intercontinental, Washington, standard)}.

• Constraint: (Intensional-Equality, Variable 1: Hotel, Variable 2: Constraint-1, Indices: {(1, 1)}).

• Constraint: (Intensional-Equality, Variable 1: City, Variable 2: Constraint-1, Indices: {(1, 2)}).

• Constraint: (Intensional-Equality, Variable 1: Room-Type, Variable 2: Constraint-1, Indices: {(1, 3)}).

The same mechanism of using a tuple-valued variable can be used to express constraints which might normally be
expressed using an extensional constraint, such as a good list or no-good list, that is, lists of allowed or excluded
combinations.

Giving a list of all the allowed combinations of values between a set of variables defines an extensional relation, such as
for clothing for example:

• Variable: Hat, Values: {green, red, brown, black}.

• Variable: Shirt, Values: {white, red, pink}.

• Constraint: Good-list: {(Hat: green, Shirt: white), (Hat: red, Shirt: white), (Hat: black, Shirt: red)}.

This relates the two variables Hat and Shirt by giving a list of the allowed combinations. The same type of
representation could be used to express combinations which are not allowed and resulting in a no-good list. In FIPA CCL
this would be expressed using three variables, using only intensional relations:

• Variable: Hat, Values: {green, red, brown, black}.

• Variable: Shirt, Values: {white, red, pink}.

• Variable: Constraint-Hat-Shirt, Values: {(green, white), (red, white), (black, red)}.

• Constraint: Constraint-Hat: (Intensional-Equality, Variable 1: Hat, Variable 2: Constraint-Hat-

Shirt, Indices: {(1, 1)}).

• Constraint: Constraint-Shirt: (Intensional-Equality, Variable 1: Shirt, Variable 2: Constraint-Hat-

Shirt, Indices: {(1, 2)}).

The two intensional constraints therefore link the Hat and Shirt variables to a new third variable which contains the list
of allowed tuples. This removes any need for lists of valid combinations to be represented as constraints.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 22

5.2 Step 2: Information Gathering
Once a choice problem had been modelled as a CSP, problem information can be added to the CSP representation to
constrain or expand the range of options available. This information can be obtained from other agents by sending
requests for csp-give-constraints and csp-give-values:

• Requesting csp-give-constraints results in a CSP with more constraints (exclusions or relations) posted on
the set of possible combinations, and,

• Requesting csp-give-values results in a CSP with more possible options being added to the CSP variables

(choices).

The results of both these actions is a new CSP which can be composed with the original CSP to create a new CSP with
more information about the problem being solved. An agent may request information from several sources by:

• Sending the complete CSP to several agents and asking for constraints or values. This case would be most useful if

the agents being queried have similar roles in the scenario – e.g. they are all airline flight databases but for different
companies. The agent trying to solve the choice problem would receive several sets of information for the same
problem.

• Dividing up the whole problem into smaller pieces (each containing a – not necessarily disjoint - subset of variables

and constraints) and sending requests about each piece to different information agents. This would be most useful
when communicating with agents which have different specialties, that is, one hotel database agent, one airline agent
and one ticket booking agent. In each communication the interaction concerns only the part of the problem related to
the queried agent’s specialty.

Once information has been gathered the agent solving the problem can pass on to the information fusion step.

5.2.1 Using Tags to Separate Information from Different Sources

FIPA CCL includes a way of tagging values and constraints uniquely which allows problems to include a representation of
where information came from. In the results of both the csp-give-constraints and csp-give-values functions
the domain values and constraints returned can be grouped together using a tag (a unique symbol). The tags are given in
the tags parameter of the csp-value, csp-exclusion and csp-relation items.

5.3 Step 3: Information Fusion
There are two ways of combining CSPs which contain identical sets of variables:

• So that the resulting solution space is the intersection of the solutions of each of the participant CSPs. Hence all

solutions to the new CSP satisfy all the participant CSPs. In this document this is referred to as a conjunctive
combination.

• So that the resulting solution space is the union of the solutions of each participant CSPs. Here each solution to the

new CSP satisfies at least one of the participant CSPs. In this document this is referred to as a disjunctive
combination.

These are the basic operations required for compositions. Both operations can be carried out by straightforward
algorithms as long as CSPs have the same variables, but may be require transformations to the participant CSPs
beforehand.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 23

5.3.1 Using Tags for Information Fusion

The mechanism for combining relations relies on the use of tags to achieve the correct semantics. This is best
understood by considering an example. In Figure 1, variables X1 and X2 are linked with an equality constraint and tag T1,
the solution space is therefore ((a, a), (b, b)).

Variable X1

= T1
Variable X2

Constraint

a T1

b T1

a T1

b T1

Figure 1: Constraint Problem 1

In Figure 2, the same variables are connected by a ≥ constraint3, but with a different tag T2. Its solution space is ((b, b),
(c, b), (c, c)).

b T2

c T2

Variable X1
≥ T2

Variable X2

b T2

c T2

Constraint

Figure 2: Constraint Problem 2

Hence the tags define two sets of information for the two variables X1 and X2. The information associated with Tag T1
gives on set of possibilities for the variable domains and a constraint. The information associated with Tag T2 gives a
second set of domains and a different constraint. Some information (such as the value b in both domains) is common to
both information sets.

Exclusions are handled in the same manner simply by treating them as constraints on a single variable. It should also be
noted that when relations have the same tags, they can be combined directly by combining their types, that is, ≤ and ≥
combined give =.

3 Defined over the alphabetical order with a/A as the largest.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 24

5.3.1.1 Conjunctive Combination
Given the two example CSPs in the previous section we can now consider forming the intersection of the two solution
spaces described by tags T1 and T2. This intersection would give only the solution ((b, b)) as valid. To do this, we need to
intersect the domains for each variable. We then make sure that both constraints apply to the remaining values
simultaneously by letting the tags of the remaining values be the union of the tags they had in the original problems, thus
making all their constraints applicable (see Figure 3).

b T1,T2

Variable X1

= T1
Variable X2

Constraints

b T1,T2

≥ T2

Figure 3: Constraint Problem 3

5.3.1.2 Disjunctive Combination
For the same example we can also form the union of the two solution spaces: a new CSP that has the solution space ((a,
a), (b, b), (c, b), (c, c)). To do this, we need take the union of the domains for each variable. We also take the union of the
constraints but constraints only apply to the values which have the appropriate tags that is, constraints only apply to the
values they applied to in the original problems (see Figure 4).

= T1

Constraint

Variable X1

a T1

b T1,T2

c T2

Constraint

≥ T2

Variable X2

a T1

b T1,T2

c T2

Figure 4: Constraint Problem 4

5.3.2 Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets

If two CSPs to be composed do not have exactly the same variables, the two composition operations need to be
extended.

5.3.2.1 Conjunctive Composition
This composition is a straightforward extension of the conjunctive composition for the case where variable sets were
identical. when composing two CSPs CSP1 and CSP2 (to form CSPResult):

• All constraints from both CSP1 and CSP2 hold in CSPResult (as defined for the standard composition operation),

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 25

• All variables from both CSP1 and CSP2 are present in CSPResult, and,

• All variables in CSPResult must be instantiated s.t. both participant CSPs are satisfied by any solution to the whole

CSPResult.

5.3.2.2 Disjunctive Composition
The disjunctive case is a little more complex. When composing two CSPs CSP1 and CSP2 (to form CSPResult), variables
are treated as follows:

• Variables in the intersection CSP1 CSP2 (set I): for the variables which exist in both CSPs the required
disjunctive composition operation can be directly applied and all variables and constraints between them appear in
CSPResult.

• Variables outside the intersection CSP1 CSP2 (set NI): these variables exist in only one of the participant CSPs.

All these variables are also added to CSPResult but are modified in the process by adding a special value “*” to each
of their domains, where “*” stands for “unused”.

To add the variables in CSP1 which do not appear in CSP1 (I.e. are in the intersection of CSP1 and NI – call this set NI1):

1. Generate a new unique tag T1.

2. For each variable v in NI1:

a. Add the “*” value (or a tuple of “*” values, depending on its type) into the domain of v like any other value
(unless the domain of v already contains such a value).

b. Add the tag T1 to the “*” value, to the relations which involve v and to all values in the domain of variables

that participate in these relations (if v already contained the “*” value – add the tag to the previous “*”
value).

3. Add all the variables in IN1, their related relations and relations between variables in IN1 and I to CSPResult.

The same process is performed for the variables in CSP2 and not in CSP1 (set IN2) but with a different tag generated in
step 1 of the algorithm.

Finally, all the “*” values are considered compatible with any relation, this makes it possible to distinguish solutions to the
problem which assign a value to the variable in question and those that do not. The algorithm uses the tag mechanism to
distinguish the new variables and relations from the existing ones: since the “*” value is compatible with any relation, the
set of solutions of the revised CSP is exactly the solutions of the original CSP with the “*” value added for the new
variable. Furthermore, the unique tag ensures that this same property continues to hold when the new CSP is combined
with another one.

5.4 Step 4: Problem Solving
Once a problem has been modelled, information gathered and composed to form a single choice problem, then this can
be solved. The semantic meaning behind the variables and constraints in the task model can be stripped away during the
solution process and the problem can be solved as a generic CSP. This allows powerful CSP problem solving algorithms
to be applied.

In the context of the FIPA CCL language there are two main ways to solve a constructed CSP problem:

• Implementation of one (or several) solution algorithms in the problem solving agent. Solution algorithms range from
very simple compact approaches to elaborate specialised techniques. The next section gives an example of a
simple search algorithm which would suffice for most small CSP problems. More advanced algorithms can be found

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 26

in, among others; [Tsang94], the proceedings of major AI conferences and the proceedings of specialist constraints
conferences such as Constraint Programming.

• Usage of a dedicated CSP solving agent which implements a suite of algorithms for solving algorithms for generic

CSPs. Such solver agents can be requested to solve choice problems using the FIPA CCL language actions csp-
solve and csp-solve-list.

5.4.1 Simple Constraint Satisfaction Problem Search Algorithm

This section gives a basic solution algorithm for CSP problems to provide the minimum for problem solving using FIPA
CCL. The backtracking search algorithm given here instantiates variables in some fixed order and is perhaps the most
commonly used CSP search techniques (many advanced methods are derived from it). The following gives the general
idea:

1. Choose some fixed order for the variables in the set of variables V. Choose some fixed order for each of the
variable domains Di. Using these orderings repeat the following:

2. Choose the next uninstantiated variable vi in the order of V:

a. If all the variables in V have been assigned values then a solution has been found and the procedure
terminates.

b. Otherwise proceed to step 2.

3. Assign to vi the next available value d from its domain Di:

a. IF Di is empty (there are no remaining values for vi) then backtrack – undo the previous variable
assignment made (vi-1), mark vi-1 as unassigned and continue from step 1.

b. Otherwise continue to step 3.

4. Check that none of the constraints in C which involve variable vi are violated by assigning d to vi:

a. IF no such constraint in C is violated, mark vi as instantiated with value d and proceed to the next
variable (go to step 1).

b. IF a constraint is violated the by this assignment then backtrack - keep vi as uninstantiated, remove the

value d from the domain Di and go back to step 2.

The procedure also terminates if it backtracks to step 2 and the first variable in the sequence has no remaining possible
values in its domain. This indicates that all value combinations are invalid and the CSP has no solution.

This procedure is sound and complete since the backtracking procedure essentially explores the search tree of possible
variable assignment combinations. Constraints are checked at each step (ensuring a non-valid combination is never
allowed) and the backtracking step is eventually forced to explore the whole search tree.

5.5 References
[Dechter92] Constraint Networks, Dechter, R. Encyclopaedia of Artificial Intelligence, Wiley, pages 276-285, 1992.
[Tsang94] Foundations of Constraint Satisfaction, Tsang, E. Academic Press, 1994.

