
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA CCL Content Language Specification 5

 6

Document title FIPA CCL Content Language Specification
Document number XC00009B Document source FIPA TC C
Document status Experimental Date of this status 2001/08/10
Supersedes None
Contact fab@fipa.org
Change history
2000/08/22 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

 ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

 iii

Contents 38

1 Scope.. 1 39
1.1 Semantic Underpinnings.. 1 40
1.2 Constraint Satisfaction Problem Definitions... 1 41

1.2.1 Standard Definition of Constraint Satisfaction Problems.. 1 42
1.2.2 Expressing Choices and Choice Problems .. 2 43
1.2.3 Constraint Satisfaction Problem Model Used in FIPA Constraint Choice Language.................................... 2 44

1.3 Language Properties ... 3 45
1.3.1 Search Termination and Complexity .. 3 46

2 FIPA Constraint Choice Language Ontology .. 4 47
2.1 Object Descriptions.. 4 48

2.1.1 Choice Problem .. 4 49
2.1.2 Solution... 4 50
2.1.3 Solution List .. 5 51
2.1.4 Identifier .. 5 52
2.1.5 Range ... 6 53
2.1.6 Value .. 6 54
2.1.7 Value List .. 6 55
2.1.8 Variable .. 7 56
2.1.9 Variable Assignments... 7 57
2.1.10 Variable Name.. 7 58
2.1.11 Exclusion .. 8 59
2.1.12 Relation .. 8 60
2.1.13 Domain Range.. 9 61
2.1.14 Domain Role Term ... 9 62
2.1.15 Domain Term.. 9 63
2.1.16 Domain Variable Type .. 10 64
2.1.17 Symbol.. 10 65
2.1.18 Index Pair ... 10 66

2.2 Function Descriptions .. 10 67
2.2.1 Give Constraints for Information Gathering.. 11 68
2.2.2 Give Values for Information Gathering ... 11 69
2.2.3 Solving to Generate Solutions .. 13 70
2.2.4 Solving to Generate a List of Solutions .. 13 71

2.3 Propositions ... 14 72
2.3.1 Insoluble ... 14 73
2.3.2 Soluble.. 14 74
2.3.3 Unknown... 14 75
2.3.4 Is a Constraint Satisfaction Problem .. 14 76
2.3.5 Is an Action Result.. 15 77

2.4 Ontology Requirements ... 15 78
3 References.. 16 79
4 Normative Annex A — FIPA-CCL XML Based Concrete Syntax.. 17 80

4.1 XML DTD ... 17 81
5 Informative Annex B — Language Usage... 20 82

5.1 Step 1: Problem Modelling... 20 83
5.1.1 FIPA Constraint Choice Language Constraint Representations .. 20 84

5.2 Step 2: Information Gathering.. 22 85
5.2.1 Using Tags to Separate Information from Different Sources.. 22 86

5.3 Step 3: Information Fusion... 22 87
5.3.1 Using Tags for Information Fusion ... 23 88
5.3.2 Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets........................ 24 89

5.4 Step 4: Problem Solving .. 25 90

 iv

5.4.1 Simple Constraint Satisfaction Problem Search Algorithm... 26 91
5.5 References .. 26 92

93

1 Scope 93

This document gives the specification of the Constraint Choice Language (CCL) which is designed as a language to be 94
used for agent communication, and more specifically as a content language to be used with FIPA ACL (see 95
[FIPA00061]). 96
 97
The language is primarily intended to enable agent communication for applications that involve exchanges about 98
multiple interrelated choices. FIPA CCL is based on the representation of choice problems as Constraint Satisfaction 99
Problems (CSPs) and supports: 100
 101
 Problem representation, 102
 103
 Information gathering, 104
 105
 Information fusion, and, 106
 107
 Access to problem solution techniques. 108
 109
Further information and additional resources concerning the use of FIPA CCL are available at: 110

 111
http://liawww.epfl.ch/CCL/ 112

 113

1.1 Semantic Underpinnings 114

As already indicated, the FIPA CCL language is based on the representation of choice problems as CSPs. The CSP 115
formalisms can therefore be used as a framework for defining the properties of the language and as a support for 116
defining its semantics. 117
 118

1.2 Constraint Satisfaction Problem Definitions 119

1.2.1 Standard Definition of Constraint Satisfaction Problems 120

Constraint Satisfaction Problems have been an intensive area study for some 30 years now and the basic definition of a 121
CSP has remained unchanged since the early 1970s (see [Waltz75] for example). A finite binary discrete CSP is 122
defined by: 123
 124
 A finite set of variables V, 125
 126
 A finite domain Di of possible discrete values for each variable vi V, and, 127
 128
 A finite set of constraints C between any pairs of variables in V. 129
 130
A solution to the CSP is defined as: 131
 132

An assignment of values to variables such that: each variable vi V is assigned a value d Di, and none of the 133
constraints c C are violated. 134

 135
A solution therefore consists of finding consistent legal to assignment of values to each variable such that all the 136
constraints posted for the problem are respected. More formal definitions can be found in [Mackworth77] and 137
[Dechter92] amongst others. The basic definition has previously been extended in many ways, for example: 138
 139
 Allowing dynamic sets of variables, 140
 141
 Allowing dynamic, continuous or infinite variable domains, and, 142
 143

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 2

 Allowing constraints of up to arity N where N = |V|. 144
 145
These extensions are in general well defined and each has its own body of literature discussing appropriate solution 146
techniques and application areas. 147
 148

1.2.2 Expressing Choices and Choice Problems 149

Having defined CSPs, a choice problem can be defined as a CSP in the following way: 150
 151
 Variables are choices to be made, such as which brand of shampoo to use or how many roses to buy for a date. 152

The set of variables V is the set of interrelated choices which all need to be made to have a complete solution to the 153
current problem. 154

 155
 Domains are the available options for each choice (variable). Thus the number of roses may be anywhere between 156

1 and 30 and the brands of shampoo one of X, Y and Z. The assignment of one of the values from a domain Di to a 157
variable vi corresponds to making a choice for vi. The set of all possible combinations of assignments of domain 158
values to variables define the problem search space. 159

 160
 Finally Constraints are relationships between choices which express valid or invalid combinations. The set of 161

constraints C therefore restricts the set of all possible combinations of choices to a smaller set of desirable 162
assignments which meet the requirements of a solution to the choice problem. 163

 164
The aim of the FIPA CCL language is therefore to leverage this formulation of a choice problem for use in agent 165
communication. CSP techniques have been successfully applied to domains as diverse as configuration, planning, 166
scheduling, design, diagnosis, truth maintenance, spatial reasoning logic programming and resource allocation. Using 167
such a flexible problem representation as the basis for FIPA CCL will hopefully make it useful for a wide range of agent 168
applications. Section 5, Informative Annex B — Language Usage gives a more detailed guide to how FIPA CCL can be 169
used to model, communicate about and solve choice problems. 170
 171

1.2.3 Constraint Satisfaction Problem Model Used in FIPA Constraint Choice Language 172

The CSP model which underlies FIPA CCL has three restrictions imposed which have been made to make the model 173
minimal and more suitable for a communication language: 174
 175
1. Binary Constraints. All constraints expressed must have an arity of no more than 2 (i.e. constraints are only ever 176

between two variables. This restriction is often made in the CSP field, since most powerful solving techniques only 177
apply to CSPs with arity 2 constraints. Furthermore, for discrete CSPs, any CSP represented in a form using n-ary 178
constraints can be transformed into an equivalent CSP using only binary (2-ary) constraints. The language 179
therefore looses none of its expressive power with this restriction. 180

 181
2. Discrete Variable Domains. CSPs with only discrete sets of values in each variable domain are by far the best 182

understood in the literature. Solving CSPs with ranges of continuous real values for value domains requires 183
specialised solving techniques, therefore they are excluded in this version of the language. In practice, CSPs 184
requiring continuous values are often be formulated by discretizing the continuous domain (so that discrete CSP 185
solving techniques can be applied, see [SamHaroud96]). 186

 187
3. Intensional Relations. There are two main ways of representing constraints for CSPs – as extensional relations 188

(consisting of a list of the valid combinations of values for a pair or tuple of variables) and as intensional relations 189
(consisting of relations such as equals, greater-than etc. which do not rely on an explicit list). FIPA CCL excludes 190
the use of extensional relations – this makes CSPs expressed in FIPA CCL much easier to compose (merge) when 191
fusing information from several sources. Once again, no expressive power is lost since it can be shown that for 192
discrete CSPs every formulation using extensional constraints has an equivalent formulation using only intensional 193
constraints. 194

 195
There are also several implicit constraints which arise out of the fact that that CSPs represented in FIPA CCL must be 196
contained in a single message: 197

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 3

 198
 The number of variables must be finite (since they must be encapsulated in a single message), and, 199
 200
 The number of constraints must be finite (since they must be encapsulated in a single message). 201
 202

1.3 Language Properties 203

Given the CSP representation in previous sections, the following sections make statements about the formal properties 204
of FIPA CCL. 205
 206

1.3.1 Search Termination and Complexity 207

The basic underlying representation used in FIPA CCL is that of a CSP. In a sense most messages in FIPA CCL will 208
define a problem (a CSP) which acts as an, as yet, unexplored solution space. This allows us to make definitive 209
statements about when these problems have solutions, when a search is guaranteed to terminate and how long the 210
search might take. 211
 212
Questions of termination depend upon the type of CSP represented and on the state of the variable domains as follows: 213
 214
 If all variable domains are discrete (as they must be given the restrictions in Section 0) and finite, then the solution 215

and search spaces are both finite and search is guaranteed to terminate. 216
 217
 Although the search for a solution can be shown to terminate, solving the problem is in general NP-complete. This 218

is to be expected since the choice problems agents using FIPA CCL are trying solve are by their very nature 219
combinatorially explosive. 220

 221
 It has been shown that for some restricted types of CSP problem the complexity of finding a solution may be less 222

than NP-complete: linear or polynomial for example (for example, see [Freuder82] and [vanBeek97]). 223
 224
An important advantage gained by using the underlying CSP representation is that problem solving can leverage the 225
powerful techniques which have been developed for CSP solving (there is extensive literature on this subject and 226
[Tsang94] provides a good starting point). Techniques exist which routinely solve problems of over 1000 variables and 227
most problems of 10-20 variables can be solved using very simple search algorithms. 228
 229

230

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 4

2 FIPA Constraint Choice Language Ontology 230

2.1 Object Descriptions 231

This section describes a set of frames, that represent the classes of objects in the domain of discourse within the 232
framework of the FIPA-CCL ontology. 233
 234
The following terms are used to describe the objects of the domain: 235
 236
 Frame. This is the mandatory name of this entity, that must be used to represent each instance of this class. 237
 238
 Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the 239

table. 240
 241
 Parameter. This is the mandatory name of a parameter of this frame. 242
 243
 Description. This is a natural language description of the semantics of each parameter. 244
 245
 Presence. This indicates whether each parameter is mandatory or optional. 246
 247
 Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence. 248
 249
 Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter. 250
 251

2.1.1 Choice Problem 252

This object represents a choice problem. For a CSP object to be well defined, the items in the exclusion and 253
relations parameters must only refer to variables which are present in the Variables parameters. If the csp-ref 254
parameter is not empty, then the CSP referenced in this parameter is taken to be the object of the csp-identifier 255
object and the items in the variables, relations and exclusions fields are ignored. A CSP object which contains 256
no variables, relations or exclusions (directly or by reference) is known as a null CSP. 257
 258
Frame
Ontology

csp
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object. Mandatory csp-identifier
variables Represents the choices which need

to be taken in the choice problem.
The variables listed in this
parameter must all have unique
names. The Variables listed in this
parameter should have unique
Role/Type combinations.

Optional Set of csp-variable

relations Represent the relationships
between the choices to be made.

Optional Set of csp-variable

exclusions Represents a list of unary relations
on single variables which exclude
certain values from variable
domains

Optional Set of csp-variable

 259

2.1.2 Solution 260

This object captures the notion of a solution to a choice problem. Here all the choices are assigned an appropriate 261
value (one of the options) and the assignment violates none of the posted constraints. 262

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 5

 263
Frame
Ontology

csp-solution
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object that

the solution is for.
Mandatory csp-identifier

assignments A list of variable assignments such
that the list contains one and only
one assignment for each and every
variable defined in the CSP
reference in the CSP-ref slot, and,
the assignment of these values
violates none of the constraints
posted for the CSP in the csp-ref
parameter. That is, the variable
assignment must be consistent.

Mandatory Set of csp-variable-
assignment

 264

2.1.3 Solution List 265

This object captures the notion of a list of solutions to a choice problem. 266
 267
Frame
Ontology

csp-solution-list
FIPA-CCL

Parameter Description Presence Type Reserved Values
csp-ref This references a CSP object that

the list of solutions is for.
Mandatory csp-identifier

solutions This is a list of possible solutions to
the choice problem. The list must
contain at least one such solution
and may contain any subset of the
whole set of solutions for the CSP.

Mandatory Set of csp-solution

 268

2.1.4 Identifier 269

This object represents the unique identifier of a CSP. 270
 271
Frame
Ontology

csp-identifier
FIPA-CCL

Parameter Description Presence Type Reserved Values
identifier-
body

This is the unique identifier of the
CSP.

Mandatory Symbol

 272
273

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 6

2.1.5 Range 273

This object represents a complete domain, to be used when explicit enumeration of values would be too inefficient. The 274
two items range and tuple-range are optional however one or the other must be present. 275
 276
Frame
Ontology

csp-range
FIPA-CCL

Parameter Description Presence Type Reserved Values
range This defines complete domains

such as ordered lists of number
numbers, world-airports, etc., which
must be part of a common ontology.

Optional domain-range

tuple-range This defines a combination of all the
legal values in a tuple. A range is
given for each slot in the tuple and
this parameter specifies that all
combinations of values from the
given ranges in each slot in the
tuple are legal.

Optional Set of domain-range

 277

2.1.6 Value 278

This object represents an option. In general this can be a tuple and hence, the variable is an ordered list of domain 279
terms. 280
 281
Frame
Ontology

csp-value
FIPA-CCL

Parameter Description Presence Type Reserved Values
npart This identifies the number of

elements of the tuple value which
must be identical to the number of
items in the elements parameter.

Mandatory Number

elements This gives a list of values: one for
each of the elements in the tuple.

Mandatory Set of domain-term

tags This contains a list of symbols that
allow selective constraints.

Optional Set of Symbol

 282

2.1.7 Value List 283

This object represents a list of options. Each option is a tuple and each of the values in the list must have the same 284
number of elements in the tuple; the number of elements must in turn be equal to the value of the npart parameter. 285
 286
Frame
Ontology

csp-value-list
FIPA-CCL

Parameter Description Presence Type Reserved Values
npart This identifies the number of

elements of the tuple value which
must be identical to the number of
items in the elements parameter.

Mandatory Number

value-list This gives a list of values: one for
each of the elements in the tuple.

Mandatory Set of (Set of domain-
term)

tags This contains a list of symbols that
allow selective constraints.

Optional Set of Symbol

 287

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 7

2.1.8 Variable 288

This object represents a single choice to be made, along with a set of possible options for that choice. The type and 289
role parameters enable this object to be situated within the problem solving context. 290
 291
Frame
Ontology

csp-variable
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This gives a unique symbol that is

used to make references to the
variable within the context of a
single CSP.

Mandatory Symbol

type This specifies the type of values
that the variable takes which
includes granularity. An ordered list
is used since the variable might
take tuple values. In this case, the
first type refers to the type of the
first element in the tuple, etc.

Mandatory Set of domain-
variable-type

role This identifies the position of the
variable within the problem-solving
context.

Optional Set of domain-role-
term

domain This lists the possible values this
variable object may take, that is, the
available options. These options
must be consistent with the types of
values given in the type parameter.

Optional csp-range
|
Set of csp-value

 292

2.1.9 Variable Assignments 293

This object represents the assignment of a variable with a value. The variable named in the name parameter is 294
assigned the value given in the value parameter. This represents a variable instantiation, that is, a choice being made. 295
 296
Frame
Ontology

csp-variable-assignment
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This is the name of the variable

having a value assigned to it.
Mandatory csp-variable-name

value This is value being assigned which
must match with the type of the
variable.

Mandatory csp-value

 297

2.1.10 Variable Name 298

This object represents the name of a variable in a CSP. 299
 300
Frame
Ontology

csp-variable-name
FIPA-CCL

Parameter Description Presence Type Reserved Values
name This name of a variable (choice). Mandatory Symbol

 301
302

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 8

2.1.11 Exclusion 302

This object represents a constraint on a single variable by specifying a set of values that is explicitly disallowed for this 303
variable. 304
 305

2.1.12 Relation 306

This object represents a relation between two variables. Any variables named in the Relation-body must appear in the 307
set of Variables of the relation. The indices parameter identifies which slots in a tuple valued variable are covered 308
by the relation. For example, for an equality relation between two variables with 3 tuples as values (for example, (x, y, 309
z)), setting the set of indices to ((2,2), (3,3)) indicates that only the 2nd and 3rd slot of the value tuples need ever be 310
equal – the constraint is not violated even if the values in the 1st slots are unequal. 311
 312
Frame
Ontology

csp-relation
FIPA-CCL

Parameter Description Presence Type Reserved Values
variables This contains two variable

names such that the named
variables are defined in the
current CSP1.

Mandatory Set of csp-
variable-
name

relation-
type

This is the type of the relation
being applied.

Mandatory String Intentional-Equality
Intentional-Inequality
Intensional-GreaterThan
Intensional-LessThan
Intensional-GreaterThanEqual
Intensional-LessThanEqual
Intensional-Empty

indices This specifies what sub-fields of
variable values the relation refers
to.

Mandatory Set of
index-
pair

tags This contains a list of symbols
that allow selective constraints.

Optional Set of
Symbol

 313
314

1 The restriction to two variables here (rather than 2 or more) corresponds to the restriction of FIPA-CCL to binary relations only.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 9

Table 1 describes the allowed relations which can be specified in relation-type. 314
 315
Relation Type Description
Intentional-Equality This specifies that all the variables listed in the variables parameter of the

relevant CSP object and must take equal values in any instantiation.
Intentional-Inequality This specifies that all the variables listed in the variables parameter of the

relevant CSP object and must take strictly different values in any instantiation.
Intensional-GreaterThan This specifies that the variables in the variables list of the relevant CSP object

are related by a “greater than” relationship such that the order of the tuple defines
the order in the relationship; the first variable in the list is strictly greater than the
second, which is strictly greater than the third, etc. Note that this relation is only
valid for variable types which have an ordering relation defined in the domain
ontology (integers, for example).

Intensional-LessThan This specifies that the variables in the variables list of the relevant CSP object
are related by a “less than” relationship such that the order of the tuple defines
the order in the relationship; the first variable in the list is strictly less than the
second, which is strictly less than the third, etc. Note that this relation is only
valid for variable types which have an ordering relation defined in the domain
ontology (integers, for example).

Intensional-
GreaterThanEqual

Similar to the Intensional-GreaterThan relation but using a “greater than or
equals” relation.

Intensional-
LessThanEqual

Similar to the Intensional-GreaterThan relation but using a “less than or
equals” relation.

Intensional-Empty This specifies that there are no allowed combinations of values for these values.
 316

Table 1: Variable Relationship Types 317
 318

2.1.13 Domain Range 319

Frame
Ontology

domain-range
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
range-body

This is a symbol defined in this
ontology.

Mandatory String

 320

2.1.14 Domain Role Term 321

Frame
Ontology

domain-role-term
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
role-term-
body

This is a symbol defined in this
ontology.

Mandatory String

 322

2.1.15 Domain Term 323

Frame
Ontology

domain-term
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
term-body

This is a symbol defined in this
ontology.

Mandatory String

 324

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 10

2.1.16 Domain Variable Type 325

Frame
Ontology

domain-variable-type
FIPA-CCL

Parameter Description Presence Type Reserved Values
domain-
variable-
type-body

This is a symbol defined in this
ontology.

Mandatory String

 326

2.1.17 Symbol 327

This object is used to identify particular instances of objects. Symbols should be unique in their context of use. 328
 329
Frame
Ontology

Symbol
FIPA-CCL

Parameter Description Presence Type Reserved Values
symbol-body This is a unique word that is used to

identify a particular instance of an
object.

Mandatory String

 330

2.1.18 Index Pair 331

This object is used in relations to reference the individual fields in tuples. Given two variables with tuple valued 332
variables, the this object indicates a field in the first and a field in the second which are somehow related. 333
 334
Frame
Ontology

index
FIPA-CCL

Parameter Description Presence Type Reserved Values
index-body This is a pair of numeric values

which are used to identify which two
particular fields in a tuple are related

Mandatory Set of Integer

 335

2.2 Function Descriptions 336

The following tables define usage and semantics of the functions that are part of the FIPA-CCL ontology. 337
 338
The following terms are used to describe the functions of the FIPA-CCL domain: 339
 340
 Function. This is the symbol that identifies the function in the ontology. 341
 342
 Ontology. This is the name of the ontology, whose domain of discourse includes the function described in the 343

table. 344
 345
 Description. This is a natural language description of the semantics of the function. 346
 347
 Domain. This indicates the domain over which the function is defined. The arguments passed to the function must 348

belong to the set identified by the domain. 349
 350
 Range. This indicates the range to which the function maps the symbols of the domain. The result of the function is 351

a symbol belonging to the set identified by the range. 352
 353
 Arity. This indicates the number of arguments that a function takes. If a function can take an arbitrary number of 354

arguments, then its arity is undefined. 355
 356

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 11

2.2.1 Give Constraints for Information Gathering 357

This action is used to collect constraints on a given set of variables and domains (that is, those specified in the CSPT). 358
The information is captured in a new CSP – CSPINF which is a copy of CSPT containing new constraints (and potentially 359
new variables which are required for expressing these new constraints). The two CSPs (CSPT and CSPINF) could now 360
be composed using one of the two main composition operations (conjunctive or disjunctive composition – see Section 361
5.3.2, Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets). However it should be 362
noted that this composition is not part of the csp-give-constraints action. 363
 364
 Using csp-give-constraints followed by a conjunctive composition of CSPT and CSPINF creates a CSP whose 365

solutions satisfy both the actor’s constraints and the constraints originally present in CSPT. 366
 367
 Using csp-give-constraints followed by a disjunctive composition of CSPT and CSPINF creates a CSP whose 368

solutions satisfy either the original constraints in CSPT or the constraints of the actor or both. 369
 370
An agent can perform the csp-give-constraints iff it knows all variables vi and all constraints ci identifying the 371
problem P to solve (either by understanding the CSP sent in the message or having access to the CSP referred to in 372
the csp-ref reference). 373
 374
Function csp-give-constraints

Ontology FIPA-CCL

Description The expected effect of this function is the creation of a new CSP (CSPINF) containing information
the agent carrying out the action (the actor) wishes to express about the choice problem defined
by the CSP given in target of the action (CSPT). CSPINF consists of:
 A complete copy of CSPT , including: all the variables originally present in CSPT (with their

original roles and types), all the values in the variable domains of these variables and all the
constraints present in CSPT.

 New information in the form of constraints between variables vi specified in CSPT, i.e.:
- Relations between variables vi,
- Exclusions on variable domains of vi.

 CSPINF may also include new variables (with associated domain values) which are added as
part of the expression of constraints (when expressing ternary constraints in their binary
representation for example – see Section 5, Informative Annex B — Language Usage).

Domain csp / csp-identifier
Range If the action could be successfully performed, then a CSP object representing the new CSPINF is

generated. All new elements (those not present in CSPT), including constraints, domain values
and variables in CSPINF must include a tag in their tags field. This tag should be: the same for
each element (this identifies all added information as being the result of a single information
gathering action) and not present as a tag in the CSPT (ensuring that the information does not
become mixed with existing information).

If the csp-give-constraints function contains a csp-identifier referring to a CSP which
the receiving agent has no knowledge of, then csp-unknown proposition is the result of the
function.

Arity 1
 375

2.2.2 Give Values for Information Gathering 376

This function is used to collect suitable options for a certain problem solving context. The CSP given as argument 377
specifies a list of variables whose types, roles and relations identify the requested values. The two CSPs (CSPT and 378
CSPINF) could now be composed using one of the two main composition operations (conjunctive or disjunctive 379
composition – see Section 5.3.2, Information Fusion for Constraint Satisfaction Problems with Non-identical Variable 380
Sets). However it should be noted that this composition is not part of the csp-give-constraints function. 381
 382

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 12

 Using csp-give-values followed by a conjunctive composition of CSPT and CSPINF creates a CSP whose 383
solutions only contain value assignments which are acceptable to both the actor and the agent(s) creating the 384
original CSPT. 385

 386
 Using csp-give-values followed by a disjunctive composition of CSPT and CSPINF creates a CSP which includes 387

an extended set of options (and possibly solutions) beyond those available in the original CSPT . 388
 389
An agent can perform the csp-give-values iff it knows all variables vi and all constraints ci identifying the problem P 390
to solve. 391
 392
Function csp-give-values

Ontology FIPA-CCL

Description The expected effect of this function is the creation of a new CSP (CSPINF) containing information
the agent carrying out the function (the actor) wishes to express about the choice problem
defined by the CSP given in target of the function (CSPT). CSPINF consists of:
 A copy of all the variables vi in CSPT including their original roles and types but not including

the values in their domains,
 New information in the form of values added to the domains of variables vi in CSPINF :

- A new value is added to the domain of variable v iff the actor considers this value suitable
as an assignment for variable v in a solution to the choice problem defined by CSPT.
Values may be taken from the original domains of the variables in CSPT or be obtained
from other sources.

- If the actor knows of no suitable values for the domain of a particular variable then the
domain is left empty.

 CSPINF may also include new constraints (exclusions and relations) between the variables
since these new constraints apply to the values being given as information by the execution
of the function. New variables may be added as part of the expression of these constraints
(when expressing ternary constraints for example).

Domain csp / csp-identifier
Range If the function could be successfully performed, then a CSP object representing the new CSPINF is

generated. All new elements (those not present in CSPT), including constraints, domain values
and variables in CSPINF must include a tag in their tags field. This tag should be: the same for
each element (this identifies all added information as being the result of a single information
gathering function) and not present as a tag in the CSPT (ensuring that the information does not
become mixed with existing information).

If the csp-give-values function contains a csp-identifier referring to a CSP which the
receiving agent has no knowledge of, then csp-unknown proposition is the result of the function.

Arity 1
 393

394

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 13

2.2.3 Solving to Generate Solutions 394

This is the function of solving a CSP (the CSP specified as the subject parameter of the function). In order to perform 395
this function an agent must be able to understand the CSP problem representation, that is, all of the variables and 396
constraints. 397
 398
Function csp-solve

Ontology FIPA-CCL

Description The expected effect of having performed this function is to find an assignment of values to the
variables vi in the CSP specified as the target of the function CSPT such that none of the
constraints ci specified in CSPT are violated.

Domain csp / csp-identifier
Range If a solution to the problem identified by the csp-solve function (CSPT) exists then it is

represented by a resulting csp-solution object.

If there exist no solutions to the CSP identified of the csp-solve function, then a csp-
insoluble proposition is the result of the function.

If the csp-solve function contains a csp-identifier referring to a CSP which the receiving
agent has no knowledge of, then a csp-unknown proposition is the result of the function.

Arity 1
 399

2.2.4 Solving to Generate a List of Solutions 400

This function is similar to the csp-solve function but is defined as solving the CSP given in the subject parameter to 401
return all of its solutions and collating these into a list of solutions. 402
 403
Function csp-solve-list

Ontology FIPA-CCL

Description The expected effect of having performed this function is to find one or several sets of
assignments of values to the variables vi in the CSP specified as the target of the function CSPT
such that none of the constraints ci specified in CSPT are violated.

Domain csp / csp-identifier
Range If a solution or set of solutions to the problem identified by the csp-solve function (CSPT) exists

then it is represented by a resulting csp-solution-list object.

If there exist no solutions to the CSP identified in the csp-solve-list function, then a csp-
insoluble proposition is the result of the function.

If the csp-solve-list function contains a csp-identifier referring to a CSP which the
receiving agent has no knowledge of, then a csp-unknown proposition is the result of the
function.

Arity 1
 404

405

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 14

2.3 Propositions 405

A proposition makes a statement about the truth or falsity of a property of a CSP object. Note that the definitions given 406
in this section are effectively proposition schemas expressed as predicates. However, once the variables in the 407
schemas are instantiated the ensemble is treated as a proposition. 408
 409

2.3.1 Insoluble 410

This states that the CSP given in the subject parameter has no solutions. 411
 412
Proposition csp-insoluble

Ontology FIPA-CCL

Description This proposition is true iff X such that X is an assignment of values to the variables of the given
CSP consistent with the given constraints.

Domain csp / csp-identifier
 413

2.3.2 Soluble 414

This states that the CSP given in the subject parameter has at least one solution. 415
 416
Proposition csp-soluble

Ontology FIPA-CCL

Description This proposition is true iff at least an X such that X is an assignment of values to the variables
of the given CSP consistent with the given constraints.

Domain csp / csp-identifier
 417

2.3.3 Unknown 418

This states that the CSP referred to is unknown to an agent. 419
 420
Proposition csp-unknown

Ontology FIPA-CCL

Description This proposition is true iff the referred CSP is unknown to the agent making the statement.
Domain csp-identifier

 421

2.3.4 Is a Constraint Satisfaction Problem 422

This proposition can be used to wrap CSPs in a proposition construct for general information passing. The semantic 423
meaning of the message containing such a proposition may be derived from the conversation context. 424
 425
Proposition is-csp

Ontology FIPA-CCL

Description This proposition is true iff the object referred to is a well formed CSP object.
Domain csp / csp-identifier

 426
427

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 15

2.3.5 Is an Action Result 427

The csp-action value is not mandatory since in some cases it may be unnecessary to repeat the specification of the 428
action that led to the result since the action is being referred to may be clear form the context. 429
 430
Proposition is-action-result

Ontology FIPA-CCL

Description This proposition is true iff the object referred to is the result of an action which is either given in
the optional csp-action value or is well defined in the context of the agent conversation.

Domain ccl-object / ccl-proposition, csp-action
 431

2.4 Ontology Requirements 432

To ensure that domain ontologies can be easily bound into the content language, FIPA CCL imposes some minimal 433
restrictions on the form of an ontology that is used with it. In particular the ontologies must define items of the following 434
types: 435
 436
 Types of variables should correspond to the object defined in Section 2.1.16, Domain Variable Type. Variable 437

types define the form of information which variables of that type can express, for example, times, dates, places, 438
airlines, etc. 439

 440
 Roles of variables should correspond to the object defined in Section 2.1.14, Domain Role Term. A variable role 441

corresponds to the variable’s function in the current problem solving context, for example, 'flight', 'outbound', 442
'meeting location', etc. Agents can attach roles to variables to keep track of the semantic interpretation of the choice 443
problem. 444

 445
 Values are the available options for choices and correspond to the domain-term terminals defined in Section 446

2.1.15. This can be any usefully defined term in the domain ontology. 447
 448
 Variable domain ranges should correspond the allowed range expressions in the domain, where a range is a well 449

defined set or continuum of domain terms. Domain ranges correspond to the object defined Section 2.1.13, Domain 450
Range. Since some variable domains are often best compactly expressed as ranges rather than enumerated, an 451
ontology may define the legal types of ranges available. Examples include, ranges of time (“working-day” = 8.00am 452
– 5.00pm), ranges of sizes (shoe size = 3 – 12), etc. For some ontologies, domain ranges may be parameterised 453
expressions, for example, a time ontology may include a expression for a range such as hours (start, end) 454
indicating the range of hours between the start and end hours given. 455

 456
Effectively these restrictions impose typing requirements on the domain ontology to be used with FIPA CCL. How the 457
types are expressed in any particular ontology is application and ontology dependent and hence not addressed in this 458
specification. 459
 460

461

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 16

3 References 461

[Dechter92] Constraint Networks, Dechter, R. In: Encyclopedia of Artificial Intelligence, Wiley, pages 276-285, 1992. 462
[FIPA00061] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, 2000. 463

http://www.fipa.org/specs/fipa00061/ 464
[Freuder82] A Sufficient Condition of Backtrack-Free Search, Freuder, EC. In: Journal of the ACM, 29(1), pages 24-465

32, January 1982. 466
[Mackworth77] Consistency in Networks of Constraints, Mackworth, A. In: Artificial Intelligence, Vol. 8, 1977. 467
[SamHaroud96] Consistency Techniques for Continuous Constraints, Sam-Haroud, D and Faltings, B. In: Constraints, 468

1(1), pages 85-118, 1996. 469
[Tsang94] Foundations of Constraint Satisfaction, Tsang, E. Academic Press, 1994. 470
[vanBeek97] Constraint Tightness and Looseness Versus Local and Global Consistency, van Beek, P and Dechter, 471

R. In: Journal of the ACM, 44(4), pages 549-566, July 1997. 472
[Waltz 75] Generating Semantic Descriptions from Drawings of Scenes with Shadows, Waltz, D I. In: The 473

Psychology of Computer Vision, McGraw-Hill, 1975. 474
 475

476

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 17

4 Normative Annex A — FIPA-CCL XML Based Concrete Syntax 476

This annex gives a concrete syntax for the FIPA CCL language as an XML DTD. This syntax is the default syntax for 477
FIPA CCL and the only one currently defined. Any agent sending an ACL message with the :content parameter set 478
to FIPA-CCL is assumed to have used this syntax. 479
 480

4.1 XML DTD 481
<?xml version="1.0" encoding="UTF-8"?> 482
 483
<!--=== DTD of the Choice Content Language (CLL). This definition is based in the 484
document "A FIPA Content Language for Expressing Agent Choice: Constraint Choice 485
Language (FIPA-CCL)" ===--> 486
 487
<!ELEMENT Expression (Object 488
 | Action 489
 | Proposition)> 490
 491
<!--Definition of an Object in FIPA-CCL--> 492
<!ENTITY % objects "CSP 493
 | CSP-solution 494
 | CSP-solution-list"> 495
<!ELEMENT Object (CSP 496
 | CSP-solution 497
 | CSP-solution-list)> 498
<!ATTLIST Object Name (%objects;) #REQUIRED> 499
 500
<!--== CSP ===--> 501
<!ELEMENT CSP (CSP-variable*, CSP-relation*, CSP-exclusion*)> 502
<!ATTLIST CSP CSP-ref ID #IMPLIED> 503
 504
<!--=== CSP-solution ===--> 505
<!ELEMENT CSP-solution (CSP-variable-assignment*)> 506
<!ATTLIST CSP-solution href CDATA #REQUIRED> 507
 508
<!--=== CSP-solution-list ===--> 509
<!ELEMENT CSP-solution-list (CSP-solution+)> 510
<!ATTLIST CSP-solution-list href CDATA #REQUIRED> 511
 512
<!--Definition of an Action in FIPA-CCL--> 513
 514
<!ENTITY % actions "CSP-give-constraints 515
 | CSP-give-values 516
 | CSP-solve 517
 | CSP-solve-list"> 518
<!ELEMENT Action (CSP-give-constraints 519
 | CSP-give-values 520
 | CSP-solve 521
 | CSP-solve-list)> 522
<!ATTLIST Action Name (%actions;) #REQUIRED> 523
 524
<!--=== CSP-give-constraints ===--> 525
<!ELEMENT CSP-give-constraints (CSP 526
 | CSP-identifier)> 527
 528
<!--=== CSP-give-values ===--> 529
<!ELEMENT CSP-give-values (CSP 530
 | CSP-identifier)> 531
 532
<!--=== CSP-solve ===--> 533
<!ELEMENT CSP-solve (CSP | CSP-identifier)> 534

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 18

<!--ENTITY % result-values "CSP-solution 535
 | CSP-insoluble 536
 | CSP-solution-list"--> 537
 538
<!--=== CSP-solve-list ===--> 539
<!ELEMENT CSP-solve-list (CSP 540
 | CSP-identifier)> 541
 542
<!--Definition of a Proposition in FIPA-CCL--> 543
 544
<!ENTITY % propositions "CSP-insoluble 545
 | CSP-soluble 546
 | CSP-unknown"> 547
<!ELEMENT Proposition (CSP-insoluble 548
 | CSP-soluble 549
 | CSP-unknown)> 550
<!ATTLIST Proposition Name (%propositions;) #REQUIRED> 551
 552
<!--=== CSP-insoluble ===--> 553
<!ELEMENT CSP-insoluble (CSP 554
 | CSP-identifier)> 555
 556
<!--=== CSP-soluble ===--> 557
<!ELEMENT CSP-soluble (CSP 558
 | CSP-identifier)> 559
 560
<!--=== CSP-unknown ===--> 561
<!ELEMENT CSP-unknown EMPTY> 562
<!ATTLIST CSP-unknown href CDATA #REQUIRED> 563
 564
<!--=== IS-csp ===--> 565
<!ELEMENT IS-csp (CSP 566
 | CSP-identifier)> 567
 568
<!--=== IS-action-result ===--> 569
<!ELEMENT IS-action-result (Action-performed?, Result-obtained)> 570
<!ELEMENT Result-obtained (Object 571
 | Proposition)> 572
<!ELEMENT Action-performed (Action)> 573
 574
<!--Apart from the three main types of items listed above (Actions, Objects and 575
Propositions) there are also other constructs in the CL which form part of the main 576
objects but cannot form valid sentences by themselves.--> 577
 578
<!--=== CSP-identifier ===--> 579
<!ELEMENT CSP-Identifier EMPTY> 580
<!ATTLIST CSP-Identifier href CDATA #REQUIRED> 581
 582
<!--=== CSP-domain ===--> 583
<!ELEMENT CSP-domain (Tags*)> 584
<!ATTLIST CSP-domain Range CDATA #REQUIRED> 585
<!ELEMENT Tags EMPTY> 586
<!ATTLIST Tags Name CDATA #REQUIRED> 587
 588
<!--=== CSP-value ===--> 589
<!ELEMENT CSP-value (Elements+, Tags*)> 590
<!ATTLIST CSP-value Npart CDATA #REQUIRED> 591
<!ELEMENT Elements EMPTY> 592
<!ATTLIST Elements Value CDATA #REQUIRED> 593
 594
<!--=== CSP-variable ===--> 595
<!ELEMENT CSP-variable (Role*, Domain*)> 596
<!ATTLIST CSP-variable Name CDATA #REQUIRED 597
 Type CDATA #REQUIRED> 598

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 19

<!ELEMENT Role (#PCDATA)> 599
<!ELEMENT Domain (CSP-range 600
 | CSP-value+ 601
 | CSP-value-list)> 602
 603
<!--=== CSP-range ===--> 604
<!ELEMENT CSP-range (Tuple-range) > 605
<!ATTLIST CSP-range Range CDATA #REQUIRED> 606
<!ELEMENT Tuple-range EMPTY> 607
<!ATTLIST Tuple-range Values CDATA #REQUIRED> 608
 609
<!--=== CSP-variable-assignment ===--> 610
<!ELEMENT CSP-variable-assignment (CSP-value)> 611
<!ATTLIST CSP-variable-assignment Name CDATA #REQUIRED> 612
 613
<!--=== CSP-value-list===--> 614
<!ELEMENT CSP-value-list (List-values, Tags*) > 615
<!ATTLIST CSP-value-list Npart CDATA #REQUIRED> 616
<!ELEMENT List-values EMPTY> 617
<!ATTLIST List-values Values CDATA #REQUIRED> 618
 619
<!--Constraint Related Items--> 620
 621
<!--=== CSP-exclusion ===--> 622
<!ELEMENT CSP-exclusion (Excluded-Values+, Tags*)> 623
<!ATTLIST CSP-exclusion Variable-name CDATA #REQUIRED> 624
<!ELEMENT Excluded-Values (CSP-value)> 625
 626
<!--=== CSP-relation ===--> 627
<!ENTITY % relation "intentional-Equality 628
 | intentional-Inequality 629
 | Intensional-GreatherThan 630
 | Intensional-LessThan 631
 | Intensional-GreatherThanEqual 632
 | Intensional-LessThanEqual 633
 | Intensional-Empty"> 634
<!ELEMENT CSP-relation (Tags*)> 635
<!ATTLIST CSP-relation Variables CDATA #REQUIRED 636
 Relation-type (%relation;) #REQUIRED 637
 Indices CDATA #REQUIRED> 638
 639

640

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 20

5 Informative Annex B — Language Usage 640

FIPA CCL is primarily intended for information gathering and problem solving for tasks involving multiple interrelated 641
choices. In general information gathering and problem solving tasks can be broken down into four steps2: 642
 643
1. Problem modelling, 644
 645
2. Information gathering, 646
 647
3. Information fusion, and, 648
 649
4. Problem solution. 650

 651
This section gives a brief overview of using FIPA CCL in each of these steps. 652
 653

5.1 Step 1: Problem Modelling 654

Modelling a choice problem in the FIPA CCL language requires the problem to be formulated as a CSP: 655
 656
 Identifying what the choices are which become the variables in the problem formulation, 657
 658
 Identifying which options are available for each of the choice which generates the domains of values for each of the 659

variables, and, 660
 661
 Specifying how choices are related which generates the constraints (relations and exclusions) which apply to 662

problem solutions. 663
 664

This process is exactly what would be required when formulating problems so that they can be expressed in FIPA CCL 665
messages. The process is in general intuitive, although there may also exist multiple formulations of a particular 666
problem all of which are equivalent in the solution space they describe (although they may be easier or harder to solve 667
depending upon the solution techniques applied). 668
 669

5.1.1 FIPA Constraint Choice Language Constraint Representations 670

FIPA CCL uses a particular style of representation for constraints which allows only two types of constraints: 671
 672
 Exclusions which act on a single variable and are specified as a no-good list, that is, a list of values which this 673

variable may not take. 674
 675
 Binary intensional relations which act on two variables and are restricted to a closed set of eight general types of 676

relations, that is, the set { , , , , , , , null}. 677
 678
The use of tuple-valued variables allows the language to handle arbitrary n-ary constraints by introducing variables 679
whose values represent the tuples allowed by the constraint and then linking the n variables involved in the n-ary 680
constraints to the tuple valued variable using binary relations. The advantage of this implementation is that solving or 681
consistency engines can be restricted to unary and binary constraints. 682
 683
As an example of representing n-ary constraints in terms of binary constraints consider a ternary constraint over three 684
variables (Hotel, City and Room-Type): 685
 686
 Variable: Hotel, Values: {Marriott, Intercontinental, Hyatt-Regency}. 687
 688
 Variable: City, Values: {New York, Washington, Chicago}. 689

2 [Dechter92] and [Tsang94] provide good introductions to modelling problems as CSPs.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 21

 690
 Variable: Room-Type, Values: {standard, suite}. 691
 692
 Constraint: Good-list: {(Hotel: Marriott, City: New York, Room-Type: suite), (Hotel: Intercontinental, City: 693

Washington, Room-Type: standard)}. 694
 695
This can be converted into the following binary CSP by adding a tuple valued variable which represents the good-list: 696
 697
 Variable: Hotel, Values: {Marriott, Intercontinental, Hyatt-Regency}. 698
 699
 Variable: City, Values: {New York, Washington, Chicago}. 700
 701
 Variable: Room-Type, Values: {standard, suite}. 702
 703
 Variable: Constraint-1, Values: {(Marriott, New-York, suite), (Intercontinental, Washington, standard)}. 704
 705
 Constraint: (Intensional-Equality, Variable 1: Hotel, Variable 2: Constraint-1, Indices: {(1, 1)}). 706
 707
 Constraint: (Intensional-Equality, Variable 1: City, Variable 2: Constraint-1, Indices: {(1, 2)}). 708
 709
 Constraint: (Intensional-Equality, Variable 1: Room-Type, Variable 2: Constraint-1, Indices: {(1, 3)}). 710
 711
The same mechanism of using a tuple-valued variable can be used to express constraints which might normally be 712
expressed using an extensional constraint, such as a good list or no-good list, that is, lists of allowed or excluded 713
combinations. 714
 715
Giving a list of all the allowed combinations of values between a set of variables defines an extensional relation, such as 716
for clothing for example: 717
 718
 Variable: Hat, Values: {green, red, brown, black}. 719
 720
 Variable: Shirt, Values: {white, red, pink}. 721
 722
 Constraint: Good-list: {(Hat: green, Shirt: white), (Hat: red, Shirt: white), (Hat: black, Shirt: red)}. 723
 724
This relates the two variables Hat and Shirt by giving a list of the allowed combinations. The same type of 725
representation could be used to express combinations which are not allowed and resulting in a no-good list. In FIPA 726
CCL this would be expressed using three variables, using only intensional relations: 727
 728
 Variable: Hat, Values: {green, red, brown, black}. 729
 730
 Variable: Shirt, Values: {white, red, pink}. 731
 732
 Variable: Constraint-Hat-Shirt, Values: {(green, white), (red, white), (black, red)}. 733
 734
 Constraint: Constraint-Hat: (Intensional-Equality, Variable 1: Hat, Variable 2: Constraint-Hat-735

Shirt, Indices: {(1, 1)}). 736
 737
 Constraint: Constraint-Shirt: (Intensional-Equality, Variable 1: Shirt, Variable 2: Constraint-Hat-738

Shirt, Indices: {(1, 2)}). 739
 740
The two intensional constraints therefore link the Hat and Shirt variables to a new third variable which contains the 741
list of allowed tuples. This removes any need for lists of valid combinations to be represented as constraints. 742
 743

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 22

5.2 Step 2: Information Gathering 744

Once a choice problem had been modelled as a CSP, problem information can be added to the CSP representation to 745
constrain or expand the range of options available. This information can be obtained from other agents by sending 746
requests for csp-give-constraints and csp-give-values: 747
 748

 Requesting csp-give-constraints results in a CSP with more constraints (exclusions or relations) posted on 749
the set of possible combinations, and, 750

 751
 Requesting csp-give-values results in a CSP with more possible options being added to the CSP variables 752

(choices). 753
 754

The results of both these actions is a new CSP which can be composed with the original CSP to create a new CSP with 755
more information about the problem being solved. An agent may request information from several sources by: 756
 757
 Sending the complete CSP to several agents and asking for constraints or values. This case would be most useful 758

if the agents being queried have similar roles in the scenario – e.g. they are all airline flight databases but for 759
different companies. The agent trying to solve the choice problem would receive several sets of information for the 760
same problem. 761

 762
 Dividing up the whole problem into smaller pieces (each containing a – not necessarily disjoint - subset of variables 763

and constraints) and sending requests about each piece to different information agents. This would be most useful 764
when communicating with agents which have different specialties, that is, one hotel database agent, one airline 765
agent and one ticket booking agent. In each communication the interaction concerns only the part of the problem 766
related to the queried agent’s specialty. 767

 768
Once information has been gathered the agent solving the problem can pass on to the information fusion step. 769
 770

5.2.1 Using Tags to Separate Information from Different Sources 771

FIPA CCL includes a way of tagging values and constraints uniquely which allows problems to include a representation 772
of where information came from. In the results of both the csp-give-constraints and csp-give-values 773
functions the domain values and constraints returned can be grouped together using a tag (a unique symbol). The tags 774
are given in the tags parameter of the csp-value, csp-exclusion and csp-relation items. 775
 776

5.3 Step 3: Information Fusion 777

There are two ways of combining CSPs which contain identical sets of variables: 778
 779
 So that the resulting solution space is the intersection of the solutions of each of the participant CSPs. Hence all 780

solutions to the new CSP satisfy all the participant CSPs. In this document this is referred to as a conjunctive 781
combination. 782

 783
 So that the resulting solution space is the union of the solutions of each participant CSPs. Here each solution to the 784

new CSP satisfies at least one of the participant CSPs. In this document this is referred to as a disjunctive 785
combination. 786

 787
These are the basic operations required for compositions. Both operations can be carried out by straightforward 788
algorithms as long as CSPs have the same variables, but may be require transformations to the participant CSPs 789
beforehand. 790
 791

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 23

5.3.1 Using Tags for Information Fusion 792

The mechanism for combining relations relies on the use of tags to achieve the correct semantics. This is best 793
understood by considering an example. In Figure 1, variables X1 and X2 are linked with an equality constraint and tag 794
T1, the solution space is therefore ((a, a), (b, b)). 795

 796

Variable X1

= T1
Variable X2

Constraint

a T1

b T1

a T1

b T1

 797
 798

Figure 1: Constraint Problem 1 799
 800
In Figure 2, the same variables are connected by a constraint3, but with a different tag T2. Its solution space is ((b, b), 801
(c, b), (c, c)). 802
 803

b T2

c T2

Variable X1
 T2

Variable X2

b T2

c T2

Constraint

 804
 805

Figure 2: Constraint Problem 2 806
 807
Hence the tags define two sets of information for the two variables X1 and X2. The information associated with Tag T1 808
gives on set of possibilities for the variable domains and a constraint. The information associated with Tag T2 gives a 809
second set of domains and a different constraint. Some information (such as the value b in both domains) is common to 810
both information sets. 811
 812
Exclusions are handled in the same manner simply by treating them as constraints on a single variable. It should also 813
be noted that when relations have the same tags, they can be combined directly by combining their types, that is, and 814
 combined give =. 815
 816

817

3 Defined over the alphabetical order with a/A as the largest.

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 24

5.3.1.1 Conjunctive Combination 817
Given the two example CSPs in the previous section we can now consider forming the intersection of the two solution 818
spaces described by tags T1 and T2. This intersection would give only the solution ((b, b)) as valid. To do this, we need 819
to intersect the domains for each variable. We then make sure that both constraints apply to the remaining values 820
simultaneously by letting the tags of the remaining values be the union of the tags they had in the original problems, 821
thus making all their constraints applicable (see Figure 3). 822
 823

b T1,T2

Variable X1

= T1
Variable X2

Constraints

b T1,T2
 T2

 824
 825

Figure 3: Constraint Problem 3 826
 827

5.3.1.2 Disjunctive Combination 828
For the same example we can also form the union of the two solution spaces: a new CSP that has the solution space 829
((a, a), (b, b), (c, b), (c, c)). To do this, we need take the union of the domains for each variable. We also take the union 830
of the constraints but constraints only apply to the values which have the appropriate tags that is, constraints only apply 831
to the values they applied to in the original problems (see Figure 4). 832
 833

= T1

Constraint

Variable X1

a T1

b T1,T2

c T2

Constraint

 T2

Variable X2

a T1

b T1,T2

c T2

 834
 835

Figure 4: Constraint Problem 4 836
 837

5.3.2 Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets 838

If two CSPs to be composed do not have exactly the same variables, the two composition operations need to be 839
extended. 840
 841

5.3.2.1 Conjunctive Composition 842
This composition is a straightforward extension of the conjunctive composition for the case where variable sets were 843
identical. when composing two CSPs CSP1 and CSP2 (to form CSPResult): 844
 845

 All constraints from both CSP1 and CSP2 hold in CSPResult (as defined for the standard composition operation), 846
 847

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 25

 All variables from both CSP1 and CSP2 are present in CSPResult, and, 848
 849
 All variables in CSPResult must be instantiated s.t. both participant CSPs are satisfied by any solution to the whole 850

CSPResult. 851
 852

5.3.2.2 Disjunctive Composition 853
The disjunctive case is a little more complex. When composing two CSPs CSP1 and CSP2 (to form CSPResult), variables 854
are treated as follows: 855
 856

 Variables in the intersection CSP1 CSP2 (set I): for the variables which exist in both CSPs the required 857
disjunctive composition operation can be directly applied and all variables and constraints between them appear 858
in CSPResult. 859

 860
 Variables outside the intersection CSP1 CSP2 (set NI): these variables exist in only one of the participant 861

CSPs. All these variables are also added to CSPResult but are modified in the process by adding a special value “*” 862
to each of their domains, where “*” stands for “unused”. 863

 864
To add the variables in CSP1 which do not appear in CSP1 (I.e. are in the intersection of CSP1 and NI – call this set 865
NI1): 866
 867

1. Generate a new unique tag T1. 868
 869
2. For each variable v in NI1: 870
 871

a. Add the “*” value (or a tuple of “*” values, depending on its type) into the domain of v like any other 872
value (unless the domain of v already contains such a value). 873

 874
b. Add the tag T1 to the “*” value, to the relations which involve v and to all values in the domain of 875

variables that participate in these relations (if v already contained the “*” value – add the tag to the 876
previous “*” value). 877

 878
3. Add all the variables in IN1, their related relations and relations between variables in IN1 and I to CSPResult. 879

 880
The same process is performed for the variables in CSP2 and not in CSP1 (set IN2) but with a different tag generated in 881
step 1 of the algorithm. 882
 883
Finally, all the “*” values are considered compatible with any relation, this makes it possible to distinguish solutions to 884
the problem which assign a value to the variable in question and those that do not. The algorithm uses the tag 885
mechanism to distinguish the new variables and relations from the existing ones: since the “*” value is compatible with 886
any relation, the set of solutions of the revised CSP is exactly the solutions of the original CSP with the “*” value added 887
for the new variable. Furthermore, the unique tag ensures that this same property continues to hold when the new CSP 888
is combined with another one. 889
 890

5.4 Step 4: Problem Solving 891

Once a problem has been modelled, information gathered and composed to form a single choice problem, then this can 892
be solved. The semantic meaning behind the variables and constraints in the task model can be stripped away during 893
the solution process and the problem can be solved as a generic CSP. This allows powerful CSP problem solving 894
algorithms to be applied. 895
 896
In the context of the FIPA CCL language there are two main ways to solve a constructed CSP problem: 897
 898

 Implementation of one (or several) solution algorithms in the problem solving agent. Solution algorithms range 899
from very simple compact approaches to elaborate specialised techniques. The next section gives an example of 900
a simple search algorithm which would suffice for most small CSP problems. More advanced algorithms can be 901

© 2000 Foundation for Intelligent Physical Agents FIPA CCL Content Language

 26

found in, among others; [Tsang94], the proceedings of major AI conferences and the proceedings of specialist 902
constraints conferences such as Constraint Programming. 903

 904
 Usage of a dedicated CSP solving agent which implements a suite of algorithms for solving algorithms for generic 905

CSPs. Such solver agents can be requested to solve choice problems using the FIPA CCL language actions 906
csp-solve and csp-solve-list. 907

 908

5.4.1 Simple Constraint Satisfaction Problem Search Algorithm 909

This section gives a basic solution algorithm for CSP problems to provide the minimum for problem solving using FIPA 910
CCL. The backtracking search algorithm given here instantiates variables in some fixed order and is perhaps the most 911
commonly used CSP search techniques (many advanced methods are derived from it). The following gives the general 912
idea: 913
 914

1. Choose some fixed order for the variables in the set of variables V. Choose some fixed order for each of the 915
variable domains Di. Using these orderings repeat the following: 916

 917
2. Choose the next uninstantiated variable vi in the order of V: 918
 919

a. If all the variables in V have been assigned values then a solution has been found and the procedure 920
terminates. 921

 922
b. Otherwise proceed to step 2. 923
 924

3. Assign to vi the next available value d from its domain Di: 925
 926

a. IF Di is empty (there are no remaining values for vi) then backtrack – undo the previous variable 927
assignment made (vi-1), mark vi-1 as unassigned and continue from step 1. 928

 929
b. Otherwise continue to step 3. 930
 931

4. Check that none of the constraints in C which involve variable vi are violated by assigning d to vi: 932
 933

a. IF no such constraint in C is violated, mark vi as instantiated with value d and proceed to the next 934
variable (go to step 1). 935

 936
b. IF a constraint is violated the by this assignment then backtrack - keep vi as uninstantiated, remove the 937

value d from the domain Di and go back to step 2. 938
 939
The procedure also terminates if it backtracks to step 2 and the first variable in the sequence has no remaining possible 940
values in its domain. This indicates that all value combinations are invalid and the CSP has no solution. 941
 942
This procedure is sound and complete since the backtracking procedure essentially explores the search tree of possible 943
variable assignment combinations. Constraints are checked at each step (ensuring a non-valid combination is never 944
allowed) and the backtracking step is eventually forced to explore the whole search tree. 945
 946

5.5 References 947

[Dechter92] Constraint Networks, Dechter, R. Encyclopaedia of Artificial Intelligence, Wiley, pages 276-285, 1992. 948
[Tsang94] Foundations of Constraint Satisfaction, Tsang, E. Academic Press, 1994. 949

	Scope
	Semantic Underpinnings
	Constraint Satisfaction Problem Definitions
	Standard Definition of Constraint Satisfaction Problems
	Expressing Choices and Choice Problems
	Constraint Satisfaction Problem Model Used in FIPA Constraint Choice Language

	Language Properties
	Search Termination and Complexity

	FIPA Constraint Choice Language Ontology
	Object Descriptions
	Choice Problem
	Solution
	Solution List
	Identifier
	Range
	Value
	Value List
	Variable
	Variable Assignments
	Variable Name
	Exclusion
	Relation
	Domain Range

	Function Descriptions
	Give Values for Information Gathering
	Solving to Generate Solutions
	Solving to Generate a List of Solutions

	Propositions
	Insoluble
	Soluble
	Unknown
	Is a Constraint Satisfaction Problem
	Is an Action Result

	Ontology Requirements

	References
	Normative Annex A — FIPA-CCL XML Based Concrete Syntax
	XML DTD

	Informative Annex B — Language Usage
	Step 1: Problem Modelling
	FIPA Constraint Choice Language Constraint Representations

	Step 2: Information Gathering
	Using Tags to Separate Information from Different Sources

	Step 3: Information Fusion
	Using Tags for Information Fusion
	Conjunctive Combination
	Disjunctive Combination

	Information Fusion for Constraint Satisfaction Problems with Non-identical Variable Sets
	Conjunctive Composition
	Disjunctive Composition

	Step 4: Problem Solving
	Simple Constraint Satisfaction Problem Search Algorithm

	References

