
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA KIF Content Language Specification 5

 6

Document title FIPA KIF Content Language Specification
Document number XC00010B Document source FIPA TC C
Document status Experimental Date of this status 2001/08/10
Supersedes None
Contact fab@fipa.org
Change history
2000/08/22 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

iii

Contents 38

1 Scope...1 39
2 FIPA KIF Specification...2 40

2.1 Syntax...2 41
2.1.1 Introduction ...2 42
2.1.2 Characters...3 43
2.1.3 Lexemes..3 44
2.1.4 Expressions...5 45

2.2 Basics ...8 46
2.2.1 Introduction ...8 47
2.2.2 Bottom...9 48
2.2.3 Functional Terms ..9 49
2.2.4 Relational Sentences ..9 50
2.2.5 Equations and Inequalities ..9 51
2.2.6 True and False ..9 52

2.3 Logic ...10 53
2.3.1 Logical Terms..10 54
2.3.2 Logical Sentences...10 55
2.3.3 Quantified Sentences..10 56
2.3.4 Definitions..11 57

2.4 Numbers ...12 58
2.4.1 Introduction ...12 59
2.4.2 Functions on Numbers ..12 60
2.4.3 Relations on Numbers...14 61

2.5 Lists ..14 62
2.6 Characters and Strings...16 63

2.6.1 Characters...16 64
2.6.2 Strings ...17 65

2.7 Meta Knowledge...17 66
2.7.1 Naming Expressions ...17 67
2.7.2 Types of Expressions..18 68
2.7.3 Changing Levels of Denotation ...19 69

3 References ..21 70
4 Informative Annex A — Examples...22 71

1 Scope 72

This document gives the specification the draft proposed American National Standard (ANSkif) for Knowledge 73
Interchange Format (KIF) as a content language for FIPA ACL (see [FIPA00061]. This specification covers: 74
 75
• Expression of objects as terms. 76
 77
• Expression of propositions as sentences. 78
 79
FIPA KIF currently has no specific way to expresses actions. 80

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

2

2 FIPA KIF Specification 81

The aim of this section is to specify KIF as a language for use in the interchange of knowledge among disparate 82
computer systems (created by different programmers, at different times, in different languages, and so forth), especially 83
among FIPA agents. 84
 85
FIPA KIF is not intended as a primary language for interaction with human users (though it can be used for this 86
purpose). Different computer systems can interact with their users in whatever forms are most appropriate to their 87
applications (for example, Prolog, conceptual graphs, natural language and so forth). 88
 89
FIPA KIF is also not intended as an internal representation for knowledge within computer systems or within closely 90
related sets of computer systems (though the language can be used for this purpose as well). Typically, when a 91
computer system reads a knowledge base in FIPA KIF, it converts the data into its own internal form (specialized 92
pointer structures, arrays, etc.) and all computation is done using these internal forms. When the computer system 93
needs to communicate with another computer system, it maps its internal data structures into FIPA KIF before message 94
transfer. 95
 96
The following categorical features are essential to the design of FIPA KIF: 97
 98
• The language has declarative semantics. It is possible to understand the meaning of expressions in the language 99

without appeal to an interpreter for manipulating those expressions. In this way, FIPA KIF differs from other 100
languages that are based on specific interpreters, such as Emycin and Prolog. 101

 102
• The language is logically comprehensive. At its most general, it provides for the expression of arbitrary logical 103

sentences. In this way, it differs from relational database languages (like SQL) and logic programming languages 104
(like Prolog). 105

 106
• The language provides for the representation of knowledge about knowledge. This allows the user to make 107

knowledge representation decisions explicit and permits the user to introduce new knowledge representation 108
constructs without changing the language. 109
 110

In addition to these essential features, FIPA KIF is designed to maximize the following additional features (to the extent 111
possible while preserving the preceding features): 112
 113
• Implementability. Although FIPA KIF is not intended for use within programs as a representation or 114

communication language, it should be usable for that purpose if so desired. 115
 116
• Readability. Although FIPA KIF is not intended primarily as a language for interaction with humans, human 117

readability facilitates its use in describing representation language semantics, its use as a publication language for 118
example knowledge bases, its use in assisting humans with knowledge base translation problems, etc. 119

 120
Unless otherwise stated, all terms and definitions are taken from [ISO10646] and [ISO14481]. 121
 122

2.1 Syntax 123

2.1.1 Introduction 124

As with many computer-oriented languages, the syntax of FIPA KIF is most easily described in three layers. First, there 125
are the basic characters of the language. These characters can be combined to form lexemes. Finally, the lexemes of 126
the language can be combined to form grammatically legal expressions. Although this layering is not strictly essential to 127
the specification of FIPA KIF, it simplifies the description of the syntax by dealing with white space at the lexeme level 128
and eliminating that detail from the expression level. 129
 130
In this section, the syntax of FIPA KIF is presented using a modified BNF notation. All nonterminals and BNF 131
punctuation are written in boldface, while characters in FIPA KIF are expressed in plain font. The notation {x1, ..., xn} 132

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

3

means the set of terminals x1, ..., xn. The notation [nonterminal] means zero or one instances of nonterminal; 133
nonterminal* means zero or more occurrences; nonterminal+ means one or more occurrences; nonterminal ^ n 134
means n occurrences. The notation nonterminal1 - nonterminal2 refers to all of the members of nonterminal1 except 135
for those in nonterminal2. The notation int (n) denotes the decimal representation of integer n. The nonterminals 136
space, tab, return, linefeed and page refer to the characters corresponding to ASCII codes 32, 9, 13, 10, and 12, 137
respectively. The nonterminal character denotes the set of all 128 ASCII characters. The nonterminal empty denotes 138
the empty string. 139
 140

2.1.2 Characters 141

The alphabet of FIPA KIF consists of 7 bit blocks of data. In this document, we refer to FIPA KIF data blocks via their 142
usual ASCII encodings as characters as given in [ISO646]. 143
 144
FIPA KIF characters are classified as upper case letters, lower case letters, digits, alpha characters (non-alphabetic 145
characters that are used in the same way that letters are used), special characters, white space, and other characters 146
(every ASCII character that is not in one of the other categories): 147
 148

upper ::= A | B | C | D | E | F | G | H | I | J | K | L | M | 149
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z 150
 151

lower ::= a | b | c | d | e | f | g | h | i | j | k | l | m | 152
 n | o | p | q | r | s | t | u | v | w | x | y | z 153
 154

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 155
 156

alpha ::= ! | $ | % | & | * | + | - | . | / | < | = | | ? | 157
 @ | _ | ~ | 158
 159

special ::= " | # | ' | (|) | , | \ | ^ | ' 160
 161

white ::= space | tab | return | linefeed | page 162
 163
A normal character is either an upper case character, a lower case character, a digit, or an alpha character. 164
 165

normal ::= upper | lower | digit | alpha 166
 167

2.1.3 Lexemes 168

The process of converting characters into lexemes in called lexical analysis. The input to this process is a stream of 169
characters, and the output is a stream of lexemes. 170
 171
The function of a lexical analyser is cyclic. It reads characters from the input string until it encounters a character that 172
cannot be combined with previous characters to form a legal lexeme. When this happens, it outputs the lexeme 173
corresponding to the previously read characters. It then starts the process over again with the new character. White 174
space causes a break in the lexical analysis process but otherwise is discarded. 175
 176
There are five types of lexemes in FIPA KIF: special lexemes, words, character references, character strings and 177
character blocks. Each special character forms its own lexeme. It cannot be combined with other characters to form 178
more complex lexemes, except through the escape' syntax described below. 179
 180
A word is a contiguous sequence of normal characters or other characters preceded by the escape character \. 181
 182

word ::= normal | word normal | word\character 183
 184
It is possible to include the character \ in a word by preceding it by another occurrence of \, that is, two contiguous 185
occurrences of \ are interpreted as a single occurrence. For example, the string A\\\'B corresponds to a word 186
consisting of the four characters A, \, ', and B. 187
 188

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

4

Except for characters following \, the lexical analysis of words is case insensitive. The output lexeme for any word 189
corresponds to the lexeme obtained by converting all letters not following \ to their upper case equivalents. For 190
example, the word abc and the word ABC map into the same lexeme. The word a\bc maps into the same lexeme as 191
the word A\bC, which is not the same as the lexeme for the word ABC, since the second character is lower case. 192
 193
A character reference consists of the characters #, \, and any character. Character references allow us to refer to 194
characters as characters and differentiate them from one-character symbols, which may refer to other objects. 195
 196

charref ::= #\character 197
 198
A character string is a series of characters enclosed in quotation marks. The escape character \ is used to permit the 199
inclusion of quotation marks and the \ character itself within such strings. 200
 201

string ::= "quotable" 202
 203

quotable ::= empty | quotable strchar | quotable\character 204
 205

strchar ::= character - {",\} 206
 207
Sometimes it is desirable to group together a sequence of arbitrary bits or characters without imposing escape 208
characters, for example, to encode images, audio, or video in special formats. Character blocks permit this sort of 209
grouping through the use of a prefix that specifies how many of the following characters are to grouped together in this 210
way. A character block consists of the character # followed by the decimal encoding of a positive integer n, the 211
character q or Q and then n arbitrary characters. 212
 213

block ::= # int(n) q character^n | # int(n) Q character^n 214
 215
For the purpose of grammatical analysis, it is useful to subdivide the class of words a little further, viz. as variables, 216
operators and constants. 217
 218
A variable is a word in which the first character is ? or @. A variable that begins with ? is called an individual variable. 219
A variable that begins with an @ is called a sequence variable. 220
 221

variable ::= indvar | seqvar 222
 223

indvar ::= ?word 224
 225

seqvar ::= @word 226
 227
Operators are used in forming complex expressions of various sorts. There are three types of operators in FIPA KIF: 228
 229
• Term operators are used in forming complex terms. 230
 231
• Sentence operators and user operators are used in forming complex sentences. 232
 233
• Definition operators are used in forming definitions. 234
 235

operator ::= termop | sentop | defop 236
 237

termop ::= value | listof | quote | if 238
 239

sentop ::= holds | = | /= | not | and | or | = | <= | <= | 240
 forall | exists 241
 242

defop ::= defobject | defunction | defrelation | deflogical | 243
 := | :- | :<= | := 244
 245
All other words are called constants: 246

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

5

 247
constant ::= word - variable - operator 248

 249
Semantically, there are four categories of constants in FIPA KIF: 250
 251
• Object constants are used to denote individual objects. 252
 253
• Function constants denote functions on those objects. 254
 255
• Relation constants denote relations. 256
 257
• Logical constants express conditions about the world and are either true or false. 258
 259
FIPA KIF is unusual among logical languages in that there is no syntactic distinction among these four types of 260
constants; any constant can be used where any other constant can be used. The differences between these categories 261
of constants is entirely semantic. 262
 263

2.1.4 Expressions 264

The legal expressions of FIPA KIF are formed from lexemes according to the rules presented in this section. There are 265
three disjoint types of expressions in the language: 266
 267
• Terms are used to denote objects in the world being described. 268
 269
• Sentences are used to express facts about the world. 270
 271
• Definitions are used to define constants. 272
 273
There are nine types of terms in FIPA KIF: individual variables, constants, character references, character strings, 274
character blocks, functional terms, list terms, quotations, and logical terms. Individual variables, constants, character 275
references, strings and blocks were discussed earlier. 276
 277

term ::= indvar | constant | charref | string | block | 278
 funterm | listterm | quoterm | logterm 279
 280
A implicit functional term consists of a constant and an arbitrary number of argument terms, terminated by an 281
optional sequence variable and surrounded by matching parentheses. Note that there is no syntactic restriction on the 282
number of argument terms; arity restrictions in FIPA KIF are treated semantically. 283
 284

funterm ::= (constant term* [seqvar]) 285
 286
A explicit functional term consists of the operator value and one or more argument terms, terminated by an optional 287
sequence variable and surrounded by matching parentheses. 288
 289

funterm ::= (value term term* [seqvar]) 290
 291
A list term consists of the listof operator and a finite list of terms, terminated by an optional sequence variable and 292
enclosed in matching parentheses. 293
 294

listterm ::= (listof term* [seqvar]) 295
 296
Quotations involve the quote operator and an arbitrary list expression. A list expression is either an atom or a 297
sequence of list expressions surrounded by parentheses. An atom is either a word or a character reference or a 298
character string or a character block. Note that the list expression embedded within a quotation need not be a legal 299
expression in FIPA KIF. 300
 301

quoterm ::= (quote listexpr) | 'listexpr 302

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

6

 303
listexpr ::= atom | (listexpr*) 304

 305
atom ::= word | charref | string | block 306

 307
Logical terms involve the if and cond operators. The if form allows for the testing of a single condition or multiple 308
conditions and an optional term at the end allows for the specification of a default value when all of the conditions are 309
false. The cond form is similar but groups the pairs of sentences and terms within parentheses and has no optional 310
term at the end. 311
 312

logterm ::= (if logpair+ [term]) 313
 314

logpair ::= sentence term 315
 316

logterm ::= (cond logitem*) 317
 318

logitem ::= (sentence term) 319
 320
The following BNF defines the set of legal sentences in FIPA KIF. There are six types of sentences (logical constants 321
have already been introduced): 322
 323

sentence ::= constant | equation | inequality | 324
 relsent | logsent | quantsent 325
 326
An equation consists of the = operator and two terms. An inequality consist of the /= operator and two terms. 327
 328

equation ::= (= term term) 329
 330

inequality ::= (/= term term) 331
 332
An implicit relational sentence consists of a constant and an arbitrary number of argument terms, terminated by an 333
optional sequence variable. As with functional terms, there is no syntactic restriction on the number of argument terms 334
in a relation sentence. 335
 336

relsent ::= (constant term* [seqvar]) 337
 338
A explicit relational sentence consists of the operator holds and one or more argument terms, terminated by an 339
optional sequence variable and surrounded by matching parentheses. 340
 341

relsent ::=(holds term term* [seqvar]) 342
 343
It is noteworthy that the syntax of implicit relational sentences is the same as that of implicit functional terms. On the 344
other hand, their meanings are different. Fortunately, the context of each such expression determines its type (as an 345
embedded term in one case or as a top-level sentence or argument to some sentential operator in the other case); and 346
so this slight ambiguity causes no problems. 347
 348
The syntax of logical sentences depends on the logical operator involved. A sentence involving the not operator is 349
called a negation. A sentence involving the and operator is called a conjunction, and the arguments are called 350
conjuncts. A sentence involving the or operator is called a disjunction, and the arguments are called disjuncts. A 351
sentence involving the = operator is called an implication, all of its arguments but the last are called antecedents which 352
is called the consequent. A sentence involving the <= operator is called a reverse implication, its first argument is called 353
the consequent and the remaining arguments are called the antecedents. A sentence involving the <= operator is called 354
an equivalence. 355
 356
 logsent ::= (not sentence) | 357
 (and sentence*) | 358
 (or sentence*) | 359
 (= sentence* sentence) | 360
 (<= sentence sentence*) | 361

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

7

 (<= sentence sentence) 362
 363
There are two types of quantified sentences: a universally quantified sentence is signalled by the use of the forall 364
operator, and an existentially quantified sentence is signalled by the use of the exists operator. The first argument in 365
each case is a list of variable specifications. A variable specification is either a variable or a list consisting of a variable 366
and a term denoting a relation that restricts the domain of the specified variable. 367
 368

quantsent ::= (forall (varspec+) sentence) | 369
 (exists (varspec+) sentence) 370
 371

varspec ::= variable | (variable constant) 372
 373
Note that, according to these rules, it is permissible to write sentences with free variables, that is, variables that do not 374
occur within the scope of any enclosing quantifiers. The significance of the free variables in a sentence depends on the 375
use of the sentence. When we assert the truth of a sentence with free variables, we are, in effect, saying that the 376
sentence is true for all values of the free variables, i.e. the variables are universally quantified. When we ask whether a 377
sentence with free variables is true, we are, in effect, asking whether there are any values for the free variables for 378
which the sentence is true, i.e. the variables are existentially quantified. 379
 380
The following BNF defines the set of legal FIPA KIF definitions. There are three types of definitions: unrestricted, 381
complete and partial. Within each type, there are four cases, one for each category of constant. Object constants are 382
defined using the defobject operator, function constants are defined using the deffunction operator, relation 383
constants are defined using the defrelation operator and logical constants are defined using the deflogical 384
operator. 385
 386

definition ::= unrestricted | complete | partial 387
 388

unrestricted::= (defobject constant [string] sentence*) 389
| (deffunction constant [string] sentence*) 390
| (defrelation constant [string] sentence*) 391
| (deflogical constant [string] sentence*) 392

 393
complete ::= (defobject constant [string] := term) 394

| (deffunction constant (indvar* [seqvar]) [string] := term) 395
 | (defrelation constant (indvar* [seqvar]) [string] := sentence) 396
 | (deflogical constant [string] := sentence) 397
 398

partial ::= (defobject constant [string] :- indvar :<= sentence) 399
 | (defobject constant [string] :- indvar := sentence) 400
 | (deffunction constant (indvar* [seqvar]) 401
 [string] :- indvar :<= sentence) 402
 | (deffunction constant (indvar* [seqvar]) 403
 [string] :- indvar := sentence) 404
 | (defrelation constant (indvar* [seqvar]) 405
 [string] :<= sentence) 406
 | (defrelation constant (indvar* [seqvar]) 407
 [string] := sentence) 408
 | (deflogical constant [string] :<= sentence) 409
 (deflogical constant [string] := sentence) 410
 411
A form in FIPA KIF is either a sentence or a definition. 412
 413

form ::= sentence | definition 414
 415
It is important to note that definitions are top level constructs. While definitions contain sentences, they are not 416
themselves sentences and, therefore, cannot be written as constituent parts of sentences or other definitions (unless 417
they occur inside of a quotation. 418
 419
A knowledge base is a finite set of forms. It is important to keep in mind that a knowledge base is a set of sentences, 420
not a sequence; and, therefore, the order of forms within a knowledge base is unimportant. Order may have heuristic 421

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

8

value to deductive programs by suggesting an order in which to use those sentences; however, this implicit approach to 422
knowledge exchange lies outside of the definition of FIPA KIF. 423
 424

2.2 Basics 425

2.2.1 Introduction 426

The basis for the semantics of FIPA KIF is a conceptualization of the world in terms of objects and relations among 427
those objects. 428
 429
A universe of discourse is the set of all objects presumed or hypothesized to exist in the world. The notion of object 430
used here is quite broad. Objects can be concrete, for example, a specific carbon atom, Confucius, the Sun or abstract, 431
such as the number 2, the set of all integers or the concept of justice. Objects can be primitive or composite, for 432
example, a circuit that consists of many sub circuits. Objects can even be fictional, for example, a unicorn, Sherlock 433
Holmes, etc. 434
 435
Different users of a declarative representation language, like FIPA KIF, are likely to have different universes of 436
discourse. FIPA KIF is conceptually promiscuous in that it does not require every user to share the same universe of 437
discourse. On the other hand, FIPA KIF is conceptually grounded in that every universe of discourse is required to 438
include certain basic objects. 439
 440
The following basic objects must occur in every universe of discourse: 441
 442
• All numbers, real and complex. 443
 444
• All ASCII characters. 445
 446
• All finite strings of ASCII characters. 447
 448
• Words and the things they represent. 449
 450
• All finite lists of objects in the universe of discourse. 451
 452
• Bottom. A distinguished object that occurs as the value of a partial when that function is applied to arguments for 453

which the function make no sense. 454
 455
Remember, that to these basic elements, the user can add whatever non-basic objects seem useful. 456
 457
In FIPA KIF, relationships among objects take the form of relations. Formally, a relation is defined as an arbitrary set of 458
finite lists of objects (of possibly varying lengths). Each list is a selection of objects that jointly satisfy the relation. For 459
example, the < relation on numbers contains the list <2,3>, indicating that 2 is less than 3. 460
 461
A function is a special kind of relation. For every finite sequence of objects (called the arguments), a function associates 462
a unique object (called the value). More formally, a function is defined as a set of finite lists of objects, one for each 463
combination of possible arguments. In each list, the initial elements are the arguments, and the final element is the 464
value. For example, the 1+ function contains the list <2, 3>, indicating that integer successor of 2 is 3. 465
 466
Note that both functions and relations are defined as sets of lists. In fact, every function is a relation. However, not 467
every relation is a function. In a function, there cannot be two lists that disagree on only the last element, since this 468
would be tantamount to the function having two values for one combination of arguments. By contrast, in a relation, 469
there can be any number of lists that agree on all but the last element. For example, the list <2, 3> is a member of the 470
1+ function, and there is no other list of length 2 with 2 as its first argument, that is, there is only one successor for 2. By 471
contrast, the < relation contains the lists <2, 3>, <2, 4>, <2, 5>, and so forth, indicating that 2 is less than 3, 4, 5, and so 472
forth. 473
 474

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

9

Many mathematicians require that functions and relations have fixed arity, that is, they require that all of the lists 475
comprising a relation have the same length. The definitions here allow for relations with variable arity; it is perfectly 476
acceptable for a function or a relation to contain lists of different lengths. For example, the relation < contains the lists 477
<2, 3> and <2, 3, 4>, reflecting the fact that 2 is less than 3 and the fact that 2 is less than 3 and 3 is less than 4. This 478
flexibility is not essential, but it is extremely convenient and poses no significant theoretical problems. 479
 480

2.2.2 Bottom 481

In FIPA KIF, all functions are total, that is, there is a value for every combination of arguments. In order to allow a user 482
to express the idea that a function is not meaningful for certain arguments, FIPA KIF assumes that there is a special 483
"undefined" object in the universe and provides the object constant bottom to refer to this object. 484
 485

2.2.3 Functional Terms 486

The value of a functional term without a terminating sequence variable is obtained by applying the function denoted by 487
the function constant in the term to the objects denoted by the arguments. 488
 489
For example, the value of the term (+ 2 3) is obtained by applying the addition function (the function denoted by +) to 490
the numbers 2 and 3 (the objects denoted by the object constants 2 and 3) to obtain the value 5, which is the value of 491
the object constant 5. 492
 493
If a functional term has a terminating sequence variable, the value is obtained by applying the function to the sequence 494
of arguments formed from the values of the terms that precede the sequence variable and the values in the sequence 495
denoted by the sequence variable. 496
 497
Assume, for example, that the sequence variable @l has as value the sequence 2, 3, 4. Then, the value of the term (+ 498
1 @l) is obtained by applying the addition function to the numbers 1, 2, 3, and 4 to obtain the value 10, which is the 499
value of the object constant 10. 500
 501

2.2.4 Relational Sentences 502

A simple relational sentence without a terminating sequence variable is true if and only if the relation denoted by the 503
relation constant in the sentence is true of the objects denoted by the arguments. Equivalently, viewing a relation as a 504
set of tuples, we say that the relational sentence is true if and only if the tuple of objects formed from the values of the 505
arguments is a member of the set of tuples denoted by the relation constant. 506
 507
If a relational sentence terminates in a sequence variable, the sentence is true if and only if the relation contains the 508
tuple consisting of the values of the terms that precede the sequence variable together with the objects in the sequence 509
denoted by the variable. 510
 511

2.2.5 Equations and Inequalities 512

An equation is true if and only if the terms in the equation refer to the same object in the universe of discourse. An 513
inequality is true if and only if the terms in the equation refer to distinct objects in the universe of discourse. 514
 515

2.2.6 True and False 516

The truth-value of true is true, and the truth-value of false is false. 517
 518

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

10

2.3 Logic 519

2.3.1 Logical Terms 520

The value of a logical term involving the if operator is the value of the term following the first true sentence in the 521
argument list. For example, the term (if (1 2) 1 (2 1) 2 0) is equivalent to 2. 522
 523
If none of the embedded sentences of a logical term involving the if operator is true and there is an isolated term at the 524
end, the value of the conditional term is the value of that isolated term. For example, if the object constant a denotes a 525
number, then the term (if (a 0) a (- a)) denotes the absolute value of that number. 526
 527
If none of the embedded sentences is true and there is no isolated term at the end, the value is undefined (i.e. bottom). 528
In other words, the term (if (p a) a) is equivalent to (if (p a) a bottom). 529
The value of a logical term involving the cond operator is the value of the term following the first true sentence in the 530
argument list. For example, the term (cond ((1 2) 1) ((2 1) 2)) is equivalent to 2. 531
 532
If none of the embedded sentences is true, the value is undefined. In other words, the term (cond ((p a) a)) is 533
equivalent to (cond ((p a) a) (true bottom)). 534
 535

2.3.2 Logical Sentences 536

A negation is true if and only if the negated sentence is false. 537
 538
A conjunction is true if and only if every conjunct is true. 539
 540
A disjunction is true if and only if at least one of the disjuncts is true. 541
 542
If every antecedent in an implication is true, then the implication as a whole is true if and only if the consequent is true. If 543
any of the antecedents is false, then the implication as a whole is true, regardless of the truth-value of the consequent. 544
 545
A reverse implication is just an implication with the consequent and antecedents reversed. 546
 547
An equivalence is equivalent to the conjunction of an implication and a reverse implication. 548
 549

2.3.3 Quantified Sentences 550

A simple existentially quantified sentence (one in which the first argument is a list of variables) is true if and only if the 551
embedded sentence is true for some value of the variables mentioned in the first argument. 552
 553
A simple universally quantified sentence (one in which the first argument is a list of variables) is true if and only if the 554
embedded sentence is true for every value of the variables mentioned in the first argument. 555
 556
Quantified sentences with complicated variables specifications can be converted into simple quantified sentences by 557
replacing each complicated variable specification by the variable in the specification and adding an appropriate 558
condition into the body of the sentence. Note that, in the case of a set restriction, it may be necessary to rename 559
variables to avoid conflicts. The following pairs of sentences show the transformation from complex quantified 560
sentences to simple quantified sentences. 561
 562

(forall (... (?x r) ...) s) 563
(forall (... ?x ...) (= (r ?x) s)) 564

 565
(exists (... (?x r) ...) s) 566
(exists (... ?x ...) (and (r ?x) s)) 567

 568
Note that the significance of free variables in quantifier-free sentences depends on context. Free variables in an 569
assertion are assumed to be universally quantified. Free variables in a query are assumed to be existentially quantified. 570

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

11

In other words, the meaning of free variables is determined by the way in which FIPA KIF is used. It cannot be 571
unambiguously defined within FIPA KIF itself. To be certain of the usage in all contexts, use explicit quantifiers. 572
 573

2.3.4 Definitions 574

The definitional operators in FIPA KIF allow us to state sentences that are true "by definition" in a way that distinguishes 575
them from sentences that express contingent properties of the world. Definitions have no truth-values in the usual 576
sense; they are so because we say that they are so. 577
 578
On the other hand, definitions have content: sentences that allow us to derive other sentences as conclusions. In FIPA 579
KIF, every definition has a corresponding set of sentences, called the content of the definition. 580
 581
The defobject operator is used to define objects. The legal forms are shown below, together with their content. In the 582
first case, the content is the equation involving the object constant in the definition with the defining term. In the second 583
case, the content is the conjunction of the constituent sentences. 584
 585

(defobject s := t) 586
(= s t) 587

 588
(defobject s p1 ... pn) 589

(and p1 ... pn) 590
 591

(defobject s :- v := p) 592
(= (= s v) p) 593

 594
(defobject s :- v :<= p) 595

(<= (= s v) p) 596
 597
The deffunction operator is used to define functions. Again, the legal forms are shown below, together with their 598
defining axioms. In the first case, the content is the equation involving the term formed from the function constant in the 599
definition and the variables in its argument list and the defining term. In the second case, as with object definitions, the 600
content is the conjunction of the constituent sentences. 601
 602

(deffunction f (v1 ...vn) := t) 603
(= (f v1 ...vn) t) 604

 605
(deffunction f p1 ...pn) 606

(and p1 ...pn) 607
 608

(deffunction f (v1 ... vn) :- v := p) 609
(= (= (f v1 ... vn) v) p) 610

 611
(deffunction f (v1 ... vn) :- v :<= p) 612

(<= (= (f v1 ... vn) v) p) 613
 614
The defrelation operator is used to define relations. The legal forms are shown below, together with their defining 615
axioms. In the first case, the content is the equivalence relating the relational sentence formed from the relation 616
constant in the definition and the variables in its argument list and the defining sentence. In the second case, as with 617
object and function definitions, the content is the conjunction of the constituent sentences. 618
 619

(defrelation r (v1 ...vn) := p) 620
(<= (r v1 ...vn) p) 621

 622
(defrelation r p1 ...pn) 623

(and p1 ...pn) 624
 625

(defrelation r (v1 ... vn) := p) 626
(= (r v1 ... vn) p)) 627

 628
(defrelation r (v1 ... vn) :<= p) 629

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

12

(<= (r v1 ... vn) p)) 630
 631

2.4 Numbers 632

2.4.1 Introduction 633

The referent of every numerical constant in FIPA KIF is assumed to be the number for which that constant is the base 634
10 representation. Among other things, this means that we can infer inequality of all distinct numerical constants, i.e. for 635
every t1 and distinct t2 the following sentence is true. 636
 637

(/= t1 t2) 638
 639
We use the intended meaning of numerical constants in defining the numerical functions and relations in this section. In 640
particular, we require that these functions and relations behave correctly on all numbers represented in this way. 641
 642
Note that this does mean that it is incorrect to apply these functions and relations to terms other than numbers. For 643
example, a non-numerical term may refer to a number, for example, the term two may be defined to be the same as the 644
number 2 in which case it is perfectly proper to write (+ two two). 645
 646
The user may also want to extend these functions and relations to apply to objects other than numbers, for example, 647
sets and lists. 648
 649

2.4.2 Functions on Numbers 650

• * 651
If t1, ..., tn denote numbers, then the term (* t1 ... tn) denotes the product of those numbers. 652

 653
• + 654

If t1, ..., tn are numerical constants, then the term (+ t1 ... tn) denotes the sum t of the numbers 655
corresponding to those constants. 656

 657
• - 658

If t and t1, ..., tn denote numbers, then the term (- t t1 ... tn) denotes the difference between the number 659
denoted by t and the numbers denoted by t1 through tn. An exception occurs when n=0, in which case the term 660
denotes the negation of the number denoted by t. 661

 662
• / 663

If t1, ..., tn are numbers, then the term (/ t1 ... tn) denotes the result t obtained by dividing the number 664
denoted by t1 by the numbers denoted by t2 through tn. An exception occurs when n=1, in which case the term 665
denotes the reciprocal t of the number denoted by t1. 666

 667
• 1+ 668

The term (1+ t) denotes the sum of the object denoted by t and 1. 669
 670

(deffunction 1+ (?x) := (+ ?x 1)) 671
 672
• 1- 673

The term (1- t) denotes the difference of the object denoted by t and 1. 674
 675

(deffunction 1- (?x) := (- ?x 1)) 676
 677
• abs 678

The term (abs t) denotes the absolute value of the object denoted by t. 679
 680

(deffunction abs (?x) := (if (= ?x 0) ?x (- ?x))) 681

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

13

 682
• ceiling 683

If t denotes a real number, then the term (ceiling t) denotes the smallest integer greater than or equal to the 684
number denoted by t. 685

 686
• denominator 687

The term (denominator t) denotes the denominator of the canonical reduced form of the object denoted by t. 688
 689
• expt 690

The term (expt t1 t2) denotes the object denoted by t1 raised to the power the object denoted by t2. 691
 692
• floor 693

The term (floor t) denotes the largest integer less than the object denoted by t. 694
 695
• gcd 696

The term (gcd t1 ... tn) denotes the greatest common divisor of the objects denoted by t1 through tn. 697
 698
• imagpart 699

The term (imagpart t) denotes the imaginary part of the object denoted by t. 700
 701
• lcm 702

The term (lcm t1 ... tn) denotes the least common multiple of the objects denoted by t1, ..., tn. 703
 704
• log 705

The term (log t1 t2) denotes the logarithm of the object denoted by t1 in the base denoted by t2. 706
 707
• max 708

The term (max t1 ... tk) denotes the largest object denoted by t1 through tn. 709
 710
• min 711

The term (min t1 ... tk) denotes the smallest object denoted by t1 through tn. 712
 713
• mod 714

The term (mod t1 t2) denotes the root of the object denoted by t1 modulo the object denoted by t2. The result 715
will have the same sign as denoted by t1. 716

 717
• numerator 718

The term (numerator t) denotes the numerator of the canonical reduced form of the object denoted by t. 719
 720
• realpart 721

The term (realpart t) denotes the real part of the object denoted by t. 722
 723
• rem 724

The term (rem t1 t2) denotes the remainder of the object denoted by t1 divided by the object denoted by t2. 725
The result has the same sign as the object denoted by t2. 726

 727
• round 728

The term (round t) denotes the integer nearest to the object denoted by t. If the object denoted by t is halfway 729
between two integers (for example 3.5), it denotes the nearest integer divisible by 2. 730

 731
• sqrt 732

The term (sqrt t) denotes the principal square root of the object denoted by t. 733
 734
• truncate 735

The term (truncate t) denotes the largest integer less than the object denoted by t. 736

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

14

 737

2.4.3 Relations on Numbers 738

• integer 739
The sentence (integer t) means that the object denoted by t is an integer. 740

 741
• real 742

The sentence (real t) means that the object denoted by t is a real number. 743
 744
• complex 745

The sentence (complex t) means that the object denoted by t is a complex number. 746
 747

(defrelation number (?x) := (or (real ?x) (complex ?x))) 748
 749

(defrelation natural (?x) := (and (integer ?x) (= ?x 0))) 750
 751

(defrelation rational (?x) := 752
(exists (?y) (and (integer ?y) (integer (* ?x ?y))))) 753

 754
• approx 755

The sentence (approx t1 t2 t) is true if and only if the number denoted by t1 is "approximately equal" to the 756
number denoted by t2, that is, the absolute value of the difference between the numbers denoted by t1 and t2 is 757
less than or equal to the number denoted by t. 758

 759
• < 760

The sentence (< t1 t2) is true if and only if the number denoted by t1 is less than the number denoted by t2. 761
 762

(defrelation > (?x ?y) := (< ?y ?x)) 763
 764

(defrelation =< (?x ?y) := (or (= ?x ?y) (< ?x ?y))) 765
 766

(defrelation >= (?x ?y) := (or (> ?x ?y) (= ?x ?y))) 767
 768

(defrelation positive (?x) := (> ?x 0)) 769
 770

(defrelation negative (?x) := (< ?x 0)) 771
 772

(defrelation zero (?x) := (= ?x 0)) 773
 774

(defrelation odd (?x) := (integer (/ (+ ?x 1) 2)) 775
 776

(defrelation even (?x) := (integer (/ ?x 2)) 777
 778

2.5 Lists 779

A list is a finite sequence of objects. Any objects in the universe of discourse may be elements of a list. 780
 781
In FIPA KIF, we use the term (listof t1 ... tk) to denote the list of objects denoted by t1, ..., tk. For example, the 782
following expression denotes the list of an object named mary, a list of objects named tom, dick and harry, and an 783
object named sally. 784
 785

(listof mary (listof tom dick harry) sally) 786
 787
The relation list is the type predicate for lists. An object is a list if and only if there is a corresponding expression 788
involving the listof operator. 789
 790
 (defrelation list (?x) := (exists (@l) (= ?x (listof @l)))) 791
 792

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

15

The object constant nil denotes the empty list and also tests whether or not an object is the empty list. The relation 793
constants single, double and triple allow us to assert the length of lists containing one, two or three elements, 794
respectively. 795
 796
 (defobject nil := (listof)) 797
 798
 (defrelation null (?l) := (= ?l (listof))) 799
 800
 (defrelation single (?l) := (exists (?x) (= ?l (listof ?x)))) 801
 802
 (defrelation double (?l) := (exists (?x ?y) (= ?l (listof ?x ?y)))) 803
 804
 (defrelation triple (?l) := (exists (?x ?y ?z) (= ?l (listof ?x ?y ?z)))) 805
 806
The functions first, rest, last and butlast each take a single list as argument and select individual items or sub 807
lists from those lists. 808
 809

(deffunction first (?l) := (if (= (listof ?x @items) ?l) ?x) 810
 811

(deffunction rest (?l) := 812
(cond ((null ?l) ?l) 813

 ((= ?l (listof ?x @items)) (listof @items)))) 814
 815

(deffunction last (?l) := 816
 (cond ((null ?l) bottom) ((null (rest ?l)) (first ?l)) 817
 (true (last (rest ?l))))) 818
 819

(deffunction butlast (?l) := 820
(cond ((null ?l) bottom) ((null (rest ?l)) nil) 821

 (true (cons (first ?l) (butlast (rest ?l)))))) 822
 823
The sentence (item t1 t2) is true if and only if the object denoted by t2 is a non-empty list and the object denoted by 824
t1 is either the first item of that list or an item in the rest of the list. 825
 826

(defrelation item (?x ?l) := 827
(and (list ?l) (not (null ?l)) 828

(or (= ?x (first ?l)) (item ?x (rest ?l))))) 829
 830
The sentence (sublist t1 t2) is true if and only if the object denoted by t1 is a final segment of the list denoted by 831
t2. 832
 833

(defrelation sublist (?l1 ?l2) := 834
(and (list ?l1) (list ?l2) 835

(or (= ?l1 ?l2) (sublist ?l1 (rest ?l2))))) 836
 837
The function cons adds the object specified as its first argument to the front of the list specified as its second argument. 838
 839

(deffunction cons (?x ?l) := 840
(if (= ?l (listof @l)) (listof ?x @l))) 841

 842
The function append adds the items in the list specified as its first argument to the list specified as its second 843
argument. The function revappend is similar, except that it adds the items in reverse order. 844
 845

(deffunction append (?l1 ?l2) := 846
(cond ((null ?l1) (if (list ?l2) ?l2)) 847

((list ?l1) (cons (first ?l1) (append (rest ?l1) ?l2))))) 848
 849

(deffunction revappend (?l1 ?l2) := 850
(cond ((null ?l1) (if (list ?l2) ?l2)) 851

((list ?l1) (revappend (rest ?l1) (cons (first ?l1) ?l2))))) 852

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

16

 853
The function reverse produces a list in which the order of items is the reverse of that in the list supplied as its single 854
argument. 855
 856

(deffunction reverse (?l) := (revappend ?l (listof))) 857
 858
The functions adjoin and remove construct lists by adding or removing objects from the lists specified as their 859
arguments. 860
 861
 (deffunction adjoin (?x ?l) := (if (item ?x ?l) ?l (cons ?x ?l))) 862
 863
 (deffunction remove (?x ?l) := 864

(cond ((null ?l) nil) ((and (= ?x (first ?l)) (list ?l)) 865
(remove ?x (rest ?l))) 866
((list ?l) (cons ?x (remove ?x (rest ?l)))))) 867

 868
The value of subst is the object or list obtained by substituting the object supplied as first argument for all occurrences 869
of the object supplied as second argument in the object or list supplied as third argument. 870
 871

(deffunction subst (?x ?y ?z) := 872
(cond ((= ?y ?z) ?x) ((null ?z) nil) 873

 ((list ?z) (cons (subst ?x ?y (first ?z)) 874
(subst ?x ?y (rest ?z)))) 875
(true ?z))) 876

 877
The function length gives the number of items in a list. The function nth returns the item in the list specified as its first 878
argument in the position specified as its second argument. The function nthrest returns the list specified as its first 879
argument minus the first n items, where n is the number specified as its second argument. 880
 881

(deffunction length (?l) := 882
(cond ((null ?l) 0) 883

((list ?l) (1+ (length (rest ?l)))))) 884
 885

(deffunction nth (?l ?n) := 886
(cond ((= ?n 1) (first ?l)) 887

((and (list ?l) (positive ?n)) (nth (rest ?l) (1- ?n))))) 888
 889

(deffunction nthrest (?l ?n) := 890
(cond ((= ?n 0) (if (list ?l) ?l)) 891

((and (list ?l) (positive ?n)) (nthrest (rest ?l) (1- ?n))))) 892
 893

2.6 Characters and Strings 894

2.6.1 Characters 895

A character is a printed symbol, such as a digit or a letter. There are 128 distinct characters known to FIPA KIF, 896
corresponding to the 128 possible combinations of bits in the ASCII encoding. In FIPA KIF, there are two ways to refer 897
to characters. 898
 899
The first method is use of the charref syntax, that is, the characters # and \, followed by the character to be 900
represented. While this method works for all 128 characters, it is less than ideal for documents like this one, because of 901
the difficulty of writing out non-printing characters. Using this method, it is also difficult to assert properties of some 902
classes of characters. For this reason, FIPA KIF supports an alternative method of specification, viz. the use of the 7 bit 903
code corresponding to the character. The relationship between characters and their numerical codes is given via the 904
functions char-code and code-char. The former maps the nth character cn into the corresponding 7-bit integer n, and 905
the latter maps a 7-bit integer n into the corresponding character cn. The values of these functions on all other 906
arguments are undefined. 907
 908

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

17

(= (char-code #\cn) n) 909
 910

(= (code-char n) #\cn) 911
 912
The relation character is true of the characters of FIPA KIF and no other objects. 913
 914
 (defrelation character (?x) := 915

(exists ((?n natural-number)) (and (= ?n 0) (916
 917

2.6.2 Strings 918

A string is a list of characters. One way of referring to strings is through the use of the string syntax described in Section 919
2.1.3, Lexemes. In this method, we refer to the string abc by enclosing it in double quotes, such as, "abc". 920
 921
A second way is through the use of character blocks, the block syntax described in Section 2.1.3, Lexemes. In this 922
method, we refer to the string abc by prefixing with the character #, a positive integer indicating the length, the letter q, 923
and the characters of the string, for example, #3qabc. 924
 925
A third way of referring to strings is to use the listof function. For example, we can denote the string abc by a term of 926
the form (listof #\a #\b #\c). 927
The advantage of the listof representation over the preceding representations is that it allows us to quantify over 928
characters within strings. For example, the following sentence says that all 3 character strings beginning with a and 929
ending with a are nice. 930
 931
 (= (character ?y) (nice (listof #\a ?y #\a))) 932
 933
From this sentence, we can infer that various strings are nice. 934
 935
 (nice (listof #\a #\a #\a)) 936
 (nice "aba") 937
 (nice #\Qaca) 938
 939

2.7 Meta Knowledge 940

2.7.1 Naming Expressions 941

In formalizing knowledge about knowledge, we use a conceptualization in which expressions are treated as objects in 942
the universe of discourse and in which there are functions and relations appropriate to these objects. In our 943
conceptualization, we treat atoms as primitive objects with no subparts. We conceptualize complex expressions as lists 944
of subexpressions (either atoms or other complex expressions). In particular, every complex expression is viewed as a 945
list of its immediate subexpressions. 946
 947
For example, we conceptualize the sentence (not (p (+ a b c) d)) as a list consisting of the operator not and the 948
sentence (p (+ a b c) d). This sentence is treated as a list consisting of the relation constant p and the terms (+ a b 949
c) and d. The first of these terms is a list consisting of the function constant + and the object constants a, b and c. 950
 951
For Lisp programmers, this conceptualization is relatively obvious, but it departs from the usual conceptualization of 952
formal languages taken in the mathematical theory of logic. It has the disadvantage that we cannot describe certain 953
details of syntax such as parenthesization and spacing (unless we augment the conceptualization to include string 954
representations of expressions as well). However, it is far more convenient for expressing properties of knowledge and 955
inference than string-based conceptualizations. 956
 957
In order to assert properties of expressions in the language, we need a way of referring to those expressions. There are 958
two ways of doing this in FIPA KIF. 959
 960

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

18

One way is to use the quote operator in front of an expression. To refer to the symbol john, we use the term 'john or, 961
equivalently, (quote john). To refer to the expression (p a b), we use the term '(p a b) or, equivalently, (quote 962
(p a b)). 963
 964
With a way of referring to expressions, we can assert their properties. For example, the following sentence ascribes to 965
the individual named john the belief that the moon is made of a particular kind of blue cheese. 966
 967
 (believes john '(material moon stilton)) 968
 969
Note that, by nesting quotes within quotes, we can talk about quoted expressions. In fact, we can write towers of 970
sentences of arbitrary heights, in which the sentences at each level talk about the sentences at the lower levels. 971
 972
Since expressions are first-order objects, we can quantify over them, thereby asserting properties of whole classes of 973
sentences. For example, we could say that Mary believes everything that John believes. This fact together with the 974
preceding fact allows us to conclude that Mary also believes the moon to be made of blue cheese. 975
 976
 (= (believes john ?p) (believes mary ?p)) 977
 978
The second way of referring to expressions is FIPA KIF is to use the listof function. For example, we can denote a 979
complex expression like (p a b) by a term of the form (listof 'p 'a 'b), as well as '(p a b). 980
 981
The advantage of the listof representation over the quote representation is that it allows us to quantify over parts of 982
expressions. For example, let us say that Lisa is more skeptical than Mary. She agrees with John, but only on the 983
composition of things. The first sentence below asserts this fact without specifically mentioning moon or stilton. Thus, if 984
we were to later discover that John thought the sun to be made of chili peppers, then Lisa would be constrained to 985
believe this as well. 986
 987

(= (believes john (listof 'material ?x ?y)) 988
(believes lisa (listof 'material ?x ?y))) 989

 990
While the use of listof allows us to describe the structure of expressions in arbitrary detail, it is somewhat awkward. 991
For example, the term (listof 'material ?x ?y) is somewhat awkward. Fortunately, we can eliminate this difficulty 992
using the up arrow (^) and comma (,) characters. Rather than using the listof function constant as described above, 993
we write the expression preceded by ^ and , in front of any subexpression that is not to be taken literally. For example, 994
we would rewrite the preceding sentence as follows. 995
 996

(= (believes john ^(material ,?x ,?y)) 997
(believes lisa ^(material ,?x ,?y))) 998

 999

2.7.2 Types of Expressions 1000

In order to facilitate the encoding of knowledge about FIPA KIF, the language includes type relations for the various 1001
syntactic categories defined in Section 2.1, Syntax. 1002
 1003
For every individual variable v, there is an axiom asserting that it is indeed an individual variable. Each such axiom is a 1004
defining axiom for the indvar relation. 1005
 1006

(indvar (quote v)) 1007
 1008
For every sequence variable s, there is an axiom asserting that it is a sequence variable. Each such axiom is a defining 1009
axiom for the seqvar relation. 1010
 1011

(indvar (quote s)) 1012
 1013
For every word w, there is an axiom asserting that it is a word. Each such axiom is a defining axiom for the word 1014
relation. 1015
 1016

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

19

(word (quote w)) 1017
 1018
Using this basic vocabulary and our vocabulary for lists, it is possible to define type relations for all types of syntactic 1019
expressions in FIPA KIF. 1020
 1021

2.7.3 Changing Levels of Denotation 1022

Logicians frequently use axiom schemata to encode (potentially infinite) sets of sentences with particular syntactic 1023
properties. As an example, consider the axiom schema shown below, where we are told that r stands for an arbitrary 1024
relation constant. 1025
 1026

(= (and (r 0) (forall (?n) (= (r ?n) (r (1+ ?n))))) (forall (?n) (r ?n))) 1027
 1028
This schema encodes infinitely many sentences, the principle of mathematical induction for named relations. The 1029
following sentences are instances: 1030
 1031

(= (and (p 0) (forall (?n) (= (p ?n) (p (1+ ?n))))) (forall (?n) (p ?n))) 1032
 1033

(= (and (q 0) (forall (?n) (= (q ?n) (q (1+ ?n))))) (forall (?n) (q ?n))) 1034
 1035
Axiom schemata are differentiated from axioms due to the presence of meta-variables or other meta-linguistic notation 1036
(such as dots or star notation), together with conditions on the variables. They describe sentences in a language, but 1037
they are not themselves sentences in the language. As a result, they cannot be manipulated by procedures designed to 1038
process the language (presentation, storage, communication, deduction and so forth) but instead must be hard coded 1039
into those procedures. 1040
 1041
As we have seen, it is possible in FIPA KIF to write expressions that describe FIPA KIF sentences. As it turns out, there 1042
is also a way to write sentences that assert the truth of the sentences so described. The effect of adding such meta-1043
level sentences to a knowledge base is the same as directly including the (potentially infinite) set of described 1044
sentences in the knowledge base. 1045
 1046
The use of such a language simplifies the construction of knowledge-based systems, since it obviates the need for 1047
building axiom schemata into deductive procedures. It also makes it possible for systems to exchange axiom schemata 1048
with each other and thereby promotes knowledge sharing. 1049
 1050
The FIPA KIF truth predicate is called wtr (which stands for "weakly true"). For example, we can say that a sentence of 1051
the form (= (p ?x) (q ?x)) is true by writing the following sentence. 1052
 1053
 (wtr '(= (p ?x) (q ?x))) 1054
 1055
This may seem of limited utility, since we can just write the sentence denoted by the argument as a sentence in its own 1056
right. The advantage of the meta-notation becomes clear when we need to quantify over sentences, as in the encoding 1057
of axiom schemata. For example, we can say that every sentence of the form (= p p) is true with the following 1058
sentence. (The relation sentence can easily be defined in terms of quote, listof, indvar, seqvar and word.) 1059
 1060
 (= (sentence ?p) (wtr ^(= ,?p ,?p))) 1061
 1062
Semantically, we would like to say that a sentence of the form (wtr 'p) is true if and only if the sentence p is true. 1063
Unfortunately, this causes serious problems. Equating a truth function with the meaning it ascribes to wtr quickly leads 1064
to paradoxes. The English sentence "This sentence is false" illustrates the paradox. We can write this sentence in FIPA 1065
KIF as shown below. The sentence, in effect, asserts its own negation. 1066
 1067

(wtr (subst (name ^(subst (name x) ^x ^(truth ,x))) 1068
^x 1069
^(not (wtr (subst (name x) ^x ^(not (wtr ,x))))))) 1070

 1071

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

20

No matter how we interpret this sentence, we get a contradiction. If we assume the sentence is true, then we have a 1072
problem because the sentence asserts its own falsity. If we assume the sentence is false, we also have a problem 1073
because the sentence then is necessarily true. 1074
 1075
Fortunately, we can circumvent such paradoxes by slightly modifying the proposed definition of wtr. In particular, we 1076
have the following axiom schema for all p that do not contain any occurrences of wtr. For all p that do contain 1077
occurrences, wtr is false. 1078
 1079
 (<= (wtr 'p) p) 1080
 1081
With this modified definition, the paradox described above disappears, yet we retain the ability to write virtually all useful 1082
axiom schemata as meta-level axioms. 1083
 1084
From the point of view of formalizing truth, wtr is a not particularly useful, since it fails to cover those interesting cases 1085
where sentences contain the truth predicate. However, from the point of view of capturing axiom schemata not 1086
involving the truth predicate, it works just fine. Furthermore, unlike the solutions to the problem of formalizing truth, 1087
the framework presented here is easy for users to understand, and it is easy to implement. 1088
 1089
Two other constants round out FIPA KIF's level-crossing vocabulary. The term (denotation t) denotes the object 1090
denoted by the object denoted by t. A quotation denotes the quoted expression; the denotation of any other object is 1091
bottom. As with wtr, the dentotation of a quoted expression is the embedded expression, provided that the expression 1092
does not contain any occurrences of denotation. Otherwise, the value is undefined. 1093
 1094
 (= (denotation 't) t) 1095
 1096
The term (name t) denotes the standard name for the object denoted by the term t. The standard name for an 1097
expression t is (quote t); the standard name for a non-expression is at the discretion of the user. (Note that there are 1098
only a countable number of terms in FIPA KIF, but there can be worlds with uncountable cardinality; consequently, it is 1099
not always possible for every object to have a unique name.) 1100

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

21

3 References 1101

[FIPA00061] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, 2000. 1102
http://www.fipa.org/specs/fipa00061/ 1103

[ISO646] Information Technology – ISO 7-bit Coded Character Set for Information Interchange, ISO 646:1991. 1104
International Standards Organisation, 1991. 1105
http://www.iso.ch/cate/d4777.html 1106

[ISO10646] Information Technology – Universal Multiple-Octet Coded Character Set (UCS), ISO 10646-1:1993. 1107
International Standards Organisation, 1993. 1108
http://www.iso.ch/cate/d18741.html 1109

[ISO14481] Information Technology – Conceptual Schema Modeling Facilities (CSMF), ISO 14481:1998. 1110
International Standards Organisation, 1998. 1111

 1112

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

22

4 Informative Annex A — Examples 1113

1. The following FIPA ACL message with the content in FIPA KIF informs that database-agent1 specializes 1114
handling the sentence '(price ,?x ,?y) where ?x is a constant and ?y is a number. Note that the 1115
communicative act inform takes a proposition as its content. 1116

(inform 1117
 :sender 1118
 (agent-identifier 1119
 :name database-agent1) 1120
 :receiver 1121
 (agent-identifier 1122
 :name facilitator1) 1123
 :language FIPA-KIF 1124
 :ontology ec-ontology 1125
 :content 1126
 (<= (specialist agent1 '(price ,?x ,?y)) 1127
 (constant ?x) 1128
 (number ?y))) 1129
 1130
2. This message informs that database-agent1 conforms to the conformance profile database-system (see 1131

[ANSkif] for conformance details). 1132
 1133
(inform 1134
 :sender 1135
 (agent-identifier 1136
 :name database-agent1) 1137
 :receiver 1138
 (agent-identifier 1139
 :name facilitator1) 1140
 :language FIPA-KIF 1141
 :ontology ec-ontology 1142
 :content 1143
 (conformance-profile databae-agent1 database-system)) 1144
 1145
3. This message informs that database-agent1's conformance dimensions are horn, non-recursive, simple, 1146

first-order, universal and baselevel (see [ANSkif] for conformance details). 1147
 1148
(inform 1149
 :sender 1150
 (agent-identifier 1151
 :name database-agent1) 1152
 :receiver 1153
 (agent-identifier 1154
 :name facilitator1) 1155
 :language FIPA-KIF 1156
 :ontology ec-ontology 1157
 :content 1158
 (conformance-dimension databae-agent1 1159
 (horn non-recursive simple first-order universal baselevel))) 1160

 1161
4. This message denies the message of the example in 1. Note that the communicative act disconfirm takes a 1162

proposition as its content. 1163
 1164
(disconfirm 1165
 :sender 1166
 (agent-identifier 1167
 :name database-agent1) 1168
 :receiver 1169
 (agent-identifier 1170
 :name facilitator1) 1171

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

23

 :language FIPA-KIF 1172
 :ontology ec-ontology 1173
 :content 1174
 (<= (specialist agent1 '(price ,?x ,?y)) 1175
 (constant ?x) (number ?y))) 1176
 1177
5. This message expresses a query by the agent, facilitator1 to the agent, database-agent1. Note that the 1178

communicative act query-ref takes an object as its content. 1179
 1180
(query-ref 1181
 :sender 1182
 (agent-identifier 1183
 :name facilitator1) 1184
 :receiver 1185
 (agent-identifier 1186
 :name database-agent1) 1187
 :language FIPA-KIF 1188
 :ontology ec-ontology 1189
 :content 1190
 (kappa (?make ?door ?price) 1191
 (and (car ?car) (make ?car ?make) 1192
 (doors ?car ?doors) (price ?car ?price)))) 1193
 1194
6. This message expresses the answer to the query of the previous example by the agent, database-agent1 to the 1195

agent, facilitator1: 1196
 1197
(inform 1198
 :sender 1199
 (agent-identifier 1200
 :name database-agent1) 1201
 :receiver 1202
 (agent-identifier 1203
 :name facilitator1) 1204
 :language FIPA-KIF 1205
 :ontology ec-ontology 1206
 :content 1207
 (= (kappa (?make ?door ?price) 1208
 (and (car ?car) (make ?car ?make) 1209
 (doors ?car ?doors) (price ?car ?price))) 1210
 '((Mercedes 4 100,000) (Honda 2 20,000) (Toyota 4 25,000)))) 1211

