
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2

 3

 4

FIPA 99 Specification 5

 6

Spec 13, Version 2.0 7

 8

FIPA Developer's Guide 9

Obsolete 10
 11
Publication date: 22rd October 1990 12
Copyright © 1998 by FIPA - Foundation for Intelligent Physical Agents 13
Geneva, Switzerland 14
 15
 16

This is one part of the first version of the FIPA 98 Specification as released in October 1998. 17
The latest version of this document may be found on the FIPA web site: 18

http://www.fipa.org 19
Comments and questions regarding this document and the specifications therein should be addressed to: 20

fipa98@fipa.org 21
It is planned to introduce a web-based mechanism for submitting comments to the specifications. 22

Please refer to the web site for FIPA's latest policy and procedure for dealing with issues regarding the 23
specification. 24

 25
Notice
Use of the technologies described in this specification may infringe patents, copyrights or other
intellectual property rights of FIPA Members and non-members. Nothing in this specification should be
construed as granting permission to use any of the technologies described. Anyone planning to make
use of technology covered by the intellectual property rights of others should first obtain permission
from the holder(s) of the rights. FIPA strongly encourages anyone implementing any part of this
specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This FIPA 98 Specification is subject to change
without notice. Neither FIPA nor any of its Members accept any responsibility whatsoever for damages

or liability, direct or consequential, which may result from the use of this specification.
26

Contents 26

1 Scope... 7 27
2 Normative reference(s) ... 7 28
3 Terms and definitions ... 7 29
4 Symbols (and abbreviated terms) .. 11 30
5 Overview .. 12 31
5.1 Benefits of using the FIPA97 Standard... 12 32
5.2 Agents in FIPA .. 13 33
5.2.1 Ontologies in FIPA.. 14 34
6 Communication between Agents ... 14 35
6.1 RPC-based communications .. 14 36
6.2 Agent-based messaging... 14 37
6.3 Overview of Agent Communication in FIPA97.. 16 38
6.3.1 Agent Communication Language (ACL), Content Language and Ontology 16 39
6.3.2 Message Transport.. 16 40
6.3.3 Use of proprietary APIs.. 17 41
7 Implementation Requirements of FIPA agents .. 18 42
7.1 Ping Agent Implementation Requirements .. 18 43
7.2 Implementation ... 18 44
7.3 Towards Realistic Agent Implementations... 19 45
7.3.1 ACL Message Queue... 19 46
7.3.2 ACC Implementation Issues... 20 47
7.3.3 An agents Global Unique Identifier (GUID) .. 21 48
7.3.4 Use of FIPA Interaction Protocols... 21 49
7.3.5 Agent Communication over a protocol other than IIOP... 22 50
8 Application Scenario Description .. 24 51
8.1 Meeting Scheduling Scenario ... 24 52
8.2 Meeting Scheduling Ontology .. 26 53
9 Implementation Guidelines .. 26 54
9.1 Description of the agent negotiation.. 27 55
9.2 Example meeting time resolution .. 28 56
9.3 Application specific ontology descriptions.. 28 57
9.3.1 PA Meeting Scheduler Ontology.. 28 58
9.4 Agent Platform Registration .. 30 59
9.5 Agent Service Registration ... 33 60
9.6 Remote Agent Registration .. 35 61
9.7 User Initiated Agent Interactions .. 36 62
9.8 Agent Services Location Interactions.. 37 63
9.9 De-registration of service agent ... 43 64
Annex A Usage of XML/RDF as content within FIPA97 messages.. 45 65
Annex B FIPA97 Frequently Asked Questions .. 49 66
Annex C Analysis of the use of IIOP within the FIPA97 specification. .. 52 67
Annex D Case Study... 62 68
 69

© FIPA (1998) FIPA Spec 13 - 1998

iii

Foreword 70

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in Geneva, 71
Switzerland. FIPA’s purpose is to promote the success of emerging agent-based applications, services and 72
equipment. This goal is pursued by making available in a timely manner, internationally agreed 73
specifications that maximise interoperability across agent-based applications, services and equipment. This is 74
realised through the open international collaboration of member organisations, which are companies and 75
universities active in the agent field. FIPA intends to make the results of its activities available to all 76
interested parties and to contribute the results of its activities to appropriate formal standards bodies. 77
This specification has been developed through direct involvement of the FIPA membership. The 48 members 78
of FIPA (October 1998) represent 13 countries world-wide. 79
Membership in FIPA is open to any corporation and individual firm, partnership, governmental body or 80
international organisation without restriction. By joining FIPA each member declares himself individually 81
and collectively committed to open competition in the development of agent-based applications, services and 82
equipment. Associate Member status is usually chosen by those entities who want to be members of FIPA 83
without using the right to influence the precise content of the specifications through voting. 84
The members are not restricted in any way from designing, developing, marketing and/or procuring agent-85
based applications, services and equipment. Members are not bound to implement or use specific agent-based 86
standards, recommendations and FIPA specifications by virtue of their participation in FIPA. 87
This specification is published as FIPA 98 specifications ver 1.0. All these parts have undergone an intense 88
review by members as well as non-members during the past year as preliminary versions have been available 89
on the FIPA web site. FIPA members as well as many non-members have been conducting validation trials 90
of the FIPA 97 specification during 1998 and will continue to subject the new output to further validation 91
during the coming months. During 1999 FIPA will publish revised versions of the current specifications and 92
is also planning to continue work on further specifications of agent based technology. 93
 94

© FIPA (1998) FIPA Spec 13 - 1998

iv

Introduction 95

The FIPA specifications represent the primary output of FIPA. It is important to appreciate that these 96
specifications have been derived from examining requirements on agent technology posed by specific 97
industrial applications chosen by FIPA so far, and described in Parts 4, 5, 6, and 7 of the FIPA 97 98
specifications. 99
FIPA specifies the interfaces of the different components in the environment with which an agent can 100
interact, i.e. humans, other agents, non-agent software and the physical world. FIPA produces two kinds of 101
specifications: 102

- normative specifications mandating the external behaviour of an agent and ensuring 103
interoperability with other FIPA-specified subsystems; 104

- informative specifications of applications providing guidance to industry on the use of FIPA 105
technologies. 106

In October 1997, FIPA released its first set of specifications, called FIPA 97, Version 1.0. During 1998, 107
comments on this specification were received. Based upon these comments, parts of FIPA 97 were 108
superseded by a second version released in October 1998, introducing minor changes only. 109
Furthermore, in October 1998 FIPA released a new set of specifications, called FIPA 98, version 1.0, of 110
which this document is a part. 111
The following tables provide an overview of the complete set of FIPA specifications. 112
Sorted by part: 113

 Released October 1997 Released October 1998

Part FIPA 97 Version 1.0 FIPA 97 Version
2.0

FIPA 98 Version 1.0

1 N Agent Management Agent
Management

Agent Management Extensions

2 N ACL ACL
3 N Agent Software Integration
4 I Personal Travel Assistant
5 I Personal Assistant
6 I Audio Visual Entertainment

& Broadcasting

7 I Network Management &
Provision

8 N Human-Agent Interaction
1
0

N Agent Security Management

1
1

N Agent Management Support for Mobility

1
2

N Ontology Service

1
3

I/
M

 Developer’s Guide

© FIPA (1998) FIPA Spec 13 - 1998

v

N == normative; I == informative; M == methodology; Italicised == superseded 114
 115
Sorted by topic: 116
Topic FIPA 97(Version 1.0, unless

otherwise indicated)
FIPA 98 Version 1,0

Agent Management 1. Basic System (Version 2.0) 1. Extension to Basic System
 10. Agent Security Management
 11. Agent Management Support for

Mobility
Agent
Communication

2. Agent Communication Language
 (Version 2.0)

8. Human-Agent Interaction

 12. Ontology Service
Agent S/W
Integration

3. Agent Software Integration

Reference
Applications

4. Personal Travel Assistant

 5. Personal Assistant
 6. Audio/Visual Entertainment &

 Broadcasting

 7. Network Management &
 Provisioning

 117
The parts of the FIPA 98 specifications are briefly described below. 118
Spec 1 Agent Management 119
This part covers agent management for inter-operable agents, and is thus primarily concerned with defining 120
open standard interfaces for accessing agent management services. It also specifies an agent management 121
ontology and agent platform message transport. This specification incorporates and further enhances the 122
FIPA 97, Spec 1, Version 2.0 specification. The internal design and implementation of intelligent agents and 123
agent management infrastructure is not mandated by FIPA and is outside the scope of this part. 124
Spec 8 Human-Agent Interaction 125
This part deals with the human-agent interaction part of an agent system. It specifies two agent services: User 126
Dialog Management Service (UDMS) and User Personalization Service (UPS). A UDMS wraps many types 127
of software components for user interfaces allowing for ACL level of interaction between agents and human 128
users. A UPS can maintain user models and supports their construction by either accepting explicit 129
information about the user or by learning from observations of user behavior. 130
Spec 10 Agent Security Management 131
Security risks exist throughout agent management: during registration, agent-agent interaction, agent 132
configuration, agent-agent platform interaction, user-agent interaction and agent mobility. The Security 133
Management specification identifies the key security threats in agent management and specifies facilities for 134
securing agent-agent communication via the FIPA agent platform. This specification represents the minimal 135
set of technologies required and is complementary to the existing FIPA 97 and FIPA 98, Spec 1 136
specifications. This part does not mandate every FIPA-compliant agent platform to support agent security 137
management. 138
Spec 11 Agent Management Support for Mobility 139
This specification represents a normative framework for supporting software agent mobility using the FIPA 140
agent platform. This framework represents the minimal set of technologies required and is complementary to 141
the existing FIPA 97 and FIPA 98, Part 1 specifications. Wherever possible, it refers to existing standards in 142

© FIPA (1998) FIPA Spec 13 - 1998

vi

this area. The framework supports additional non-mobile agent management operations such as agent 143
configuration. The specification does not mandate that every FIPA-compliant agent platform must support 144
agent mobility, nor does it cover the specific requirements for agents on mobile devices with intermittent 145
connectivity, which is covered by the scope of the existing FIPA Agent Management activity. 146
Spec 12 Ontology Service 147
This part deals with technologies enabling agents to manage explicit, declaratively represented ontologies. It 148
specifies an ontology service provided to a community of agents by a dedicated Ontology Agent. It allows 149
for discovering public ontologies in order to access and maintain them; translating expressions between 150
different ontologies and/or different content languages; responding to queries for relationships between terms 151
or between ontologies; and, facilitating identification of a shared ontology for communication between two 152
agents. 153
The specification deals only with the communicative interface to such a service while internal 154
implementation and capabilities are left to developers. The interaction protocols, communicative acts and, in 155
general, the vocabulary that agents must adopt when using this service are defined. The specification does 156
not mandate the storage format of ontologies, but only the way the ontology service is accessed. However, in 157
order to specify the service, an explicit representation formalism, or meta-ontology, has been specified 158
allowing communication of knowledge between agents. 159
Spec 13 FIPA 97 Developer's Guide 160
The Developer’s Guide is meant to be a companion document to the FIPA 97 specifications, and is intended 161
to clarify areas of specific interest and potential confusion. Such areas include issues that span more than one 162
of the normative parts of FIPA 97. 163

© FIPA
FIPA 98 version 1.0 Part 13

7

1 Scope 164

The mandate for TC10 is as follows: 165
“The purpose of the FIPA Evolution Technical Committee (TC10) is to serve as the focal point for comments 166
received, both from field trials, and from other sources, on the FIPA 97standard - and to use this input to 167
produce: 168
FIPA-97 Version 2, parts 1-7 (for publication in October 1998) 169

- Informative Developer’s Guide to the use of FIPA 97 technologies (this document) 170

Furthermore, to support the production of FIPA-98 Version 1 by disseminating information to the relevant 171
1998 Technical Committees, where appropriate.” 172
The Developer’s Guide is intended to clarify areas of specific interest, potential confusion, and discussions 173
raised via the FIPA 97 email feedback process. Such areas may include, for example, issues that span more 174
than one of the normative parts of FIPA97. The feedback process scope includes areas requiring clarification, 175
errors, corrections, and inconsistencies. 176
The Developer’s Guide will not contain information on extensions to FIPA 97 (these must be addressed in 177
subsequent FIPA standardisation efforts). The Developer’s Guide will not contain information on specific 178
implementation issues such as ‘How do we implement a FIPA compliant agent service in language xxx?’ The 179
Developer’s Guide will, however, provide ‘cookbook’ guidance to people implementing FIPA compliant1 180
platforms. 181

2 Normative reference(s) 182

[1] FIPA97 Part 1, FIPA7A11, Agent Management, Munich, October 1997. 183
[2] FIPA97 Part 2, FIPA7A12, Agent Communication Language, Munich, October 1997. 184
[3] FIPA97 Part 3, FIPA7A13, Agent Software Integration, Munich, October 1997. 185
[4] Internet Inter-ORB Protocol (IIOP) : Common Object Request Broker Architecture (Version 2). 186
[5] P. O'Brien and R. Nichols, FIPA - Towards a standard for software agents, BT Technology Journal, Vol. 187

16, No. 3 July 1998. 188

3 Terms and definitions 189

For the purposes of this specification, the following terms and definitions apply: 190
Action 191
A basic construct which represents some activity which an agent may perform. A special class of 192
actions is the communicative acts. 193

ARB Agent 194
An agent which provides the Agent Resource Broker (ARB) service. There must be at least one 195
such an agent in each Agent Platform in order to allow the sharing of non-agent services. 196

Agent 197
An Agent is the fundamental actor in a domain. It combines one or more service capabilities into a 198
unified and integrated execution model which can include access to external software, human 199
users and communication facilities. 200

1 Currently there are no FIPA activities investigating conformance testing; however, this is likely to become an important issue in 1998/9.

© FIPA (1998) FIPA Spec 13 - 1998

Page 8

Agent cloning 201
The process by which an agent creates a copy of itself on an agent platform. 202

Agent code 203
The set of instructions used by an agent. 204

Agent Communication Language (ACL) 205
A language with precisely defined syntax, semantics and pragmatics that is the basis of 206
communication between independently designed and developed software agents. ACL is the 207
primary subject of this part of the FIPA specification. 208

Agent Communication Channel (ACC) Router 209
The Agent Communication Channel is an agent which uses information provided by the Agent 210
Management System to route messages between agents within the platform and to agents resident 211
on other platforms. 212

Agent data 213
Any data associated with an agent. 214

Agent invocation 215
The process by which an agent can create another instance of an agent on an agent platform. 216

Agent Management System (AMS) 217
The Agent Management System is an agent which manages the creation, deletion, suspension, 218
resumption, authentication and migration of agents on the agent platform and provides a “white 219
pages” directory service for all agents resident on an agent platform. It stores the mapping between 220
globally unique agent names (or GUID) and local transport addresses used by the platform. 221

Agent migration 222
The process by which an agent transports itself between agent platforms. 223

Agent Platform (AP) 224
An Agent Platform provides an infrastructure in which agents can be deployed. An agent must be 225
registered on a platform in order to interact with other agents on that platform or indeed other 226
platforms. An AP consists of three capability sets ACC, AMS and default Directory Facilitator. 227

Agent Platform Security Manager (APSM) 228
An Agent Platform Security Manager is responsible for maintaining the agent platform security 229
policy. The APSM is responsible for providing transport-level security and creating agent audit logs. 230
The APSM negotiates the requested intra- and inter-domain security services of other APSM's in 231
concert with the implemented distributed computing architectures, such as CORBA, COM, DCE, on 232
behalf of an agent in its domain. 233

Communicative Act (CA) 234
A special class of actions that correspond to the basic building blocks of dialogue between agents. 235
A communicative act has a well-defined, declarative meaning independent of the content of any 236
given act. CA's are modelled on speech act theory. Pragmatically, CA's are performed by an agent 237
sending a message to another agent, using the message format described in this specification. 238

Content 239
That part of a communicative act which represents the domain dependent component of the 240
communication. Note that "the content of a message" does not refer to "everything within the 241
message, including the delimiters", as it does in some languages, but rather specifically to the 242
domain specific component. In the ACL semantic model, a content expression may be composed 243
from propositions, actions or IRE's. 244

© FIPA (1998) FIPA Spec 13 - 1998

Page 9

Conversation 245
An ongoing sequence of communicative acts exchanged between two (or more) agents relating to 246
some ongoing topic of discourse. A conversation may (perhaps implicitly) accumulate context 247
which is used to determine the meaning of later messages in the conversation. 248

Software System 249
A software entity which is not conformant to the FIPA Agent Management specification. 250

CORBA: 251
Common Object Request Broker Architecture, an established standard allowing object-oriented 252
distributed systems to communicate through the remote invocation of object methods. 253

Directory Facilitator (DF) 254
The Directory facilitator is an agent which provides a “yellow pages” directory service for the 255
agents. It store descriptions of the agents and the services they offer. 256

Feasibility Precondition (FP) 257
The conditions (i.e. one or more propositions) which need be true before an agent can (plan to) 258
execute an action. 259

Illocutionary effect 260
See speech act theory. 261

Knowledge Querying and Manipulation Language (KQML) 262
A de facto (but widely used) specification of a language for inter-agent communication. In practice, 263
several implementations and variations exist. 264

Message 265
An individual unit of communication between two or more agents. A message corresponds to a 266
communicative act, in the sense that a message encodes the communicative act for reliable 267
transmission between agents. Note that communicative acts can be recursively composed, so 268
while the outermost act is directly encoded by the message, taken as a whole a given message 269
may represent multiple individual communicative acts. 270

Message content 271
See content. 272

Message transport service 273
The message transport service is an abstract service provided by the agent management platform 274
to which the agent is (currently) attached. The message transport service provides for the reliable 275
and timely delivery of messages to their destination agents, and also provides a mapping from 276
agent logical names to physical transport addresses. 277

Mobile agent 278
An agent that is not reliant upon the agent platform where it began executing and can subsequently 279
transport itself between agent platforms. 280

Mobility 281
The property or characteristic of an agent that allows it to travel between agent platforms. 282

Ontology 283
An ontology gives meanings to symbols and expressions within a given domain language. In order 284
for a message from one agent to be properly understood by another, the agents must ascribe the 285
same meaning to the constants used in the message. The ontology performs the function of 286
mapping a given constant to some well-understood meaning. For a given domain, the ontology 287
may be an explicit construct or implicitly encoded with the implementation of the agent. 288

© FIPA (1998) FIPA Spec 13 - 1998

Page 10

Ontology sharing problem 289
The problem of ensuring that two agents who wish to converse do, in fact, share a common 290
ontology for the domain of discourse. Minimally, agents should be able to discover whether or not 291
they share a mutual understanding of the domain constants. Some research work is addressing the 292
problem of dynamically updating agents' ontologies as the need arises. This specification makes 293
no provision for dynamically sharing or updating ontologies. 294

Perlocutionary Effect 295
See speech act theory. 296

Personalization 297
An agent’s ability to take individual preferences and characteristics of users into account and adapt 298
its behavior to these factors. 299

Proposition 300
A statement which can be either true or false. A closed proposition is one which contains no 301
variables, other than those defined within the scope of a quantifier. 302

Protocol 303
A common pattern of conversations used to perform some generally useful task. The protocol is 304
often used to facilitate a simplification of the computational machinery needed to support a given 305
dialogue task between two agents. Throughout this document, we reserve protocol to refer to 306
dialogue patterns between agents, and networking protocol to refer to underlying transport 307
mechanisms such as TCP/IP. 308

Rational Effect (RE) 309
The rational effect of an action is a representation of the effect that an agent can expect to occur as 310
a result of the action being performed. In particular, the rational effect of a communicative act is the 311
perlocutionary effect an agent can expect the CA to have on a recipient agent. 312

Note that the recipient is not bound to ensure that the expected effect comes about; indeed it may 313
be impossible for it to do so. Thus an agent may use its knowledge of the rational effect in order to 314
plan an action, but it is not entitled to believe that the rational effect necessarily holds having 315
performed the act. 316

Speech Act Theory 317
A theory of communications which is used as the basis for ACL. Speech act theory is derived from 318
the linguistic analysis of human communication. It is based on the idea that with language the 319
speaker not only makes statements, but also performs actions. A speech act can be put in a 320
stylised form that begins "I hereby request …" or "I hereby declare …". In this form the verb is 321
called the performative, since saying it makes it so. Verbs that cannot be put into this form are not 322
speech acts, for example "I hereby solve this equation" does not actually solve the equation. 323
[Austin 62, Searle 69]. 324

In speech act theory, communicative acts are decomposed into locutionary, illocutionary and 325
perlocutionary acts. Locutionary acts refers to the formulation of an utterance, illocutionary refers to 326
a categorisation of the utterance from the speakers perspective (e.g. question, command, query, 327
etc), and perlocutionary refers to the other intended effects on the hearer. In the case of the ACL, 328
the perlocutionary effect refers to the updating of the agent's mental attitudes. 329

Local Agent Platform 330
The Local Agent Platform is the AP to which an agent is attached and which represents an ultimate 331
destination for messages directed to that agent. 332

© FIPA (1998) FIPA Spec 13 - 1998

Page 11

Software Service 333
An instantiation of a connection to a software system. 334

Stationary agent 335
An agent that executes only upon the agent platform where it begins executing and is reliant upon 336
it. 337

TCP/IP 338
A networking protocol used to establish connections and transmit data between hosts 339

User Agent 340
An agent which interacts with a human user. 341

User Dialog Management Service 342
An agent service in order for FIPA agents to interact with human users; by converting ACL into 343
media/formats which human users can understand and vice versa, managing the communication 344
channel between agents and users, and identifying users interacting with agents. 345

User ID 346
An identifier for a real user. 347

User Model 348
A user model contains assumptions about user preferences, capabilities, skills, knowledge, etc, 349
which may be acquired by inductive processing based on observations about the user. User 350
models normally contain knowledge bases which are directly manipulated and administered. 351

User Personalization Service 352
An agent service that offers abilities to support personalization, e.g. by maintaining user profiles or 353
forming complex user models by learning from observations of user behavior. 354

Wrapper Agent 355
An agent which provides the FIPA-WRAPPER service to an agent domain. 356

4 Symbols (and abbreviated terms) 357

ACC: Agent Communication Channel 358
ACL: Agent Communication Language 359
AMS: Agent Management System 360
AP: Agent Platform 361
API: Application Programming Interface 362
APSM: Agent Platform Security Manager 363
ARB: Agent Resource Broker 364
CA: Communicative Act 365
CORBA: Common Object Request Broker Architecture 366
DB: Database 367
DCOM: Distributed COM 368
DF: Directory Facilitator 369
FIPA: Foundation for Intelligent Physical Agents 370
FP: Feasibility Precondition 371
GUID: Global Unique Identifier 372
HAP: Home Agent Platform 373
HTTP: Hypertext Transmission Protocol 374
IDL: Interface Definition Language 375

© FIPA (1998) FIPA Spec 13 - 1998

Page 12

IIOP: Internet Inter-ORB Protocol 376
IPMT: Internal Platform Message Transport 377
IRE: Identifying Referring Expression 378
OMG: Object Management Group 379
ORB: Object Request Broker 380
P3P: Platform for Privacy Preferences Project 381
PICS: Platform for Internet Content Selection 382
RE: Rational Effect 383
RMI: Remote Method Invocation, an inter-process communication method embodied in 384
Java 385
SL: Semantic Language 386
SMTP: Simple Mail Transfer Protocol 387
SQL: Structured Query Language 388
S/W: Software System 389
TCP / IP: Transmission Control Protocol / Internet Protocol 390
UDMA: User Dialogue Management Agent 391
UDMS: User Dialogue Management Service 392
UPA: User Personalization Agent 393
UPS: User Personalization Service 394
XML: eXtensible Markup Language 395

5 Overview 396

This guide was under construction during the creation of FIPA 98 as a guide for the use and interpretation of 397
the FIPA 97 Standard. The Developer’s Guide is an output from the FIPA 97 Evolution Technical Committee 398
(TC10). The contents of this document were guided by the nature of developer feedback on FIPA 97 during 399
1998. Annexes 1,3 and 4 contain contributions from member companies describing examples of using 400
FIPA97 technology. These examples are not mandated by FIPA, but are included for information. Some of 401
the work described in these annexes may be dealt with further in FIPA99. 402
In 1999, TC D conducted several interoperability trials. The result is appended as Annex E in this document. 403
Other parts of the document is untouched since the initial release of the specification. 404
One of the main intentions of this document is to clarify issues with FIPA 97, comments on any aspect of this 405
document are therefore welcome from anyone; the mediated email list can be used for this purpose. 406
This document provides a cookbook type of information for developers wishing to implement FIPA97 407
compliant agent systems and platforms. It highlights the differences between RPC based communication and 408
communication within Agent based systems and explains the use of ACL, content language and ontology. 409
General pointers on how to implement a FIPA97 compliant inter platform communication mechanism are 410
provided and concept of asynchronous communication is introduced along with a store and forward 411
architecture. The differences between agent actions occurring within a proprietary agent platform and outside 412
of it are explained. The role of the ACC in agent communication is explained. The need for GUIDs is 413
outlined. General pointers on the use of interaction protocols are provided along with an example of simple 414
negotiation for a common communication channel. An application implementation scenario is included, 415
which addresses in detail the issues associated with the development of a realistic FIPA compliant agent 416
system. 417
5.1 Benefits of using the FIPA97 Standard2 418

The highly interactive nature of multi-agent systems highlights the need for consensus on agent interfaces in 419
order to support interoperability between different agent systems. The completion and adoption of such a 420

2 This section borrows heavily from [5], with the author's permission.

© FIPA (1998) FIPA Spec 13 - 1998

Page 13

standard is a prerequisite to the widespread commercialisation and successful exploitation of intelligent agent 421
technology. At the time of writing FIPA has around 50 member organisations (commercial and academic) 422
committed to achieving the required consensus for interoperability. 423
The FIPA standards provide: 424

- a commonly agreed means by which agents can communicate with each other so they can 425
exchange information, negotiate for services, or delegate tasks 426

- facilities whereby agents can locate each other (i.e. directory facilities) 427

- an environment which is secure and trusted where agents can operate and exchange 428
confidential messages 429

- a unique way of identifying other agents (i.e. globally unique names) 430

- a means of accessing non-agent and legacy systems, if necessary 431

- a means of interacting with users 432

- a means of migrating from one platform to another, if necessary (FIPA98) 433

 434
The FIPA agent standard will bring the commercial world a step closer to true software components, the 435
benefits of this will include increased re-use, together with ease of upgrade. Early adopters of new 436
technology tend to be wary where there is no commonly agreed standard and which do not benefit from the 437
support of a large consortium of companies; an agent standard will provide added confidence to potential 438
adopters of this technology. Finally, the standardisation process shifts the emphasis from longer-term 439
research issues to the practicalities of realising commercial agent systems. FIPA allows for focused 440
collaboration (of both industrial and academic organisations) in addressing the key challenges facing 441
commercial agent developers as they take agent technology to product. 442
5.2 Agents in FIPA 443

In the context of FIPA97 an agent3 is an encapsulated software entity with its own state, behaviour, thread of 444
control, and an ability to interact and communicate with other entities- including people, other agents, and 445
legacy systems4. This definition puts an agent in the same family, but distinct5 from, objects, functions, 446
processes, and daemons. The agent paradigm is different to the traditional client-server approach; agents can 447
interact on a peer-to-peer level, mediating, collaborating, and co-operating to achieve their goals. 448
A common (but by no means necessary) attribute of an agent is an ability to migrate seamlessly from one 449
platform to another whilst retaining state information, a mobile agent. One use of mobility is in the 450
deployment and upgrade of an agent. Support for agent mobility is included in the FIPA98 specification. 451
Another common type of agent is the intelligent agent, one that exhibits 'smart' behaviour. Such 'smarts' can 452
range from the primitive behaviour achieved through following user-defined scripts, to the adaptive 453
behaviour of neural networks or other heuristic techniques. In general, intelligent agents are not mobile since, 454
in general, the larger an agent is the less desirable it is to move it; coding artificial intelligence into an agent 455
will undoubtedly make it bigger6. 456

3 The term agent is loaded; it means different things to different people. The view aims to give the appropriate context for understanding the
FIPA97 specification.
4 Not necessarily all of these for any one instance of an agent.
5 An agent is at a higher level of abstraction.
6 There is an exception to this statement, 'Swarm' intelligence. This is a form of distributed artificial intelligence modelled on ant-like collective
intelligence. The ant-like 'agents' collaborate to perform complex tasks, which individually they are unable to solve due to their limited
intelligence (e.g. ant-based routing).

© FIPA (1998) FIPA Spec 13 - 1998

Page 14

Another prevalent, but optional, attribute of an agent is anthropomorphism, or 'human factor', this can take 457
the form of physical appearance, or human attributes such as goal-directed behaviour, trust, beliefs, desires 458
and even emotions. 459
5.2.1 Ontologies in FIPA 460
An ontology explicitly specifies the concepts and associations within a domain in a way that is formal, 461
objective, and unambiguous. This includes the objects, quantitative and qualitative information, distinctions, 462
and relationships. Common (or shared) ontologies allow the sharing and reuse of knowledge (about the 463
domain of discourse) among software entities (i.e. programs or agents). 464
An ontology consists of a set of definitions which associate names of entities in the universe of discourse 465
(e.g. classes, relations, functions, or other objects) with human-readable text describing what the names 466
mean, and formal axioms that constrain the interpretation and well-formed use of the terms. An ontology 467
effectively forms a model of a domain. 468
Pragmatically, a common ontology defines the vocabulary with which queries and assertions are exchanged 469
among agents. 'Ontological commitments' are agreements to use the shared vocabulary in a coherent and 470
consistent manner. Agents sharing a vocabulary need not share a knowledge base; each knows things the 471
other does not, and an agent that commits to an ontology is not required to answer all queries that can be 472
formulated in the shared vocabulary7. 473

6 Communication between Agents 474

6.1 RPC-based communications 475

The traditional RPC-based paradigm is usually based on some remote Application Programming Interfaces 476
(APIs), each with a set of defined facilities (object classes, methods, attributes etc.). Such an API identifies 477
the co-operation interface between the entities, (e.g. customer object and a supplier object). Objects can 478
utilise such facilities, (e.g. via remote method calls) to access the functionality/services provided by the other 479
objects whose interface is known to it. Such a co-operation interface tightly couples the objects for the 480
purpose of a specific application. To modify this co-operation interface, it is necessary to re-compile the API 481
definitions, rewrite the software entities based on the new stub/skeleton, and re-install all the software. It is 482
therefore difficult or even impossible to dynamically modify the API (and the associated server/client 483
functionality) in a RPC-based software interoperability paradigm. 484
As a result, the RPC-based interoperability paradigm has the following drawbacks in dynamic, distributed 485
environments: 486

- difficulties and higher costs in modifying, updating and distributing software solutions, due to 487
the static nature of their co-operation interfaces; 488

- a RPC API usually offers only elementary, fine grain facilities to clients in order to meet the 489
dynamic and heterogeneous requirements of the environment. 490

6.2 Agent-based messaging 491

In contrast to the traditional RPC-based paradigm the ACL as defined by FIPA represents an attempt at 492
satisfying the goal of a universal message-oriented communication language. The FIPA ACL describes a 493
standard way to package messages, in such a way that it is clear to other compliant agents what the purpose 494
of the communication was. Although there are several hundred verbs in English, which correspond to 495
performatives, the ACL defines what is considered to be the minimal set for agent communication. This 496
method provides for a flexible approach for communication between software entities exhibiting such 497
benefits as: 498

7 One definition of an agent is that of a software entity that can answer 'No' (if it disagrees about the same information based on its own
knowledge), 'Not understood', or simply ignore the request.

© FIPA (1998) FIPA Spec 13 - 1998

Page 15

- dynamic introduction and removal of services 499

- customised services can be introduced without a requirement to re-compile the code of the 500
clients at run-time 501

- allow for more de-centralised peer-peer realisation of software; 502

- a universal message based language approach providing consistent speech-act based 503
interface throughout software (flat hierarchy of interfaces); 504

- asynchronous message-based interaction between entities. 505

Agent Platform
AP3

Agent Platform
AP1

Agent Platform
AP2

Intra-platform

Inter-platform
Inter-domain

Inter-platform, Intra-Domain

Agents

Inter-platform
Intra-domain

Domain A

Domain B Do
m

ain
 C

 506

Figure 2: Types of agent communication (transport perspective) 507

Figure 2 shows agent communication from the transport perspective. There are 4 types of agent-agent 508
communication depicted: 509

- Intra-platform 510

- Intra-platform, Inter-domain 511

- Inter-platform, Intra-domain 512

- Inter-platform, Inter-domain 513

It is important to realise that FIPA allows interoperability between disparate agent platforms. It is possible 514
for an agent platform and even a whole domain to communicate using non-FIPA compliant means. However, 515

© FIPA (1998) FIPA Spec 13 - 1998

Page 16

supporting FIPA allows an agent platform to communicate with other proprietary agent systems. FIPA 516
compliance could be supported throughout a proprietary agent platform, such that intra-platform 517
communications were FIPA compliant, alternatively FIPA compliance could be supported by a gateway 518
between FIPA and non-FIPA domains. Such a gateway has not been defined by the FIPA standards effort. 519
6.3 Overview of Agent Communication in FIPA97 520

6.3.1 Agent Communication Language (ACL), Content Language and Ontology 521
Agent Systems employ a unique method of communication, which promote the openness of these systems. 522
This method of communication can enable agents to dynamically enter an agent system and contribute to its 523
overall behaviour. Agent communication in FIPA97 is accomplished through the use of three components: 524
the FIPA Agent Communication Language, content language, and ontology, this is a common approach for 525
agent systems. An ontology enumerates the terms comprising the application domain and is not unlike a data 526
dictionary in a traditional information system (see section 7 for a more detailed description of ontology). The 527
content language is used to combine terms in the ontology into sentences (logical or otherwise) which are 528
meaningful to agents who have committed to this ontology. Sometimes the ontology and content language 529
are so tightly integrated that they become the same thing i.e. a list of sentences is the content language, which 530
represent the ontology. Finally the ACL acts as a protocol, enabling the development of dialogues containing 531
sentences of the content language between agents and defining certain semantics for the behaviour of agents 532
participating in such dialogues. The relationship between ontology, content language and ACL is shown in 533
Figure 3: Ontology, Content Language and ACL in FIPA97. A composition of terms from an ontology 534
contained within a sentence of a content language, itself contained within a communicative act as defined by 535
FIPA97 is known as a message and FIPA97 agents communicate by exchanging such messages. 536
 537

(action df@iiop://fipa.org:50/acc (register (
 :df-description (
 :agent-name pta@iiop://fipa.org:50/acc
 :agent-services (...)
)
)
)
)

FIPA Agent Management
Ontology

Message
FIPA ACL FIPA-SL

register
:df-description
 :agent-name
 :agent-address
...

(request :sender (..) :receiver (..) :content () :ontology fipa-agent-mangement :language SL0)

 538

Figure 3: Ontology, Content Language and ACL in FIPA97 539

It should be noted that while FIPA97 specifies an ACL, which must be used by FIPA97 compliant systems, it 540
does not place any restriction upon the use of content language or ontology. FIPA97 does specify the use of 541
SL and standard ontologies for certain normative actions (e.g. agent registration) however this does not 542
preclude the use of other user defined or standard content languages and ontologies for specific agent 543
applications. 544
6.3.2 Message Transport 545
Messages are exchanged between agents through the use of a message transport. There are two types of 546
message transport: the message transport, which delivers messages within an agent platform, and the 547

© FIPA (1998) FIPA Spec 13 - 1998

Page 17

message transport, which delivers messages between agent platforms. The internal platform message 548
transport does not affect platform interoperability and hence is not a subject of standardisation by FIPA. The 549
transport used to deliver messages between agent platforms is crucial to platform interoperability and hence 550
is addressed in FIPA97. FIPA97 defines IIOP as the baseline transport protocol for delivery of messages 551
between agent platforms, more specifically it defines an IDL interface called FIPA_Agent_97 containing one 552
method, a one way void called message which takes as an input parameter a CORBA string. The meaning of 553
this specification to the agent platform developer is as follows: the platform must make such an interface 554
available over IIOP. The simplest way to do this is by developing this IDL interface using an ORB (Object 555
Request Broker) which supports IIOP. 556
It is important to remember that while the use of IIOP is mandated by FIPA97 for platform interoperability, it 557
is merely the baseline for communication between agent platforms. FIPA97 does not preclude the use of 558
other communication protocols between agent platforms and accepts that other protocols may be more 559
suitable depending on the application requirements (for example, realtime multimedia streaming). In such a 560
case, agents on different platforms will make initial contact using the IIOP protocol and may subsequently 561
agree to use a more suitable protocol, which they can both handle (an example of such a negotiation is given 562
later in this document). FIPA97 thus mandates the use of IIOP only so that there will always be one well 563
known method of communication available between agent platforms. 564
6.3.3 Use of proprietary APIs 565
It is important to understand that the purpose of many of the interoperability mechanisms in the FIPA97 566
specification exist to enable interoperability between agent platforms, or between agents and third party agent 567
platforms. The difference between these two types of interoperability is of great importance to an agent 568
system or agent platform developer. The use of ACL within an agent platform allows an agent developer to 569
implement an agent (or agent system) witch will run on another developers platform (of course the agents 570
involved will have to support IIOP to communicate with that platform). However assume that the developer 571
has control over the development of the platform and any agents which will run upon it. A consequence is 572
that agent management actions within the agent platform do not necessarily have to be carried out through 573
ACL. Take for example the situation where an agent wishes to register with the AMS and DF of its own 574
agent platform. It is perfectly acceptable for that agent to register using a proprietary API provided by the 575
platform if it knows how to do so. From a FIPA compliance perspective it is only necessary for the DF and 576
AMS to have the FIPA mandated registration details pertaining to that agent available and to be able to 577
provide these details to agents outside that platform through FIPA-ACL queries if so requested. ACL is 578
required only when interacting with entities outside the agent platform. From an agent management 579
perspective the minimal external interactions that a compliant agent platform must support are as follows: 580
1. The ACC must be able to deliver ACL messages between agents within its platform and agents 581

external to its platform. The ACC must therefore support the ACL request-forward interface (this 582
requires the ability to both understand and generate the request-forward communicative act in 583
ACL). 584

2. The platform must support an ACL interface for all actions from external sources, which query 585
registration details (on the AMS and DF). 586

3. The platform must support the ability for external DFs to register with its DF. The DF must 587
therefore support an ACL interface for incoming DF registration actions. An additional 588
consequence is that the DF must be capable of generating the required ACL actions to manage 589
its registration with external DFs. 590

4. The platform must of course be able to understand and generate in ACL the exceptions 591
necessitated by the above requirements. 592

© FIPA (1998) FIPA Spec 13 - 1998

Page 18

These are the minimal requirements. If a platform wishes to support dynamic registration (the ability of 593
external or third party agents to register with it) it must support the full DF and AMS interfaces through 594
ACL. 595
Another way of interpreting these requirements is that when agent management operations are carried over 596
the inter platform transport (i.e. through the ACC) these must be carried as ACL, when they are carried over 597
the Internal Platform Message Transport (IPMT) they can be carried in a proprietary manner. 598

7 Implementation Requirements of FIPA agents 599

The purpose of this section is to describe how a FIPA compliant agent may be implemented. The 600
information given does not imply that it is neither the only way nor necessarily the best method of 601
implementation. 602
7.1 Ping Agent Implementation Requirements 603

In this example application scenario there is a single FIPA Agent Platform, with two registered agents; a 604
"Test-Agent" and a "Ping-Agent". Both agents must register with the DF and AMS on the platform before 605
they can interact. The agent management action register required for these agents to register with the DF and 606
AMS on the platform are shown in section 9. 607
The "Ping Agent" is a simple example of a FIPA agent implementation, which supports a subset of the ACL 608
and a simple content language. The "Ping-Agent" also supports the FIPA mandated inter-platform 609
mechanism to enable agents on other platforms to address it directly. The agent is able to respond to a 610
request to inform the sender agent that it is 'alive'. The ACL to achieve this is shown below (the content 611
language simple supports the single term alive.): 612
(request613
:sender test-agent614
:receiver ping-agent615
:content (616

inform617
:sender ping-agent618
:receiver test-agent619
:content (alive)620
:language simple)621

:language fipa-acl)622
 623
The ACL message that the test-agent expects to receive in response to its request for the ping-agent to 624
perform an act is shown below: 625
(inform626
:sender ping-agent627
:receiver test-agent628
:content (alive)629
:language simple)630

 631
The semantics of the request communicative act do not guarantee that the ping-agent will act upon the 632
request made by the test-agent. It is therefore possible that the test-agent will not receive the inform message 633
as expected even though the ping-agent is in fact alive. The impact of such a result is that the test-agent is 634
still unaware of the ping-agent's status. This is an important aspect of the semantics of the ACL. 635
7.2 Implementation 636

The minimum requirements of the message transport for the ACL specified in FIPA97 are that it is timely 637
and reliable. However it should be noted that the concept of asynchronous communication is intrinsic to the 638

© FIPA (1998) FIPA Spec 13 - 1998

Page 19

nature of agents. To support the asynchronous nature of the ACL there is no requirement that the message 639
transport mechanism delivers a given message directly to the receiver. The message transport will ideally 640
support a store and forward architecture. 641
To enable agents to directly address the "Ping-Agent", its implementation needs to support the IIOP protocol. 642
The simplest method to achieve this is to develop the IDL interface defined in FIPA97 Part 1, Annex A using 643
an ORB (Object Request Broker) which supports IIOP. 644
To send the request message to the "Ping-Agent" the "Test-Agent" must invoke the message method of the 645
"Ping-Agent". The ACL message encoded as a string is used as the parameter of the method invocation. To 646
enable the "Test-Agent" to invoke the message method of the "Ping-Agent" the "Test-Agent" must first 647
obtain the object reference to the FIPA_Agent_97 interface. This can be achieved by taking the IIOP URL 648
component of the agent address (retrieved from the AMS) and converting this to an IOR (Interoperability 649
Object Reference). 650
To enable the "Ping-Agent" to interpret the ACL message the implementation of the message method 651
requires the ability to parse the parameter string. The parsing process translates the ACL message into an 652
internal (implementation specific) representation (e.g. Java object or Prolog list) which can then be used for 653
internal manipulation. The result of this manipulation may provide an internal representation of a outgoing 654
message depending of the internal goals of the "Ping-Agent". The form of the message relates to semantics 655
of original act received (i.e. inform). This internal representation of the message can be converted to a string, 656
which can then be used as the parameter of the message method invocation on the "Test-Agent". 657
7.3 Towards Realistic Agent Implementations 658

The "Ping-Agent" example considered neither the concepts of ACL message queues nor the effect of the 659
ACL dialogues on internal agent state. These concepts can contribute to implementation of more realistic 660
agents. 661
7.3.1 ACL Message Queue 662
There is an obvious requirement for FIPA to support asynchronous agent communication (in fact the use of a 663
well designed ACC is the first step towards implementing asynchronous communication at the agent level). 664
If an agent A sends a message to agent B it is often unacceptable for agent A to be blocked while agent B 665
processes the message. The IDL interface defined in FIPA97 Part 1 indicates by use of the 'oneway' keyword 666
that the 'message' method will not block the invoking agent (the sender) whilst the receiving agent processes 667
the method [1]. This is achieved, as the implementation does not require that the method return any value. In 668
fact no call back is expected, so the calling process is able to continue execution. At the agent level it is 669
expected that the receiving agent will respond with a further ACL message. 670
Use of a 'oneway' method explains how blocking on the sending side is avoided. In the "Ping-Agent" 671
example this is sufficient to ensure that the "Test-Agent" does not block when interacting with the "Ping-672
Agent". However, to avoid blocking on the receiver side a mechanism to ensure that the agent is not forced to 673
process the message as soon as it is received is required. This is particularly important when implementing 674
more computational intensive agents such as the ACC. As processing the message may necessitate 675
communication with other agents this processing may take a substantial amount of time. Figure 1 below 676
illustrates two alternative implementations of the 'message' method. In example 1 the message received is 677
added to a message queue with no further processing, the method ‘message’ then terminates. This example 678
requires the use of a scheduling or threading model so that the subsequent processing of messages from the 679
message queue does not adversely affect the message delivery mechanism. With the use of a message queue 680
a receiving agent can determine itself when to process messages. In contrast to this, example 2 illustrates an 681
implementation where the message is processed when the 'message' method is invoked. In this 682
implementation, the agent is forced to process the message directly, this could impact its ability to receive 683
messages from other agents. Although FIPA97 does not state explicitly that asynchronous communication is 684
mandated it is highly desirable that FIPA97 compliant platforms implement a store and forward mechanism 685
at least within the platforms ACC. 686
Example 1 687

© FIPA (1998) FIPA Spec 13 - 1998

Page 20

//C++ implementation of FIPA_Agent_97 Interface688
void FIPA_Agent_97_i :: message (char * acl_message) {689
// add the message to the message queue : note that this is a simple690

operation which does not involve processing the message and should691
complete quickly692
add_message_to_q(acl_message);693
}694
Example 2 695
//C++ implementation of FIPA_Agent_97 Interface696
void FIPA_Agent_97_i :: message (char * acl_message) {697
// process the message : note that this operation may take some698
// time699

process_message(acl_message);700
}701

Figure 1: Example of blocking versus non-blocking behaviour in an ACC 702

Another interesting facet of agent communication is the transmission of very large messages. Take for 703
example the FIPA_Agent_97 interface. If agent A tries to push a 10MB message through this interface then 704
the interface will be blocked for a considerable period of time while the transfer completes. This is not 705
desirable especially if the receiver is an ACC, as other agents may not be able to get a transport level 706
connection to the ACC during this time. An obvious solution to this type of problem is that large messages 707
are segmented and transmitted as smaller packets and reconstructed upon arrival, it should be noted that 708
GIOP 1.1 can support this through the use of the Fragment message type (which allows large requests to be 709
transmitted over a series of IIOP messages). At any rate, its seems logical that such messages be handled 710
through the use of a streaming service. 711
7.3.2 ACC Implementation Issues 712
The ACC provides a basic messaging service based on a store and forward model to transport string 713
messages between agents on different platforms. It may optionally provide support for other message 714
transport models and protocols. 715
In the recommended model the ACC keeps a queue of messages for all agents currently registered with it, 716
these messages can be retrieved by the agent on demand. The buffering behaviour (i.e. how messages are 717
stored, for how long etc.) of the ACC is left to developers. The mechanism by which the ACC delivers 718
messages to agents, if the ACC lets agents know when they have new messages etc. are also not covered in 719
the specification. 720
7.3.2.1 Example message transfer 721
The ACC on a platform represents the FIPA baseline messaging system. A message sent by agent A on 722
platform AP-A to an agent B on AP-B as follows: 723
1. A passes the message to its ACC using the request forward action. The ACC will either refuse 724

to handle the message (if it is too busy for example) or agree to try and deliver the message to 725
B. 726

2. The ACC on platform AP-A now looks at the address in the receiver parameter and identifies 727
the AP-B it needs to contact. 728

3. The ACC then attempts to contact the ACC on AP-B and pass on the message. If the other 729
ACC on AP-B accepts the message, the message is transferred and the responsibility of the 730
ACC on the first platform for the message ends. If the platform AP-B cannot be contacted the 731
ACC may do one of the following: 1) Attempt to find an alternative addresses for the agent 732
(using delegate agent field in DF description), 2) buffer the message and retry later or 3) discard 733
the message. (Note no error message from the ACC to the agent is specified.) 734

© FIPA (1998) FIPA Spec 13 - 1998

Page 21

4. Once the ACC on platform AP-B accepts the message it also accepts responsibility for its 735
delivery. 736

5. The ACC may tell B that a message has arrived, it may just hold the message in a buffer until B 737
next checks for new messages. 738

Note that there is little guarantee about message delivery, although there was consideration of specifying 739
minimum buffering/message forwarding behaviour for ACCs. The main arguments against were 740
1. The difficulty in and potential cost to developers 741

2. Difficulty in taking into account the effects of minimum spec + enhanced buffering in ACCs - i.e. 742
reasoning about what happens to a message - even setting a minimum spec may give little 743
information about the overall behaviour of the message system. 744

7.3.2.2 Confirmations 745
This fundamentally asynchronous mode of communication gives the sender very little information on what 746
happened to its message. This is provided for at the ACL level through the 'done request-forward' message. 747
This can be viewed as “positive only” feedback, since ACCs are able to hold messages for agents and they 748
may be buffered in the system. 749
Within this document "message delivery" is taken to mean where message is delivered when it becomes 750
available in the internal state of the agent. 751
This does not mean the agent has read the message, however it could choose to + if the agent moved the 752
message could/would move with it. 753
7.3.3 An agents Global Unique Identifier (GUID) 754
FIPA97 uses the concept of a GUID to ensure the unique identity of FIPA compliant agent's. An agent's 755
GUID is formed by concatenating its Home Agent Platform (HAP) address e.g. “iiop://fipa.org:50/acc” to the 756
agent's unique name within the platform e.g. “agent-1” resulting in a GUID of the following form: 757
 758
agent-1@iiop://fipa.org:50/acc759
 760
Global uniqueness of the GUID is ensured because: 761
1. All agent platform addresses are unique (of the form iiop://<host>:<port>/<object-key> 762

2. Each agent platform ensures that agent names assigned locally are unique 763

An agent's GUID is useful within FIPA agent systems because it forms a basis for agent authentication. 764
Given an agents GUID it is of course possible to determine the agents HAP address, using the HAP address 765
one can contact the AMS of that platform. It is the responsibility of the AMS to then vouch for the agent 766
specified by the GUID. 767
7.3.4 Use of FIPA Interaction Protocols 768
In the FIPA97 part 2 a selection of generic interaction protocols are defined describing the possible message 769
exchanges between agents. For example, in the FIPA-request interaction protocol, one agent (the client 770
agent) requests another agent (the server agent) to perform an action (note client and server here refer to 771
client and server in the context of the requested service and to client and server in context of remote 772
communication as both agents and hence peers in the communication process). Several alternative messages 773
could be sent in return to such a message. The type of message to be returned can be the conditions under 774
which the server agent does not satisfy the request or conditions that represent errors for the client agent. 775
Included here are some guidelines for how a server agent should handle the reporting of such errors. 776
The proposed criteria are the following: 777
1. About the type of communicative act for the response: 778

© FIPA (1998) FIPA Spec 13 - 1998

Page 22

a. when the requested action does not belong to the set of the actions supported by the server 779
agent, the response is a communicative act of type “not-understood”; 780

b. when the requested action is supported by the server agent but the client agent is not 781
authorised to request the action, the response is a communicative act of type “refuse”; 782

c. when the requested action is supported by the server agent, the client agent is authorised to 783
request the action but the action is wrongly specified syntactically or semantically (e.g. its 784
attributes are wrong, incomplete or unrecognisable), the response is a communicative act of 785
type “refuse”; 786

d. when the requested action is supported by the server agent, the client agent is authorised to 787
request the action, the action is syntactically and semantically correct but the server agent is 788
overloaded attempting to perform other actions, the response is a communicative of type 789
"refuse"; 790

e. in all the other cases the server agent sends to the client agent a communicative act of type 791
“agree”. Subsequently if any condition arises that prevents the server to complete 792
successfully the requested action, the response is a communicative act of type “failure”; if it 793
does not happen, the response is a communicative act of type “inform”. 794

2. About the content of the communicative act encoding the response in case of error: 795

a. in order to limit the size of the messages, the content of the response does not have to 796
include the description of the requested action; this information is implicitly included in the 797
attribute “in-reply-to” or “conversation-id” of the message; in this respect the client agent 798
must use one of these attributes in the message encoding the request. 799

b. as far as the terminology is concerned, according to FIPA97, the term attribute is used for 800
the action arguments (parameters); the term slot is used for the fields of an ontology object; 801

c. the content is a list of format “(<reason> <argument>+)”, where <reason> is a predicate that 802
specifies the error condition and the remaining strings are its arguments. Examples of 803
content string are “(wrong-attribute-value provider)”, “(unauthorised)”, “(missing-slot user 804
birthdate)”. 805

7.3.5 Agent Communication over a protocol other than IIOP 806
FIPA mandates that every compliant platform supports the baseline protocol, which is IIOP. This ensures that 807
agents on separate agent platforms can always communicate over one well-known channel. This does not 808
preclude the possibility that agents can communicate over another communications channel if available. 809
Indeed a scenario could be envisioned where two agents use the baseline protocol to negotiate about moving 810
to another common protocol more suitable to their needs. Part of a simple conversation for that purpose 811
might look something like the following: 812
Agent A asks agent B for its supported communications mechanisms: 813
 814
(query-ref815

:sender a@iiop://fipa.org:50/acc816
:receiver b@iiop://agentland.org:81/acc817
:language SL818
:ontology communication-mechanisms819
:content820

© FIPA (1998) FIPA Spec 13 - 1998

Page 23

(iota ?x (supported-communication-mechanisms821
b@iiop://agentland.org:50/acc ?x))822

)823
 824
Agent B tells agent A that it supports SMTP, HTTP and SMS: 825
(inform826

:sender b@iiop://agentland.org:81/acc827
:receiver a@iiop://fipa.org:50/acc828
:language SL829
:ontology communication-mechanisms830
:content831

(= (iota ?x (supported-communication-mechanisms832
b@iiop://agentland.org:50/acc ?x))833

((ip http agentland.org 90)834
(ip smtp fipa-agent-b@agentland.org)835
(gsm sms 123/1234567))836

)837
)838

 839
Agent A then requests Agent B to continue this conversation over email: 840
(request841

:sender a@iiop://fipa.org:50/acc842
:receiver b@iiop://agentland.org:50/acc843
:language SL844
:ontology communication-mechanisms845
:content846

(action b@iiop://agentland.org:50/acc847
(change-conversation-channel848

(:in fipa-agent-b@agentland.org849
:out fipa-agent-a@fipa.org850

)851
)852

)853
)854
 855
Of course this example assumes that both A and B have committed to a common ontology over which to 856
perform this negotiation. 857
 858

859

© FIPA (1998) FIPA Spec 13 - 1998

Page 24

8 Application Scenario Description 859

A sample application domain of scheduling a meeting for human users is described here to help illustrate the 860
construction of a FIPA97 agent-based application. This example aims to illustrate features of FIPA such as: 861

- agent registration; 862

- agent location; 863

- software wrappers; 864

- remote platform registration. 865

 866
The following diagram illustrates the agent architecture for the Meeting Scheduling application. 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878

Figure 1 Meeting Scheduler Agent Architecture 879

The application architecture consists of the agents described in part 1 of FIPA97 (AMS, DF and ACC) 880
domain specific Personal Agents that represent the human users, and wrapper agents as described in part 3 of 881
FIPA97. 882
For each user of the application there is an associated Personal Agent which has knowledge of its users 883
preferences with regards to scheduling meetings. In the sample scenario illustrated above there are Personal 884
Agents for 4 human users. In this sample scenario the human users use a electronic calendar to maintain 885
their appointments. As the Personal Agents must have access to their users schedule information a wrapper 886
agent is used to convert the ACL requests made by the Personal Agents to the internal API for the electronic 887
calendar application. The interaction with the wrapper agent enables the Personal Agents to access the 888
calendar information stored by the application. It is this data which enables the Personal Agents to respond 889
to meeting requests. 890
Each of the domain specific agents described above interact by exchanging FIPA ACL messages as specified 891
in part 2 of FIPA97. To enable each of the agents to locate each other as required for successful operation of 892
the application the agents must first register with the AMS and DF of their home platform. Agents which 893
register with the AMS of a platform may then utilise the services of that platform (e.g. DF and ACC). The 894
agents may then register their services in the DF so that they can located by other agents if required. 895
8.1 Meeting Scheduling Scenario 896

The following diagram illustrates the required interactions between each of the entities (humans and agents) 897
in the sample scenario in an attempt to schedule a meeting suitable for all attendees. The interactions 898
described assume that each of the agents have previously registered at least with the DF of their home 899
platform and that all of the agents can be located by searching the local DF. In the scenario the Personal 900

Wrapper Agent

Calendar

Co-ordinator
Agent

Invitee Agent

Wrapper Agent

Calendar

Invitee Agent

Wrapper Agent

Calendar

Invitee Agent

ACL

ACL

© FIPA (1998) FIPA Spec 13 - 1998

Page 25

Agents are consider to be either a co-ordinator (one of these in the scenario) or requested participants (one 901
per human user requested to attend the meeting). The Personal Agent requested to schedule the meeting 902
assumes the role of the co-ordinator. 903

 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925

Figure 2 - Data flow in the Meeting Scheduling Sample Application 926

 927
Referring to Figure 2, an explanation if the numbered flows follows: 928
1. The human user requests that their Personal Agent attempt to schedule a meeting with some 929

specified participants. 930

2. A call for proposals message is sent to the participants Personal Agent from the co-ordinator 931
Personal Agent following the FIPA Contract Net protocol described in FIPA97 part 2. 932

3. The participant Personal Agents check their calendars for free time slots to attend the 933
requested meeting. This is achieved by sending a message to the Calendar wrapper which 934
then queries the Calendar via the appropriate API call. The result of the API call is returned to 935
the participant agent by the wrapper agent as an ACL message. 936

4. The participant Personal Agents reply to the co-ordinator Personal Agent with the proposed 937
meeting times as per the FIPA Contract Net protocol. The form of this message is either a 938
proposal or a refusal. 939

5. The co-ordinator Personal Agent sends accept and reject messages to invitees as described by 940
the FIPA Contract Net protocol. 941

6. The participant Personal Agents who agree to the proposed meeting update their calendars 942
with the agreed meeting time by invoking the Calendar wrapper agent. 943

Human
User Co-

ordinator
Participant

Wrapper
+

Calendar

1

2

4

5

3 6

7

8

© FIPA (1998) FIPA Spec 13 - 1998

Page 26

7. The participant Personal Agents which agree to the proposed meeting inform the co-ordinator 944
that they have completed the request to schedule a meeting (accept only) as per the FIPA 945
Contract Net protocol. 946

8. The co-ordinator Personal Agent notifies the human user of the agreed meeting information, as 947
do all of the participant Personal Agents. 948

The above description assumes for simplicity that all of the participant agents propose a meeting time. A 949
more realistic scenario may involve certain agents refusing to propose a meeting time for a variety of reasons 950
(e.g. no available slots, agent has instructions that their user doesn’t wish to meet with certain other people, 951
etc.). 952
8.2 Meeting Scheduling Ontology 953

To ensure that each of the agents in the sample scenario have a common understanding of the domain 954
specific terms used in their communication, a Meeting Scheduler Ontology must be defined. This ontolgoy 955
specifies the syntax for messages, the PA Meeting Scheduler Ontology. Some additional semantics are also 956
specified. The messages formed using this syntax can be inserted into an ACL message in the content field, 957
provided the ontology field is set to PA-Meeting. The messages described in this ontology are envisaged for 958
use with the FIPA-Contract-Net protocol. An example of the content field of a typical cfp message is: 959
(action PA-Meet an-agent@iiop://blh.com:8000/name 960
 :PA-Meeting (961
 :Location A-room 962
 :Description Demo meeting 963
 :Priority 1 964
 :TimeIntervals (965
 :StartRange 19980606T1200-19980606T1500) 966
 :Duration 60)) 967
 968
Further details of the grammar are described in a section x. 969

9 Implementation Guidelines 970

In this sample scenario the agents negotiate simply over the starting time of the meeting. Initially a meeting is 971
proposed which either has a single start time, or a range of possible start times, and a duration. In the case of 972
a single start time, each invitee is queried and if it can be present then it is asked to schedule the meeting. 973
This is the simplest case and no negotiation is needed. The more complicated case is that of having a range of 974
possible start times, and this is where the negotiation starts to play a part. Each agent checks its calendar and 975
returns its free time to the co-ordinator. The co-ordinator then looks at each agents’ free time and works out 976
the time slot when most agents can attend a meeting, in the range originally given. It then lets each of these 977
agents know the meeting time that has been decided. 978
This is quite a simple analytical model and it is easy to conceive a much more complicated negotiation model 979
where several iterations of negotiations take place, with many factors being considered (such as location, 980
duration, policy - e.g. no meetings before nine in the morning etc.). 981 982

© FIPA (1998) FIPA Spec 13 - 1998

Page 27

 982
9.1 Description of the agent negotiation 983

In short, the co-ordinating agent is activated by human user and proceeds to issue a call for proposals to the 984
invitees. Each invitee checks its calendar and replies with a propose or refuse message8, depending on 985
whether it is free or not. The co-ordinator looks at each incoming message and works out the best time to 986
hold the meeting (using whichever negotiation resolution engine is present), sending accept-proposal and 987
reject-proposal messages to agents that can attend the final meeting, and those that can’t, respectively. Each 988
invitee which can attend the final meeting then responds with an inform message after it has scheduled the 989
meeting details in its calendar. See the FIPA-Contract-Net protocol described in FIPA97 part 2 for a more 990
detailed description. Figure 3 shows the message order of the negotiation protocol. 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009

Figure 3 - Messaging order of the FIPA-Contract-Net protocol 1010

On receiving a cfp message each invitee agent will check it’s calendar between the times given for the range 1011
of possible start times. The agents will then return a list of every time slot9 for which they are available 1012
which is of the required meeting length or greater. 1013
After each agent sends a proposal to the meeting co-ordinator (which contains one or more time slots 1014
specifying when the agent is available) the co-ordinator passes the time slot information and associated agent 1015
names to the negotiation engine. For each of the time slots of the required meeting length available in the 1016
original meeting proposal, the agent compares each of the time slots returned by the invitees and records the 1017
number of participants that can attend that particular time slot. After each possible time slot from the original 1018
proposal has been analysed the agent returns the details of the time slot for which most agents can attend, and 1019
also returns lists of agents that can, and can’t, attend a meeting at this time. The co-ordinator then uses this 1020
information to inform invitees of the agreed meeting time or to cancel their invitation. 1021

1022

8 In a strictly conformant implementation of the FIPA Contract Net protocol each agent which receives the cfp message would reply with an
agree message to indicate their intention to propose in response to cfp.
9 Time slots have a granularity of half an hour

Schedule request

notify

cfp

propose, refuse

accept, reject

inform, failure

Human
User

co-ordinator participants

© FIPA (1998) FIPA Spec 13 - 1998

Page 28

 1022
9.2 Example meeting time resolution 1023

Assuming that the user wishes to schedule a meeting for 60 minutes between 12.00 and 15.00. 1024
The invitee agents (let us assume that there are four of them) return the following free time information 1025
(remember: all free time information is at least as long as the original meeting request length, i.e. 60 1026
minutes): 1027

Agen
t

Free time

Bob 12.00-13.00, 14.00-15.00

Clive 13.00-15.00
Kevin 12.00-13.00
Keith 12.30-13.30, 14.00-

15.00
 1028
The co-ordinator agent will then analyse each of the time slots available from the original meeting request: 1029

Agent Time slot

 12.00-
12.30

12.30-
13.00

13.00-
13.30

13.30-
14.00

14.00-
14.30

14.30-
15.00

Bob ! ! ! !
Clive ! ! ! !
Kevin ! !
Keith ! ! ! !
Total 2 3 2 1 3 3

 1030
From this table it can be seen that the time slots where most agents can attend are: 12.30-13.00 and 14.00-1031
15.00. Since the 12.30-13.00 slot is not 60- minutes long it will be ignored, hence the meeting will be 1032
scheduled to start at 14.00. The attendees are Bob, Clive, and Keith, and Kevin cannot attend. 1033
N.B. No negotiation over duration of the meeting occurs. In this sample application only the start times of 1034
meeting are altered from the original proposal. If only one agent can make a meeting it is cancelled. 1035
9.3 Application specific ontology descriptions 1036

9.3.1 PA Meeting Scheduler Ontology 1037
The following represents the syntax for the PA Meeting Scheduler Ontology. The Rules for Well Formed 1038
messages describes some of the semantics of the ontology which are not explicit in the grammar. 1039
 1040
PAAction = "(" "PA-MEET" "(" ":PA-Meeting" PA-Meeting-description+ "))"1041

1042
PA-Meeting-description =1043

Location1044
| Description1045
| Priority1046
| ":TimeIntervals (" TimeInterval+ ")"1047
| Duration.1048

1049
1050

Location = ":Location" Word.1051
1052

Description = ":Description" StringLiteral.1053
1054

Priority = ":Priority" Digit.1055
1056

TimeInterval = Start1057
| BetweenTimes.1058

© FIPA (1998) FIPA Spec 13 - 1998

Page 29

1059
Start = ":Start" Time.1060

1061
Duration = ":Duration" IntegerLiteral.1062

1063
BetweenTimes = ":StartRange" Time "-" Time.1064

1065
Word= As defined by SL01066

1067
StringLiteral= As defined by SL01068

1069
IntegerLiteral= As defined by SL01070

1071
Time= Year Month Day "T" Hour Minute.1072
Year= Digit Digit Digit Digit.1073
Month= Digit Digit.1074
Day= Digit Digit.1075
Hour= Digit Digit.1076
Minute= Digit Digit.1077

1078
 1079
9.3.1.1 Rules for well formed messages 1080
The following table summarises the semantic rules of using the PA Meeting grammar for the current 1081
scheduling purposes. 1082
 1083
 Attribute
Performative
 Location Descriptio

n
Priority Start Range Duration

Cfp M O O O O M
Propose O O O O O O
Accept-
Proposal

O O O M - O

Inform O O O M - O

Key: M = Mandatory O = Optional - = Not permitted 1084
 1085
A cfp should include at minimum either a start time and duration or range of times and duration in addition to 1086
the mandatory location information. 1087
9.3.1.2 Further semantics for the ontology 1088

- Priority ::= 1 = high. 1089

- Location and Description contain unconstrained text strings which provide user readable 1090
information about the planned meeting. 1091

- A proposal message which includes a range of times and a duration (e.g. (:StartRange 1092
19970605T1200-19970605T1800 :Duration 60)) is taken to mean that a meeting of the 1093
specified duration can be scheduled within the time-span (i.e. the meeting would end by the 1094
end time range, which in this case would be 1800). 1095

- The non-terminal TimeInterval is used to express the meeting logistics. The TimeInterval is 1096
used here to indicate the available time slots. The potential meeting duration is constant 1097
independent of timeslot. 1098
Expressing the information as a tuple of time and duration, where time is either a single value 1099
representing the start time or is a range of possible start times would enable more flexibility 1100
and a more complex negotiation scenario. 1101

© FIPA (1998) FIPA Spec 13 - 1998

Page 30

- Location, Description and Priority information need only be described in the cfp message as 1102
the details could be maintained by individual agents. The conversation-id ensures the agent 1103
can track the dialog. 1104

9.4 Agent Platform Registration 1105

The agent interactions illustrated in this section perform the initialisation required by a FIPA platform such 1106
that the application specific agents may register on and utilise the services of the platform. The following 1107
sample ACL messages will illustrate the core platform agents (AMS, DF and ACC) registering their services. 1108
Once this agents are available on a platform, the sample agents described will register their services. 1109
The following message registers the DF with the AMS on the Small Company Agent Platform: 1110
(request1111
:sender df@iiop://companyxyz.com:9000/acc1112
:receiver (ams@iiop://companyxyz.com:9000/acc)1113
:content1114
(action ams@iiop://companyxyz.com:9000/acc1115
(register-agent1116
(:ams-description1117
(:agent-name df@iiop://companyxyz.com:9000/acc)1118
(:agent-address (df@iiop://companyxyz.com:9000/acc))1119
(:ap-state active))))1120

:language SL01121
:reply-with id1122
:protocol fipa-request1123
:ontology fipa-agent-management)1124

 1125
with the expected reply being: 1126
(inform1127
:sender ams@iiop://companyxyz.com:9000/acc1128
:receiver (df@iiop://companyxyz.com:9000/acc)1129
:content1130
(done1131
(action ams@iiop://companyxyz.com:9000/acc1132
(register-agent1133
(:ams-description1134

(:agent-name df@iiop://companyxyz.com:9000/acc)1135
(:agent-address (iiop://companyxyz.com:9000/acc))1136
(:ap-state active)))))1137

:language SL01138
:in-reply-to id1139
:protocol fipa-request1140
:ontology fipa-agent-management)1141

 1142
The following message registers the DF with the AMS on the Travel Broker Agent Platform: 1143
(request1144
:sender df@iiop://worldtravel.brokers:9000/brokeracc1145
:receiver (ams@iiop://worldtravel.brokers:9000/brokeracc)1146
:content1147
(action ams@iiop://worldtravel.brokers:9000/brokeracc1148
(register-agent1149

© FIPA (1998) FIPA Spec 13 - 1998

Page 31

(:ams-description1150
(:agent-name df@iiop://worldtravel.brokers:9000/brokeracc)1151
(:agent-address (iiop://worldtravel.brokers:9000/brokeracc))1152
(:ap-state active))))1153

:language SL01154
:reply-with id1155
:protocol fipa-request1156
:ontology fipa-agent-management)1157

 1158
with the expected reply being: 1159
(inform1160
:sender ams@iiop://worldtravel.brokers:9000/brokeracc1161
:receiver (df@iiop://worldtravel.brokers:9000/brokeracc)1162
:content1163
(done1164
(action ams@iiop://worldtravel.brokers:9000/brokeracc1165
(register-agent1166
(:ams-description1167

(:agent-name df@iiop://worldtravel.brokers:9000/brokeracc)1168
(:agent-address (iiop://worldtravel.brokers:9000/brokeracc))1169
(:ap-state active)))))1170

:language SL01171
:in-reply-to id1172
:protocol fipa-request1173
:ontology fipa-agent-management)1174

 1175
The following ACL describes the interactions required to enable the Personal Travel Agent to register on it's 1176
Home Agent Platform: 1177
(request1178
:sender pta@iiop://companyxyz.com:9000/acc1179
:receiver (ams@iiop://companyxyz.com:9000/acc)1180
:content1181
(action ams@iiop://companyxyz.com:9000/acc1182
(register-agent1183
(:ams-description1184
(:agent-name pta@iiop://companyxyz.com:9000/acc)1185
(:agent-address (iiop://companyxyz.com:9000/acc))1186
(:ap-state active))))1187

:language SL01188
:reply-with id11189
:protocol fipa-request1190
:ontology fipa-agent-management)1191

 1192
The following ACL describes the expected response from the AMS asked to perform the register action, if 1193
the action is completed successfully. 1194
(inform1195
:sender ams@iiop://companyxyz.com:9000/acc1196
:receiver (pta@iiop://companyxyz.com:9000/acc)1197
:content1198
(done1199

© FIPA (1998) FIPA Spec 13 - 1998

Page 32

(action ams@iiop://companyxyz.com:9000/acc1200
(register-agent1201
(:ams-description1202

(:agent-name pta@iiop://companyxyz.com:9000/acc)1203
(:agent-address (iiop://companyxyz.com:9000/acc))1204
(:ap-state active)))))1205

:language SL01206
:in-reply-to id11207
:protocol fipa-request1208
:ontology fipa-agent-management)1209

 1210
The following ACL describes the interactions required to enable the Travel Broker Agent to register on it's 1211
Home Agent Platform: 1212
(request1213
:sender travelagent@iiop://worldtravel.brokers:9000/brokeracc1214
:receiver (ams@iiop://worldtravel.brokers:9000/brokeracc)1215
:content1216
(action ams@iiop://worldtravel.brokers:9000/brokeracc1217
(register-agent1218
(:ams-description1219
(:agent-name pta@iiop://worldtravel.brokers:9000/brokeracc)1220
(:agent-address (iiop://worldtravel.brokers:9000/brokeracc))1221
(:ap-state active))))1222

:language SL01223
:reply-with id11224
:protocol fipa-request1225
:ontology fipa-agent-management)1226

 1227
The following ACL describes the expected response from the AMS asked to perform the register action, if 1228
the action is completed successfully. 1229
(inform1230
:sender ams@iiop://worldtravel.brokers:9000/brokeracc1231
:receiver (travelagent@iiop://worldtravel.brokers:9000/brokeracc)1232
:content1233
(done1234
(action ams@iiop://worldtravel.brokers:9000/brokeracc1235
(register-agent1236
(:ams-description1237

(:agent-name1238
travelagent@iiop://worldtravel.brokers:9000/brokeracc)1239

(:agent-address (iiop://worldtravel.brokers:9000/brokeracc))1240
(:ap-state active)))))1241

:language SL01242
:in-reply-to id11243
:protocol fipa-request1244
:ontology fipa-agent-management)1245

 1246
1247

© FIPA (1998) FIPA Spec 13 - 1998

Page 33

9.5 Agent Service Registration 1247

The application agents must be first introduced to the agent platform so that they can locate each other and 1248
share their services. In this sample scenario each of the Personal Agents must register with the AMS and DF 1249
of their home platform. Registration with the AMS ensures that they can access the services of the platform. 1250
The AMS also provides an authentication function for the agents registered with it. This issue is described 1251
further in the FAQ appendix of this document. The following example ACL illustrates how the Personal 1252
Agent for Ally will register with the local platform’s AMS. 1253
(request1254

:sender ally@iiop://47.108.97.125:50/acc1255
:receiver ams@iiop://47.108.97.125:50/acc1256
:content1257

(action ams@iiop://47.108.97.125:50/acc1258
(register1259
(:df-description1260

(:agent-name ally@iiop://47.108.97.125:50/acc)1261
(:ap-state active))))1262

:language SL01263
:protocol fipa-request1264
:ontology fipa-agent-management)1265

 1266
The AMS will acknowledge the Personal Agent for Ally has been registered successfully by returning the 1267
‘Done’ acknowledge message to Ally as shown below. 1268
(inform1269

:sender ally@iiop://47.108.97.125:50/acc1270
:receiver ams@iiop://47.108.97.125:50/acc1271
:content1272
(done1273
(action ams@iiop://47.108.97.125:50/acc1274
(register1275
(:df-description1276

(:agent-name ally@iiop://47.108.97.125:50/acc)1277
(:ap-state active)))))1278

:language SL01279
:protocol fipa-request1280
:ontology fipa-agent-management)1281

 1282
Each of the other Personal Agents in the sample application would register with their associated AMS in the 1283
same fashion. The only noticeable difference will be the name of the agent registered. Once the agents are 1284
registered with the AMS of the platform it is then possible for them to register their services with the DF of 1285
that platform. 1286
Registration with the DF enables other agents to locate it based on search criteria such as the types of 1287
services which it offers. The following example ACL illustrates how the Personal Agent for Ally will 1288
register with the local platform’s DF. In this example the Personal Agent registers that it provides the ‘pa’ 1289
(Personal Assistant) service and that it can understand the ‘meet-sched’ ontology (as described in a previous 1290
section of this document). 1291
(request1292

:sender ally@iiop://47.108.97.125:50/acc1293
:receiver df@iiop://machine.org:50:acc1294
:content1295

© FIPA (1998) FIPA Spec 13 - 1998

Page 34

(action df@iiop://machine.org:50:acc1296
(register1297
(:df-description1298

(:agent-name ally@iiop://47.108.97.125:50/acc)1299
(:ownership ally)1300
(:df-state active)1301
(:agent-services1302
(:service-description1303

(:service-type pa)1304
(:service-ontology meet-sched))))))1305

:language SL01306
:protocol fipa-request1307
:ontology fipa-agent-management)1308

 1309
The DF will acknowledge the Personal Agent for Ally has been registered successfully by returning the 1310
‘Done’ acknowledge message to Ally as shown below. 1311
(inform1312

:sender df@iiop://47.108.97.125:50/acc1313
:receiver ally@iiop://47.108.97.125:50/acc1314
:content1315
(done1316
(action df@iiop://47.108.97.125:50/acc1317
(register1318
(:df-description1319

(:agent-name ally@iiop://47.108.97.125:50/acc)1320
(:ownership ally)1321
(:df-state active)1322
(:agent-services1323
(:service-description1324

(:service-type pa)1325
(:service-ontology meet-sched)))))))1326

:language SL01327
:protocol fipa-request1328
:ontology fipa-agent-management)1329

 1330
Each of the other Personal Agents in the sample application would register with their associated DF in the 1331
same fashion. The only noticeable difference will be the name of the agent registered. Similarly the wrapper 1332
agents may also register with the AMS and DF in the same way, but in this case the service-type will also 1333
indicate that it is a ‘fipa-wrapper’ agent instead of a ‘pa’. For example the ACL to register the wrapper agent 1334
would like the following: 1335
(request1336

:sender calender@iiop://47.108.97.125:50/acc1337
:receiver df@iiop://machine.org:50:acc1338
:content1339

(action df@iiop://machine.org:50:acc1340
(register1341
(:df-description1342

(:agent-name calender@iiop://47.108.97.125:50/acc)1343
(:ownership ally)1344
(:df-state active)1345

© FIPA (1998) FIPA Spec 13 - 1998

Page 35

(:agent-services1346
(:service-description1347

(:service-type fipa-wrapper)1348
(:service-ontology meet-sched))))))1349

:language SL01350
:protocol fipa-request1351
:ontology fipa-agent-management)1352

 1353
Once each of the application specific agents has been registered on the appropriate platforms the application 1354
can be used. A example use of this FIPA agent based system is described in the following sections. 1355
9.6 Remote Agent Registration 1356

It is possible and often desirable for an agent to register remotely on other agent platforms enabling it to use 1357
the services of that platform (e.g. the ACC) in addition to advertising it's own services. To enable remote 1358
registration the agent must either support the baseline protocol itself or be registered on a FIPA platform such 1359
that the services of the ACC can be used. The required register action will involve the agent specifying it's 1360
name as determined at the initial registration. The address given may include a protocol specific to the 1361
remote agent platform. 1362
The following ACL describes the interactions required to enable the Personal Agent for Ally previously 1363
registered on agent platform at 47.108.97.125 to remotely register on the agentland agent platform as shown 1364
in the example ACL messages that follow: 1365
(request1366
:sender ally@iiop://47.108.97.125:50/acc1367
:receiver acc@iiop://47.108.97.125:50/acc1368
:language SL01369
:reply-with id11370
:protocol fipa-request1371
:ontology fipa-agent-management)1372
:content1373
(action acc@iiop://47.108.97.125:50/acc1374
(forward1375
(request1376
:sender ally@iiop://47.108.97.125:50/acc1377
:receiver ams@iiop://agentland.com:50/acc1378
:content1379

(action ams@iiop://agentland.com:50/acc1380
(register-agent1381
(:ams-description1382
(:agent-name ally@iiop://47.108.97.125:50/acc)1383
(:ap-state active))))1384
:language SL01385
:reply-with id11386
:protocol fipa-request1387
:ontology fipa-agent-management)1388

))))1389
 1390
The following ACL describes the expected response from the AMS on the remote platform that was asked to 1391
perform the register action, if the action is completed successfully. 1392
(request1393
:sender ams@iiop://agentland.com:50/acc1394

© FIPA (1998) FIPA Spec 13 - 1998

Page 36

:receiver acc@iiop://agentland.com:50/acc1395
:language SL01396
:reply-with id11397
:protocol fipa-request1398
:ontology fipa-agent-management)1399
:content1400
(action ams@iiop://agentland.com:50/acc1401
(forward1402
(inform1403
:sender ams@iiop://agentland.com:50/acc1404
:receiver ally@iiop://47.108.97.125:50/acc1405
:content1406

(done1407
(action ams@iiop://agentland.com:50/acc1408

(register-agent1409
(:ams-description1410
(:agent-name ally@iiop://47.108.97.125:50/acc)1411
(:ap-state active)))))1412

:language SL01413
:in-reply-to id11414
:protocol fipa-request1415
:ontology fipa-agent-management)1416

))))1417
 1418
A remotely registered agent must remain registered on it's Home Agent Platform so that communication via 1419
the ACC is possible. Future ACL messages will only be routed by the ACC to the agent if the agent is known 1420
on that platform. 1421
9.7 User Initiated Agent Interactions 1422

The scenario is invoked by the human user (Ally) requesting that their personal agent attempts to schedule a 1423
meeting on 9 February 1999 in the afternoon (between 1200 and 1600) with Bob. It is assumed that the 1424
human makes the request via a GUI. The GUI locates the agent name for the Personal Agent who initiated 1425
the request by sending the following search request to the platform's DF. The encoded search request in the 1426
following example indicates that the agent sending the message requires details of the agent which is owned 1427
by Ally and has the registered service type of ‘pa’ (Personal Assistant). To perform this search it is 1428
suggested that only one DF is used. 1429
(request1430

:sender gui@iiop://47.108.97.125:50/acc1431
:receiver df@iiop://47.108.97.125:50/acc1432
:content1433
(action df@iiop://47.108.97.125:50/acc1434

(search1435
(:df-description1436
(:ownership ally1437
(:agent-services1438
(:service-description1439

(:service-ontology meet-sched)1440
(:service-type pa))))1441

:df-depth Exactly 1)))1442
:language SL01443

© FIPA (1998) FIPA Spec 13 - 1998

Page 37

:protocol fipa-request1444
:ontology fipa-agent-management)1445

 1446
As the Personal Agent for Ally has been previously registered with the selected DF, the following response is 1447
sent by the DF to the GUI agent: 1448
(inform1449

:sender df@iiop://47.108.97.125:50/acc1450
:receiver gui@iiop://47.108.97.125:50/acc1451
:content1452
(result1453

(:df-description1454
(:agent-name ally@iiop://47.108.97.125:50/acc)1455
(:ownership ally)1456
(:df-state active)1457
(:agent-services1458
(:service-description1459

(:service-type pa)1460
(:service-ontology meet-sched))))))1461

:language SL01462
:protocol fipa-request1463
:ontology fipa-agent-management)1464

 1465
The actual request to schedule the meeting shown below is then sent to Ally’s Personal Agent. 1466
(request1467

:sender gui@iiop://47.108.97.125:50/acc1468
:receiver ally@iiop://47.108.97.125:50/acc1469
:content1470

(action ally@iiop://47.108.97.125:50/acc1471
MEETING-DETAILS (:meeting1472
(PA-MEET (:PA-Meeting1473

:Location SNT1474
:Description donuts1475
:TimeIntervals1476

(:StartRange 19990209T1200-19990209T1600)1477
:Duration 60))1478
:invitees (bob)))1479

:language SL01480
:ontology meet-sched1481
:protocol fipa-request1482
:conversation-id ally)1483

 1484
In this example the Personal Agent for Ally takes the role of co-ordinating the meeting and the Personal 1485
agent for Bob is a requested participant in that meeting. 1486
9.8 Agent Services Location Interactions 1487

For the co-ordinating agent to contact each of the requested participant agents it must first find the 1488
appropriate agent names. This task is accomplished by searching the DF for the Personal Agents owned by 1489
each of the requested participants. For example, for Ally’s Personal Agent to locate the Personal Agent for 1490
Bob the following ACL request would be sent to the DF: 1491
(request1492

© FIPA (1998) FIPA Spec 13 - 1998

Page 38

:sender ally@iiop://47.108.97.125:50/acc1493
:receiver df@iiop://47.108.97.125:50/acc1494
:content1495
(action df@iiop://47.108.97.125:50/acc1496

(search1497
(:df-description1498
(:ownership bob1499
(:agent-services1500
(:service-description1501

(:service-ontology meet-sched)1502
(:service-type pa))))1503

:df-depth Exactly 1)))1504
:language SL01505
:protocol fipa-request1506
:ontology fipa-agent-management)1507

 1508
As the Personal Agent for Bob has been previously registered with the selected DF, the following response is 1509
sent by the DF to the Personal Agent named Ally: 1510
(inform1511

:sender df@iiop://47.108.97.125:50/acc1512
:receiver ally@iiop://47.108.97.125:50/acc1513
:content1514
(result1515

(:df-description1516
(:agent-name bob@iiop://47.108.97.125:50/acc)1517
(:ownership ally)1518
(:df-state active)1519
(:agent-services1520
(:service-description1521

(:service-type pa)1522
(:service-ontology meet-sched))))))1523

:language SL01524
:protocol fipa-request1525
:ontology fipa-agent-management)1526

 1527
The actual request to propose a time to schedule the meeting shown below is then sent to Bob’s Personal 1528
Agent. 1529
(cfp1530
:sender ally@iiop://47.108.97.125:50/acc1531
:receiver bob@iiop://47.108.97.125:50/acc1532
:content1533

(action bob@iiop://47.108.97.125:50/acc1534
(PA-MEET1535
(:PA-Meeting1536

:Location SNT1537
:Description donuts1538
:Priority 11539
:TimeIntervals1540
(:StartRange 19990209T1200-19990209T1600)1541

:Duration 60)))1542

© FIPA (1998) FIPA Spec 13 - 1998

Page 39

:reply-with ally1543
:language SL01544
:ontology meet-sched1545
:protocol fipa-contract-net1546
:conversation-id bob)1547

 1548
On receipt this request to schedule the meeting the Personal Agent for Bob must first consult the appropriate 1549
calender information to obtain each of the free slots for the human user represented. To access this calender 1550
information the appropriate wrapper agent must first be located. This is achieved by searching the DF in a 1551
similar method to locating the Personal Agents of human users. Once the wrapper agent has been located it 1552
must be first requested initialise the service. This is achieve by sending the ‘init’ request to the wrapper 1553
agent as illustrated below. 1554
(request1555
:sender bob@iiop://47.108.97.125:50/acc1556
:receiver calendar@iiop://47.108.97.125:50/acc1557
:content1558

(action calendar@iiop://47.108.97.125:50/acc1559
(init1560
(:service-description1561
(:service-name Calendar))1562

(:agent-name bob@iiop://47.108.97.125:50/acc)1563
:reply-with ally1564
:language SL01565
:ontology fipa-wrapper1566
:protocol fipa-request)1567

 1568
To acknowledge the wrapper agent's intention to perform the requested ‘init’ action the following ‘agree’ 1569
message is sent in reply to Bob’s Personal Agent as described below: 1570
(agree1571
:sender calendar@iiop://47.101.112.248:50/acc1572
:receiver bob@iiop://47.108.97.125:50/acc1573
:content1574
(action calendar@iiop://47.101.112.248:50/acc1575

(init1576
(:service-description1577
(:service-name Calendar))1578

(:agent-name bob@iiop://47.108.97.125:50/acc)))1579
:language SL21580
:conversation-id bob)1581

 1582
Once the wrapper agent has successfully completed the requested ‘init’ action confirmation of the task 1583
completion is sent to Bob’s Personal Agent as described below: 1584
(inform1585
:sender calendar@iiop://47.101.112.248:50/acc1586
:receiver bob@iiop://47.108.97.125:50/acc1587
:content1588
(done1589
(action calendar@iiop://47.101.112.248:50/acc1590

(init1591
(:service-description1592

© FIPA (1998) FIPA Spec 13 - 1998

Page 40

(:service-name Calendar))1593
(:agent-name bobd@iiop://47.108.97.125:50/acc)))1594

(:service-instance-id calendar-9090519873600))1595
:language SL21596
:conversation-id bob)1597

 1598
Receipt of the ‘done’ message by Bob’s Personal Agent indicates that it is now possible for the free slot 1599
information to be accessed. To achieve this Bob’s Personal Agent requested that the wrapper agent invokes a 1600
function of the wrapped service (e.g. check for free slots). The example ACL message to achieve this is 1601
shown below: 1602
(request1603
:sender bob@iiop://47.108.97.125:50/acc1604
:receiver calendar@iiop://47.108.97.125:50/acc1605
:content1606
(action calendar@iiop://47.108.97.125:50/acc1607

(invoke1608
(:service-instance-id calendar-9090518074800))1609

(:command query-times (60 19990209T1200 19990209T1600)))1610
:reply-with ally1611
:language SL21612
:ontology fipa-wrapper1613
:protocol fipa-request)1614

 1615
Once more the agent acknowledges its intention to perform the requested action by replying with an ‘agree’ 1616
message as illustrated in the following ACL message: 1617
(agree1618
:sender calendar@iiop://47.101.112.248:50/acc1619
:receiver bob@iiop://47.108.97.125:50/acc1620
:content1621

(action calendar@iiop://47.108.97.125:50/acc1622
(invoke1623
(:service-instance-id calendar-9090518074800))1624

(:command query-times (60 19990209T1200 19990209T1600)))1625
:in-reply-to ally1626
:language SL21627
:conversation-id bob)1628

 1629
Once the wrapper agent has successfully completed the requested ‘invoke’ action confirmation of the task 1630
completion is sent to Bob’s Personal Agent as described below: 1631
(inform1632
:sender calendar@iiop://47.101.112.248:50/acc1633
:receiver bob@iiop://47.108.97.125:50/acc1634
:content1635
(done1636

(action calendar@iiop://47.101.112.248:50/acc1637
(invoke1638

(:service-instance-id calendar-9090519873600))1639
(:command query-times (60 19990209T1200 19990209T1600)))1640

(PA-MEET1641
(:PA-Meeting1642

© FIPA (1998) FIPA Spec 13 - 1998

Page 41

:TimeIntervals1643
(:StartRange 19990209T1200-19990209T1600))))1644

:language SL21645
:conversation-id bob)1646

 1647
The message sent by the wrapper to Bob’s personal agent also includes details of the times which are free 1648
according to the details maintained in the electronic calender program. These times can be then used to 1649
propose a time for the meeting in response to the call from Ally’s Personal Agent. The form on the proposal 1650
sent by Bob’s personal agent is shown below: 1651
(propose1652
:sender bob@iiop://47.108.97.125:50/acc1653
:receiver ally@iiop://47.108.97.125:50/acc1654
:content1655
(action bob@iiop://47.108.97.125:50/acc1656

(PA-MEET1657
(:PA-Meeting1658

:Location unknown1659
:Description unknown1660
:Priority 11661
:TimeIntervals1662
(:StartRange 19990209T1200-19990209T1600)1663

:Duration 60)))1664
:reply-with bob1665
:language SL01666
:ontology meet-sched1667
:protocol fipa-contract-net1668
:conversation-id ally)1669

 1670
On receipt of this proposal for a meeting time Ally’s Personal Agent determines that it is happy to accept the 1671
suggested meeting. Ally’s Personal Agent achieves this by replying to Bob’s Personal Agent with an 1672
‘accept-proposal’ message as shown in the following example: 1673
(accept-proposal1674
:sender ally@iiop://47.108.97.125:50/acc1675
:receiver bob@iiop://47.108.97.125:50/acc1676
:content1677
(action bob@iiop://47.108.97.125:50/acc1678
(PA-MEET1679
(:PA-Meeting1680

:Location SNT1681
:Description donuts1682
:Priority 11683
:TimeIntervals1684

(:StartRange 19990209T1200-19990209T1600)1685
:Duration 60)))1686

:reply-with ally1687
:language SL01688
:ontology meet-sched1689
:protocol fipa-contract-net1690
:conversation-id bob)1691

 1692

© FIPA (1998) FIPA Spec 13 - 1998

Page 42

Bob’s Personal Agent on receipt of the acknowledgement for the proposed meeting requests that the meeting 1693
details are used to update the electronic calender information. This is achieved by Bob’s Personal Agent 1694
requesting that the wrapper agent invokes the ‘add-meeting’ service as illustrated in the following ACL 1695
message: 1696
(request1697
:sender bob@iiop://47.108.97.125:50/acc1698
:receiver calendar@iiop://47.101.112.248:50/acc1699
:content1700
(action calendar@iiop://47.101.112.248:50/acc1701

(invoke1702
(:service-instance-id calendar-9090519873600))1703

(:command add-meeting1704
(PA-MEET1705

(:PA-Meeting1706
:Location SNT1707
:Description donuts1708
:Priority 11709
:TimeIntervals1710
(:StartRange 19990209T1200-19990209T1600)1711

:Duration 60))))1712
:reply-with bob1713
:language SL21714
:ontology fipa-wrapper1715
:protocol fipa-request)1716

 1717
As with the previous interactions with the wrapper agent it responds to this ‘invoke’ request by first replying 1718
with an ‘agree’ message to indicate its intention to perform the requested action. Once the action has been 1719
completed the wrapper agent sends a message to confirm that the task has been completed. As Bob’s 1720
Personal Agent has finished with the services of the calendar wrapper agent it requested that the wrapper 1721
closes its connection with the integrated service. This is achieved by requesting that the wrapper agent 1722
performs the ‘close’ action as illustrated in the following ACL message: 1723
(request1724
:sender bob@iiop://47.108.97.125:50/acc1725
:receiver calendar@iiop://47.101.112.248:50/acc1726
:content1727
(action calendar@iiop://47.101.112.248:50/acc1728
(close1729

(:service-instance-id calendar-9090519873600))1730
(:agent-name un-named@iiop://47.108.97.125:50/acc))1731

:reply-with bob1732
:language SL21733
:ontology fipa-wrapper1734
:protocol fipa-request)1735

 1736
The wrapper agent acknowledges its intention to perform the action by first sending the ‘agree’ message as 1737
previously described in this example. Further, once the action has been completed successfully the wrapper 1738
informs Bob’s Personal Agent with the following ACL message: 1739
(inform1740
:sender calendar@iiop://47.101.112.248:50/acc1741
:receiver bob@iiop://47.108.97.125:50/acc1742

© FIPA (1998) FIPA Spec 13 - 1998

Page 43

:content1743
(done1744
((action calendar@iiop://47.101.112.248:50/acc1745

(close1746
(:service-instance-id calendar-9090519873600))1747

(:agent-name bob@iiop://47.108.97.125:50/acc))))1748
(calendar@iiop://47.101.112.248:50/acc))1749

:language SL21750
:conversation-id bob)1751

 1752
Bob’s Personal Agent must now respond to the ‘accept-proposal’ message sent by Ally’s Personal Agent to 1753
acknowledge the completion of the meeting scheduling negotiation. This indication is made by Bob’s 1754
Personal Agent sending the ACL message which describes that it has performed the meeting scheduling task 1755
as requested. 1756
(inform1757
:sender bob@iiop://47.108.97.125:50/acc1758
:receiver ally@iiop://47.108.97.125:50/acc1759
:content1760

(done1761
(action ally@iiop://47.108.97.125:50/acc1762

ARRANGED-MEETING1763
(:meeting1764
(PA-MEET (:PA-Meeting1765

:Location SNT1766
:Description donuts1767
:Priority 11768
:TimeIntervals1769

(:StartRange 19990209T1200-19990209T1600)1770
:Duration 60))1771
:coming (bob))))1772

:reply-with ally1773
:language SL01774
:ontology meet-sched1775
:protocol fipa-contract-net)1776

 1777
The interactions between the co-ordinator (Ally) and the other participants as described in the outline for the 1778
sample application would follow the same format as the examples given in this section. The Personal Agents 1779
for each of the other users will use separate instances of the calender program to obtain free slot information. 1780
9.9 De-registration of service agent 1781

At any point in time an agent may decide to remove the service which it has advertised in the DF on a 1782
platform. This task can be achieved by requested that the DF performs the ‘de-register’ action for the agent 1783
identified by name. For example, the following ACL message illustrates that Ally’s Personal Agent no 1784
longer wishes to perform the task: 1785
(request1786

:sender ally@iiop://47.108.97.125:50/acc1787
:receiver df@iiop://machine.org:50:acc1788
:content1789

(action df@iiop://machine.org:50:acc1790
(deregister1791

© FIPA (1998) FIPA Spec 13 - 1998

Page 44

(:df-description1792
(:agent-name ally@iiop://47.108.97.125:50/acc))))1793

:language SL01794
:protocol fipa-request1795
:ontology fipa-agent-management)1796

 1797
The DF will acknowledge that Personal Agent for Ally has been de-registered successfully by returning the 1798
‘Done’ acknowledge message to Ally as shown below. 1799
(inform1800

:sender df@iiop://47.108.97.125:50/acc1801
:receiver ally@iiop://47.108.97.125:50/acc1802
:content1803
(done1804
(action df@iiop://47.108.97.125:50/acc1805
(deregister1806
(:df-description1807

(:agent-name ally@iiop://47.108.97.125:50/acc))))1808
:language SL01809
:protocol fipa-request1810
:ontology fipa-agent-management)1811

 1812
Agents can also select to remove themselves from the agent platform itself by requesting that the AMS 1813
performs a de-register function in a identical method to de-registering with the DF. 1814

1815

© FIPA (1998) FIPA Spec 13 - 1998

Page 45

 1815
Annex A 1816

 1817
 1818

Usage of XML/RDF as content within FIPA97 messages 1819

A.1 Introduction 1820

The eXtensible Markup Language (XML) is a W3C Recommendation [1], which enables the representation 1821
and exchange of structured information on the Web. As it is a meta-language, interested communities or 1822
industry domains can develop new languages or vocabularies by agreeing upon the definition of a DTD 1823
(Document Type Definition). The syntax of XML instances is based on the use of tags and attributes, in a 1824
way similar to HTML. Below we will summarise the potential advantages of using XML as content language 1825
within a FIPA message. Indeed, the Web is definitely a very attractive ‘place-to-be’ for making real business 1826
of agent technology today. Then we will give some examples of XML content. Also RDF is briefly discussed 1827
as a potential content language. 1828

A.2 Benefits of using XML as Content Language 1829

Reusability of de-facto Web standards 1830
Currently a variety of Web vocabularies are emerging on the Web in very different domains such as: 1831
e-commerce, finance, software deployment, telecommunications, mathematics, chemistry, pharmaceutics and 1832
medical sciences. One expects that the list of available DTDs will continue to grow in the next few years and 1833
result in de-facto standards for expressing and exchanging information on the Web. 1834
Syntax validation 1835
Syntax validation of the content is possible, when an XML DTD has been defined. However, XML does not 1836
require that DTDs are defined in all cases. In the latter case, only the well formedness of the content can be 1837
checked. 1838
Presentation in Web pages 1839
XML can be combined with XSL stylesheets in order to create human-readable representations of messages 1840
and their content and present them in Web pages. This may be useful when end-users would like to check for 1841
example the content of the messages being exchanged (possibly stored in some log file). The major browsers 1842
Internet Explorer and Netscape have announced native XML support in their next releases. 1843
XML tool support 1844
A wide variety of XML supporting tools already exist both in the public domain as in the commercial world. 1845
Examples of such tools include parsers, browsers, editors, translators, or database engines. The major 1846
browsers also provide standardized APIs to manipulate or query the XML content. 1847
XML Linking 1848
Two related specifications XLink & Xpointer may be used to specify links between parts of the content. This 1849
may be useful to identify parts of the content and refer in subsequent messages to those parts without 1850
including them again. 1851

1852

© FIPA (1998) FIPA Spec 13 - 1998

Page 46

A.3 A simple example of XML content 1852

As an example we will consider an application for ordering videos. Further we assume the existence of a very 1853
simple DTD for these purposes as shown below: 1854
<!DOCTYPE ecommerce SYSTEM1855
“http://www.alcatel.be/xml/dtds/ecommerce.dtd”>1856
<!ELEMENT ecommerce (order|request|offer)>1857
<!ELEMENT (order|request|offer) (video)+>1858
<!ELEMENT video (title, actors, languages)+>1859
<!ATTLIST video tape (‘VHS’|’BetaCam’|‘SuperVHS’) ‘VHS’>1860
<!ELEMENT actors (actor)+>1861
<!ELEMENT (actor|title) (#PCDATA)>1862
<!ELEMENT languages EMPTY>1863
<!ATTLIST languages dubbed NAME #IMPLIED1864

subtitled NAME #IMPLIED >1865
Based on the above DTD, an example of a FIPA message, expressing a request to order a particular movie 1866
may look as follows: 1867
request1868

:sender lisa@iiop://www.geocities.com/acc1869
:receiver vshop@iiop://www.starpictures.com/acc1870
:language XML1871
:ontology http://www.alcatel.be/xml/dtds/ecommerce.dtd1872
:content "1873
<?xml version=”1.0”>1874
<ecommerce>1875

<order>1876
<video tape=’VHS’>1877

<title>Titanic</title>1878
<actors><actor>Dicaprio</actor></actors>1879
<languages dubbed=’french’>1880

</video>1881
</order>1882

</ecommerce>"1883

A.4 Potential issues when using XML as content language 1884

When using XML as content language, one should realize that XML element types defined in a DTD do not 1885
imply any semantics. Instead semantics are specified separatedly from the DTD. So, XML has no built-in 1886
support for representation of statements/propositions, actions, etc. as required for content languages in the 1887
FIPA97 specification. Therefore, the DTD designer should document how the different element types can be 1888
mapped to these concepts. 1889
When one wants to reuse an existing DTD available on the Web, one needs first a good understanding of the 1890
semantics of the elements as described by its documentation. One should try to define a useful mapping into 1891
the concepts. If this mapping is difficult, a solution may be to create a wrapper DTD, and then embed in the 1892
wrapper content, instances of the existing DTD (prefixed with the namespace). 1893
Most of the DTDs, which currently exist on the Web, are information-oriented. If this level of detail is not 1894
sufficient, one can consider combining those DTDs with XML DTDs capable of representing knowledge, 1895
such as RDF [2], OML [4], CKML [5]. In the next section, an example of the usage of RDF will be given. 1896

© FIPA (1998) FIPA Spec 13 - 1998

Page 47

A.5 Using RDF as content language 1897

RDF defines a mechanism for describing (web) resources (meta-data), to enable “automated” processing of 1898
these resources. It provides a model for representing metadata, but also proposes XML as serialization syntax 1899
for this model. Using RDF Schema [3] a meta-model of the RDF data model can be defined (also using XML 1900
syntax). As RDF allows a description of a conceptual model, it is in this respect better suited to be used as 1901
content language in a FIPA context. However, users should be aware that RDF Schemas might be simpler 1902
than full predicate calculus languages such as KIF or Cycl. The following message illustrates how a call for 1903
proposals for the service request action can be expressed, using RDF as content language. The example 1904
assumes that RDF Schemas are available for the ontologies stp (Service Transaction Protocol), dvpn 1905
(Dynamic VPN) and units ontologies, as specified by the XML namespaces. 1906
CFP1907
:sender pca_1@iiop://www.geocities.com/acc1908
:receiver spa_1@iiop://www.operator.com/acc1909
:language RDF1910
:ontology http://www.alcatel.be/schemas/stp1911
:content "1912
<Description id=”service-req” xmlns=”http://www.alcatel.be/schemas/stp”1913

xmlns=”http://www.nist.gov/units”>1914
<stp:serviceType>dvpn</stp:serviceType>1915
<stp:valid>19981028T08:59:59+01</stp:valid>1916
<stp:price>1917
<rdf:value>20</rdf:value>1918
<units:curr>USD</units:curr>1919

</stp:price>1920
<stp:starttime>19981028T11:59:59+01</starttime>1921
<stp:duration>1922
<rdf:value>300</rdf:value>1923
<units:dur>s</units:dur>1924

</stp:duration>1925
<stp:serviceDetails>1926
<Description id=“dvpn_300”1927

xmlns=”http://www.alcatel.be/schemas/dvpn”>1928
<dvpn:users>1929
<rdf:Bag>1930
<rdf:li>pca_1</rdf:li>1931
<rdf:li>pca_2</rdf:li>1932

</rdf:Bag>1933
</dvpn:users>1934
<dvpn:QoS>high</dvpn:QoS>1935

</Description>1936
</stp:serviceDetails>1937

</Description>"1938
The ontology specified in the message will only refer to the ‘top’ ontology stp, which may be encoded as an 1939
RDF schema. 1940

A.6 References 1941

[1] Extensible Markup Language (XML), W3C Recommendation, February 1998, on-line at 1942
http://www.w3.org/TR/1998/REC-xml-19980210 1943

© FIPA (1998) FIPA Spec 13 - 1998

Page 48

[2] Resource Description Framework (RDF), Data Model and Syntax, W3C Working Draft, October 1998, 1944
on-line at http://www.w3.org/TR/WD-rdf-syntax 1945

[3] RDF Schema (RDF), W3C Working Draft, August 1998, on-line at http://www.w3.org/TR/WD-rdf-1946
schema 1947

[4] Ontology Markup Language, R. Kent, on-line at 1948
http://asimov.eecs.wsu.edu/WAVE/Ontologies/OML/OML-DTD.html 1949

[5] Conceptual Knowledge Markup Language, R. Kent, on-line at 1950
http://asimov.eecs.wsu.edu/WAVE/Ontologies/CKML/CKML-DTD.html 1951

1952

http://asimov.eecs.wsu.edu/WAVE/Ontologies/CKML/CKML-DTD.html

© FIPA (1998) FIPA Spec 13 - 1998

Page 49

 1952
Annex B 1953

 1954
 1955

FIPA97 Frequently Asked Questions 1956

For on-line version see http://www.fipa.org/ 1957
 1958

B.1 Message Transport 1959

Does FIPA97 mean that the only communications protocol I can use between agents is IIOP? 1960

No. Firstly there are two types of message transport, the internal message transport which delivers messages 1961
between agents on the same platform (intra-platform communications) and the inter-platform message 1962
transport, which delivers message between agents on different platforms. You must support IIOP for inter-1963
platform message transport. In addition, the inter-platform message transport can support any number of 1964
protocols and agents can communicate using any of these protocols as long as they both agree on this 1965
protocol. The choice of IIOP for intra-platform communications is an implementation choice, left to the 1966
developer. 1967
Does FIPA97 mean that I have to interact with IIOP? 1968

No. There are a number of CORBA 2 implementations available which support IIOP. If you use one of these 1969
then IIOP is hidden from you. Some versions of CORBA 2 are free (but check the licensing conditions), 1970
others are commercial products. 1971
Do I need CORBA? 1972

No. It is possible to implement IIOP without CORBA. It is beyond the scope of FIPA 97 to say how this 1973
could be achieved. 1974
Do I have to distribute the IOR of my object platform in some way? 1975

No. Current work in the OMG addresses this issue. It is envisaged that in the future many CORBA 2 1976
implementations will allow an IOR to be constructed from other information e.g. a URL. Other agent 1977
platforms can use this feature to contact your platform as long as your URL is known. 1978
Further, the call for FIPA99 technologies addresses the need for an agent naming service. 1979

B.2 ACL 1980

What is the relationship between ACL, Content Language and Ontology? 1981

Terms from an Ontology can be combined within a suitable content language in order to construct sentences, 1982
which are meaningful in the application domain. These content sentences are contained within ACL. 1983
Is SL the only content language I can use? 1984

No. Although FIPA97 mandates the use of SL for certain normative operations, the application developer is 1985
free to use any suitable content language (e.g. KIF). 1986

© FIPA (1998) FIPA Spec 13 - 1998

Page 50

B.3 Platform Agents 1987

Are the AMS, DF, ACC capability sets or agents? 1988

The functions and services provided by the AMS, DF and ACC can be treated as capability sets essential for 1989
the functioning of a platform. However the functions of the three are distinct and they are treated as logically 1990
separate agents by all other FIPA agents. This requires that the AMS, DF and ACC in any platform 1991
implementation must be accessible through separate interfaces. 1992
Since FIPA does not mandate the details of a platform implementation the three agents may be implemented 1993
in any way including as a single process). However from the outside the capabilities need to retain their 1994
separation, this as a minimum requires each having a separate GUID. 1995
NB: There has been discussion in FIPA’98 relating to the agent status of the ACC. 1996
FIPA97 says an AMS should register with at least the default DF of an AP. How should it do this and 1997
which services should be registered if any? 1998

It registers using the Agent Management action register defined on the DF. It must register at least the service 1999
‘fipa-df’. An example of such registration is given below: 2000
(request2001

:sender ams@iiop://fipa.org:50/acc2002
:receiver a-df@iiop://fipa.org:50/acc2003
:content2004
(action a-df@iiop://fipa.org:50/acc2005
(register2006
(:df-description2007
(:agent-name ams@iiop://fipa.org:50/acc)2008
(:agent-services2009

(:service-description2010
(:service-type fipa-ams)2011
(:service-ontology fipa-agent-management)2012
(:service-name ams)2013
))2014

(:interaction-protocols (fipa-request))2015
(:ontology fipa-agent-management)2016
(:address iiop://fipa.org/acc)2017
(:ownership fipa.org)2018
(:df-state active))))2019

:language SLl2020
:protocol fipa-request2021
:ontology fipa-agent-management)2022

2023
What would the reply to an authenticate request look like? Both a positive and negative result? 2024

A positive reply instructs the requesting agent that the authenticate action was done. For example, take the 2025
following request for authentication : 2026
(request2027

:sender an-agent@iiop://fipa.org:50/acc2028
:receiver ams-agent@iiop://fipa.org:50/acc2029
:content2030
(action ams-agent@iiop://fipa.org:50/acc2031
(authenticate2032
(:ams-description2033

© FIPA (1998) FIPA Spec 13 - 1998

Page 51

(:agent-name2034
an-agent-name@iiop://fipa.org:50/acc)2035

(:agent-encrypted-signature a-sig)))2036
:language SL02037
:ontology fipa-agent-management2038
:protocol fipa-request)2039

 2040
A positive reply to this request is as follows : 2041
 2042
(inform2043
:sender ams-agent@iiop://fipa.org:50/acc2044
:receiver an_agent@iiop://fipa.org:50/acc2045
:ontology fipa-agent-management2046
:language SL02047
:protocol fipa-request2048
:content2049
(done2050

(action ams-agent@iiop://fipa.org:50/acc2051
(authenticate2052
(:ams-description2053
(:agent-name2054

an-agent-name@iiop://fipa.org:50/acc)2055
(:agent-encrypted-signature a-sig))))2056

 2057
(Example below requires FIPA98 extension specification) 2058
A negative reply instructs the requesting agent that the AMS refused to perform the authenticate action. 2059
 2060
(refuse2061
:sender ams-agent@iiop://fipa.org:50/acc2062
:receiver an_agent@iiop://fipa.org:50/acc2063
:ontology fipa-agent-management2064
:language SL02065
:protocol fipa-request2066
:content2067
(refuse reject-authenticate2068

(action ams-agent@iiop://fipa.org:50/acc2069
(authenticate2070
(:ams-description2071
(:agent-name2072

an-agent-name@iiop://fipa.org:50/acc)2073
(:agent-encrypted-signature a-sig))))2074

 2075
2076

© FIPA (1998) FIPA Spec 13 - 1998

Page 52

 2076
Annex C 2077

 2078
Analysis of the use of IIOP within the FIPA97 specification. 2079

 2080
D.O’Sullivan, J. Cooley, D. Kerr, R. Evans, C. Treanor, A. Conlon and H. Reynolds, 2081

Broadcom Eireann Research. 2082
 2083

{do,jco,dk,re,ct,aco,hr@broadcom.ie} 2084
 2085

P. Buckle and R. Hadingham, 2086
Nortel 2087

 2088
{pbuckle, r.g.hadingham@nortel.co.uk} 2089

 2090
 2091

Abstract 2092
 2093
In this paper we summarise the requirements which FIPA97 has made upon compliant agent platforms with 2094
respect to message transport. FIPA97 has mandated that all compliant platforms support at least the Internet 2095
Inter-ORB Protocol (IIOP) as a baseline message transport between agent platforms. We introduce a quick 2096
summary of the IIOP protocol. Some general suggestions for achieving FIPA compliance through the use of 2097
various technologies are outlined. The issue of asynchronous communication is introduced along with a 2098
general indication of how asynchronous communication can be realised within the scope of FIPA97. The 2099
capabilities of IIOP with respect to data type transmission are discussed. The issues of platform addressing 2100
and IOR distribution are also addressed. We conclude that the choice of IIOP as FIPAs baseline 2101
interoperability protocol does not appear to place unnecessary restrictions upon users of the FIPA97 2102
specification and furthermore as IIOP is a well defined and commonly accepted protocol it provides a 2103
strong foundation for enabling agent interoperability. For completeness we include in the Appendices lists of 2104
some CORBA/IIOP tools which might be exploited in order to address FIPAs IIOP requirements. 2105

C.1 Introduction 2106

FIPA97 states that in order to be FIPA compliant an agent platform must minimally support IIOP[1]. The 2107
purpose of this requirement is to enable interoperability between agent platforms. As such no requirements 2108
are placed upon the communications capabilities of agents themselves or how messages are delivered 2109
between agents resident on the same agent platform, rather it means that all FIPA compliant agents resident 2110
on an agent platform have access to an Agent Communication Channel (ACC) with IIOP capabilities on that 2111
platform through which communication with FIPA compliant agents registered on other agent platforms is 2112
enabled. The minimum requirement for compliance therefore is that every FIPA compliant platform provides 2113
an ACC which supports the IIOP protocol, in other words, if an ACC does not support IIOP then that agent 2114
platform is not FIPA compliant. Any ACC can of course support many different communication protocols, 2115
and communication between FIPA agents registered on different agent platforms can occur over any of these 2116
protocols when available on both platforms, however IIOP must always be available. Therefore, there is 2117
always at least one well-known method of communication available between all FIPA compliant platforms. 2118

© FIPA (1998) FIPA Spec 13 - 1998

Page 53

Although the minimum requirement for compliance is that the platforms ACC support IIOP, the use of 2119
optional FIPA services places extra requirements on communications capabilities. In the case where an agent 2120
registers dynamically with another agent platform (platforms may optionally support dynamic registration) it 2121
will require IIOP capabilities in order to guarantee that it can communicate with agents registered on that 2122
platform. (As the agent no longer communicates with its ‘home’ ACC using its default Internal Platform 2123
Message Transport (IPMT) it must rely on the services of the ACC on its new platform, this ACC is not 2124
guaranteed to support the IPMT of the agents ‘home’ platform but is guaranteed to support IIOP). 2125
To summarise, all FIPA compliant ACCs must support communication over the IIOP protocol and there may 2126
also be situations where individual agents must support IIOP. 2127
The motivation for choosing IIOP is that it is an international interworking standard, the basis for this 2128
interworking is the Interoperable Object Reference (IOR), if one can obtain an agent's or an agent platform's 2129
IOR then one can guarantee communication with that agent/platform. Issues affecting the distribution of 2130
IORs are described in Section 6. 2131

C.2 The IIOP protocol 2132

IIOP is a communications protocol based on the Object Management Groups (OMGs) Common Object 2133
Request Broker Architecture (CORBA) specification. IIOP was developed in order to enable interoperability 2134
between Object Request Brokers (ORBs) from different vendors. The IIOP specification consists of a data 2135
representation known as Common Data Representation (CDR) and a set of seven message formats in version 2136
1.0 extended to eight in version 1.1 required for realising method invocations over a network of distributed 2137
objects. In actual fact CDR and the message types comprise a protocol known as the General Inter-Orb 2138
Protocol (GIOP), it is when the GIOP is implemented over TCP/IP (GIOP itself is transport independent) that 2139
it becomes IIOP. 2140
Objects communicate using IIOP through the use of IORs. An IOR can be used by one object to contact and 2141
invoke methods on another object over IIOP, the IOR really tells the calling object the host, port and Object 2142
key of the object it wants to invoke. IORs can be published in any number of ways e.g. through emails, web 2143
pages, etc as a text string “IOR:” followed by the hex notation of the IOR body. 2144
Although IIOP has been developed upon the CORBA specification and is ideal for communication between 2145
distributed objects, one does not even need to use an object oriented environment to exploit IIOP. One could 2146
for example manufacture an IOR through some artificial means which referenced a particular host and port 2147
but a completely fictional object, and by listening on the appropriate socket intercept all invocations on the 2148
fictional object and redirect them to a C function or suchlike. This highlights the fact that IIOP is just a 2149
communications protocol. There is more information on how one would use IIOP to support the FIPA 2150
requirements in the following section. 2151

C.3 Supporting the FIPA97 Communication Requirements 2152

There are a number of ways in which a FIPA agent platform developer can address the FIPA requirements 2153
for the support of IIOP communication. These range from direct interaction with IIOP at the protocol level to 2154
the use of CORBA support where all interaction with the IIOP protocol is hidden from the developer. Some 2155
of these methods are treated below, however it must be noted that the following are very general suggestions 2156
on how the FIPA requirements could be addressed and should not be taken as methodologies for attaining 2157
FIPA compliance. 2158
C.3.1 Use of a CORBA implementation. 2159

By far the easiest way to support the FIPA97 communication requirements is to employ the services of a 2160
CORBA implementation. There are many commercial and freely available CORBA implementations which 2161
support the IIOP protocol (see Appendices A and B for details). The use of a CORBA implementation 2162
completely hides the IIOP protocol from the developer who instead deals with interface objects. As the FIPA 2163

© FIPA (1998) FIPA Spec 13 - 1998

Page 54

interface is very simple this in fact means the manipulation of one interface object. A rough methodology for 2164
achieving compliance through the use of a CORBA is as follows : 2165
 2166
 2167
 (1) Create the following IDL interface (from Annex A, FIPA97 Part 1): 2168

interface FIPA_Agent_97 {2169
oneway void message (in string acl_message);2170

}2171

 (2) Use your CORBA implementations IDL compiler to compile the interface to your desired target 2172
language. 2173

 (3) Using your desired target language develop the FIPA_Agent_97 server in the manner specified by your 2174
CORBA implementation. This is a straightforward task which will generally involve creating an object 2175
of class FIPA_Agent_97 and subsequently creating an Interoperable Object Reference (IOR) for this 2176
object. This IOR will be used by other FIPA compliant agent platforms to contact your ACC (see section 2177
6 for further discussion on this matter). 2178

 (4) Whenever another agent platform contacts your ACC the method message will be executed within your 2179
FIPA_Agent_97 server object. It is up to the platform developer to handle the incoming message which 2180
will be found in the parameter ‘acl_message’. 2181

 (5) In order to send messages to ACCs resident on other agent platforms you must first obtain the IOR for 2182
the platform you wish to contact. Convert this IOR to an object reference of type FIPA_Agent_97 in the 2183
manner defined by your CORBA implementation. Invoke the method ‘message’ upon this object using 2184
as the parameter the message you want to send. Your message will be delivered to the other ACC. 2185

* Your CORBA implementation will almost certainly require some switches to be set in order that IIOP be 2186
used as the communications mechanism. 2187

C.3.2 IIOP Engines/Parsers 2188

Although the easiest way to support the FIPA communications requirements appears to be through the use of 2189
CORBA this method may not always be desirable, especially if the agent platform itself is not built upon 2190
CORBA, in which case one is employing the services of a CORBA ORB just to support one interface. In 2191
such a case it may be more desirable to employ the services of an IIOP engine (see Appendix C for details). 2192
An IIOP engine is generally a library which provides a low level API for sending and receiving IIOP 2193
messages while still hiding most of the details of the IIOP protocol from the programmer. The IIOP engine 2194
should provide the ability to accept and decode incoming IIOP messages on a particular port, to extract the 2195
headers & bodies of these messages and convert the message bodies from CDR to native types. It should also 2196
provide the ability to package native types into a CDR representation, insert this CDR representation into an 2197
IIOP message body and send this message to a specified receiver. Using this type of functionality the 2198
FIPA97 requirements on Agent Communication can be addressed in the following manner. In order to 2199
process incoming agent messages to the ACC one listens for certain IIOP messages and (sometimes) replies 2200
with the appropriate IIOP replies. In order to send agent messages from an ACC one sends out certain IIOP 2201
messages and listens for the appropriate replies. The IIOP messages required for sending and receiving agent 2202
messages through an ACC are discussed in a general manner below as are some very rough rules for how 2203
they should be handled. 2204
C.3.2.1 Processing Incoming Messages from ACCs 2205

In this scenario the ACC is listening for certain IIOP messages, we are assuming that a connection has 2206
already been opened. As soon as an IIOP message arrives the headers are stripped off and the IIOP message 2207
type is established. The following IIOP message types should be handled : 2208
Request : Another ACC may be trying to send a message to your ACC. Extract and examine the Request 2209
header, in specific examine the object_key and operation fields. If the object_key is ‘acc’ (or 2210

© FIPA (1998) FIPA Spec 13 - 1998

Page 55

rather your agent name - see Section 6) and the operation is ‘message’ then another agent is indeed trying 2211
to deliver a message to you. Extract this message from the Request body (it is the only parameter) and pass 2212
it to whichever function you use to handle incoming ACL messages. 2213
CancelRequest : Another ACC is telling you that it wants you to cancel a previous (or current if 2214
fragmentation is taken into account) request. Extract the request_id from the message header and cancel 2215
the appropriate operation if possible. 2216
LocateRequest : Another ACC is asking you if you support a particular object i.e. ‘acc’. Extract and 2217
examine the LocateRequest header in specific the request_id and object_key fields. If the 2218
object_key is ‘acc’ then reply with a LocateReply whose header contains the request_id field 2219
from the LocateRequest and a locate_status of OBJECT_HERE. If the LocateRequest was 2220
for another object_key then you can send an UNKNOWN_OBJECT in the locate_status field. 2221
C.3.2.2 Sending a Message to another ACC 2222

In this scenario you wish to send a request to another ACC as if you were a CORBA client of that ACC. In 2223
order to do this you will have to construct certain IIOP messages and send them to the other ACC. The basic 2224
IIOP message type you will use is Request, however you could always use a LocateRequest as well as 2225
shown above to check that the ACC really exists where you think it does. Before sending the Request 2226
message you will first have to open a TCP/IP connection to the other ACC. Your IIOP engine can do this for 2227
you. You then need to create a Request message containing in its body the message you wish to send (use 2228
your IIOP engine API to convert this to CDR). Send this message to the other ACC. 2229
C.3.3 Direct Use of the IIOP protocol 2230

If a developer does not wish to employ the services of a CORBA implementation or IIOP engine then they 2231
can of course interact with the IIOP protocol directly at the socket level. The basic approach will be similar 2232
to that outlined in Section 3.2, however this will have to be realised without the support provided by an IIOP 2233
engine for connection management, message header and body extraction/construction and the ability to 2234
convert to/from CDR. The IIOP specification is freely available at www.omg.org. 2235

C.4 IIOP and Synchronous/Asynchronous Communication 2236

The IIOP protocol specifies how requests for particular method calls and the associated data representation 2237
for parameters to these method calls can be transmitted over TCP/IP. Asynchronous communication can be 2238
enabled at the agent level by appropriate use of IIOP at the transport level. At the most basic level anything 2239
written on a TCP/IP socket at one end will have to be read at the other end. The program/process/thread 2240
which writes or reads such a socket can be blocking or non-blocking, more specifically the implementation 2241
itself decides how much data it will read or write before doing something else. 2242
There is an obvious requirement for FIPA to support asynchronous agent communication (in fact the use of a 2243
well designed ACC is the first step towards implementing asynchronous communication at the agent level). 2244
If an agent A sends a message to agent B it is generally unacceptable for agent A to be blocked while agent B 2245
processes the message. The IDL interface defined in FIPA97 Spec 1 indicates by use of the 'oneway' 2246
keyword that the 'message' method will not block the invoking agent (the sender) whilst the receiving agent 2247
processes the method [1]. This is achieved, as the implementation does not require that the method return any 2248
value. In fact no call back is expected, so the calling process is able to continue execution. At the agent level 2249
it is expected that the receiving agent will respond with a further ACL message. 2250
Use of a 'oneway' method explains how blocking on the sending side is avoided. However, to avoid blocking 2251
on the receiver side a mechanism to ensure that the agent is not forced to process the message as soon as it is 2252
received is required. As processing the message may necessitate communication with other agents this 2253
processing may take a substantial amount of time (indeed this processing may involve sending a message to 2254
the original sender in which case deadlock may occur). Figure 1 below illustrates two alternative 2255
implementations of the 'message' method. In example 1 the message received is added to a message queue 2256

© FIPA (1998) FIPA Spec 13 - 1998

Page 56

with no further processing, the method ‘message’ then terminates. This example requires the use of a 2257
scheduling or threading model so that the subsequent processing of messages from the message queue does 2258
not adversely affect the message delivery mechanism. With the use of a message queue a receiving agent can 2259
determine itself when to process messages. In contrast to this, example 2 illustrates an implementation where 2260
the message is processed when the 'message' method is invoked. In this implementation, the agent is forced 2261
to process the message that could impact its ability to receive messages from other agents. Although FIPA97 2262
does not state explicitly that asynchronous communication is mandated it is highly desirable that FIPA97 2263
compliant platforms implement a store and forward mechanism at least within the platforms ACC. 2264

2265

© FIPA (1998) FIPA Spec 13 - 1998

Page 57

Example 1 2265
2266

//C++ implementation of FIPA_Agent_97 Interface2267
void FIPA_Agent_97_i :: message (char * acl_message) {2268
// add the message to the message queue : note that this is a simple2269

operation which does not involve processing the message and should2270
complete quickly2271
add_message_to_q(acl_message);2272
}2273
Example 2 2274
//C++ implementation of FIPA_Agent_97 Interface2275
void FIPA_Agent_97_i :: message (char * acl_message) {2276
// process the message : note that this operation may take some2277
// time2278

process_message(acl_message);2279
}2280
 2281
Figure 1 : Example of blocking versus non-blocking behaviour in an ACC 2282
 2283
Another interesting facet of agent communication is the transmission of very large messages. As with 2284
asynchronous/synchronous communication the situation where a communications medium is monopolised 2285
due to the transmission of a very large message is a consequence of the use of the communications medium 2286
as opposed to a consequence of the medium itself. Take for example the FIPA_Agent_97 interface. If agent 2287
A tries to push a 10MB message through this interface then the interface will be blocked for a considerable 2288
period of time while the transfer completes. This is not desirable especially if the receiver is an ACC. The 2289
only solution to this type of problem is that large messages are segmented and transmitted as smaller packets 2290
and reconstructed upon arrival, it should be noted that GIOP 1.1 can support this through the use of the 2291
Fragment message type (which allows large requests to be transmitted over a series of IIOP messages). At 2292
any rate, its seems logical that such messages be handled through the use of a streaming service. 2293

C.5 IIOP and Data Representation 2294

FIPA97 messages are transmitted in textual form regardless of the native data types contained within these 2295
messages. It is not efficient to convert native data types to text for transmission and to reconvert back to 2296
native data types upon arrival, indeed FIPA97 Part 2 acknowledges this fact [2] however this is a 2297
consequence of having an open and minimal form of agent communication. FIPA may in the future define 2298
alternative transport syntaxes which will address the needs of high performance systems[2]. In such a case it 2299
may be desirable that the transmission medium support the ability to describe native data types without the 2300
need for external reference descriptions, in other words that the medium support the delivery of self 2301
describing data types. 2302
In order to decode an IIOP request or reply the decoder requires access to the IDL definition of the interface 2303
from which the request/reply was derived or access to an implementation repository containing the definition 2304
of this interface. 2305
However IDL, CORBA and hence IIOP support the concept of an ‘any’, that is an IDL type which can be 2306
any type (including constructed types), decided dynamically at execution time. The receiver of an ‘any’ 2307
determines its type by examining a ‘type tag’ transmitted with the ‘any’. As expected, the ‘type tags’ of 2308
‘any’s’ are transmitted with them over IIOP. Therefore, whereas all interfaces require an Interface Definition, 2309
parameters to such an interface can be of the dynamic type ‘any’. It is trivial to define another well known 2310
interface similar to FIPA_Agent_97 (this is a well known interface, just about anybody who is interested has 2311

© FIPA (1998) FIPA Spec 13 - 1998

Page 58

its IDL) which takes an ‘any’ parameter instead of a ‘string’, this interface can then be used to send ‘typed’ 2312
messages without the need for any additional IDL at the receiving end. 2313
IIOP therefore can support the delivery of self describing data, however it is worth making an observation on 2314
the use of this feature. The use of ‘any’ within CORBA has long been noted as very inefficient, presumably 2315
because of the overhead of transmitting the data description along with the data. In fact, this is the type of 2316
data transmission that the OMG has been trying to move away from through the use of IDL interfaces 2317
available at both client and server sides. It seems to make more sense from an efficiency standpoint to have a 2318
message ‘schema’ available at both client and server sides than to transmit this schema along with the 2319
message itself. This is not to say that two agents need to get hold of such a ‘schema’ or IDL Interface a 2320
priori, this interface could be exchanged as part of a text ‘FIPA_Agent_97’ message at any point during an 2321
agent dialogue. Of course, if the ‘schema’ or interface changes often during a dialogue, then maybe it is more 2322
efficient to transmit the ‘schema’ along with each message, in this case one can use the ‘any’ solution. In 2323
summary, whereas it is possible to transmit self describing messages over IIOP, the use of such techniques is 2324
not always desirable. 2325

C.6 Platform Addressing and IORs 2326

A key consideration in enabling the FIPA97 mechanism for inter agent communication is the distribution of 2327
IORs so that agents can invoke the ‘message’ method previously described on remote platform ACCs. As 2328
mentioned previously such IORs are often distributed through email, WWW pages, NFS file systems etc, 2329
unfortunately such a distribution mechanism is not suitable for FIPA agents because of the attendant 2330
overheads and its inherent lack of scalability. Another possibility is through the use of the CORBA naming 2331
service, specified by the OMG for exactly this kind of purpose and now available through many CORBA 2332
vendors. Ultimately, we believe a standard mechanism will be available for resolving URLs to IIOP IORs. 2333
How then in the meantime can IORs be distributed? One possible approach is as follows. IORs are already 2334
implicitly distributed through the FIPA agent naming convention. If one examines the FIPA address of an 2335
ACC one will note it is of the following form : 2336

iiop://somewhere.com:50/acc 2337
This address is sufficient to construct an agent IOR (there is a slight complication with object keys which 2338
will be explained below). The main components of an IOR are the Hostname (‘somewhere.com’), a port 2339
number on which the server is listening (‘50’) and an Object Key (‘acc’). These can be combined to form an 2340
IOR which can be used as explained in Section 3 to invoke the ‘message’ method on the necessary ACC. 2341
As mentioned above, using this method of obtaining an IOR leads to a slight complication with the Object 2342
Key. This occurs because Object Keys are proprietary and are constructed by various ORB vendors in a 2343
proprietary manner, each object key will probably be a combination of Interface name and some sort of 2344
Marker or Server name; however, these names can be mangled according to vendor policy. To understand the 2345
ramifications of this let us examine the server side (the difficulties occur only at the server side) 2346
implementations of ACCs implemented using the methods outlined in Section 3. 2347
If the ACC has been implemented through the use of an IIOP engine (Section 3.2), or through direct 2348
interaction with the IIOP protocol (Section 3.3) then there is no problem. This is because the server will be 2349
decoding IIOP requests for an object with the object key which has been distributed in its address e.g. ‘acc’, 2350
it merely has to recognise this object key and pass the request on to the required method/function to be 2351
handled, in short the server does not care what the object key is as long as it knows in advance what it should 2352
be, ‘acc’ is as good an object key as anything else. 2353
This is not the case if one is using a ORB implementation (Section 3.1). In this situation it is not user defined 2354
code which is decoding the requests and passing them on the appropriate objects/methods, rather it is the 2355
ORB which is doing this, and the ORB is subject to the proprietary Object Key mangling policy of the 2356
Vendor. Therefore, if one creates an interface object of Marker (or Server) name ‘acc’, within an ORBspace 2357
there is no reason to believe that its Object Key is going to be ‘acc’, in fact it is unlikely to be so. How 2358
therefore can one trap requests for Object Key ‘acc’ and forward them to the required Interface Object using 2359

© FIPA (1998) FIPA Spec 13 - 1998

Page 59

an ORB implementation. This can be done by inserting some user defined code at the ‘servant’ level, that is 2360
the level in CORBA which accepts object invocations and forwards them on. In general this will have to be 2361
done in a proprietary method for each ORB implementation, luckily it is not difficult, for example using 2362
ORBIX one would use the Object Loader to create the required object once an Object Fault is generated. 2363
Furthermore, the OMGs new CORBA specification defines a portable method of doing this through the POA 2364
(Portable Object Adapter)[3]. 2365
The Object Key interoperability issue is also currently a topic being addressed by the OMG. At the time of 2366
writing several proposals have been put forward to the OMG in response to their RFC about an extended 2367
Name Service [4]. The extensions include a solution to the issue of generating a IOR for a remote object (i.e. 2368
the ACC of a remote platform), and also a URL-like naming convention, which in most of the proposals is 2369
very similar (if not identical) to the FIPA iiop://host:port/path format. All of these proposals suggest a 2370
modification to the implementation of ORBs so that an extended initial call can be made to return the 2371
reference to a number of services without having to know any references to start with. The implementation of 2372
the solution will be handled by the ORB and is therefore, not something that implementers of the FIPA 2373
platform must address themselves. The extensions will most likely make use of a ‘special’ reserved reference 2374
that is always available. More information is available in the individual proposals [5][6][7]. 2375

C.7 Conclusions 2376

We do not think that FIPA's choice of IIOP as its baseline communications protocol places any unnecessary 2377
restrictions on agent or agent platform developers and the protocol seems adequate for supporting the 2378
requirements of Agent Communication. 2379
When considering a protocol to support interoperability between FIPA platforms it is important to consider 2380
the use of certified, off-the-shelf components. By doing this we avoid having to allocate time to design, 2381
develop, test and release our own protocol stacks. The users of the FIPA specification will require 2382
commercially available, supported networking libraries and are unlikely to support a completely new design 2383
and implementation cycle as such products already exist. 2384
The IIOP standard has been endorsed and is being used as an interoperability protocol in industry. This 2385
standard was agreed at by a pool of networking experts who have interoperability goals somewhat similar to 2386
FIPAs. By adopting IIOP, FIPA has built on this work and can concentrate on real problems of industry 2387
standards for the commercial deployment of agents. 2388

C.8 References 2389

[1] Foundation for Intelligent Physical Agents, FIPA97 Specification Version 1.0 Part 1 2390
[2] Foundation for Intelligent Physical Agents, FIPA97 Specification Version 1.0 Part 2 (section 5.2) 2391
[3] Ross Mayne, Additions to CORBA on the Horizon - The Portable Object Adapter, Communicate, 2392

Volume 4 Issue 1, July 1998, pp 29-32 2393
[4] Interoperability Name Service Enhancements, Draft version 1.2, OMG document orbos/97-12-20, 2394

December 1997 - http://www.omg.org/library/schedule/Interoperable_Name_Service_RFP.htm 2395
[5] IONA/Nortel joint Interoperable Name Service RFP Initial Submission (orbos/98-03-03), March 1998 2396
[6] Interoperable Naming Service Joint initial submission (orbos/98-03-04), March 1998 2397
[7] Interoperable Naming Service (orbos/98-03-06), March 1998 2398

C.9 Appendix A : Freely Available CORBA Implementations 2399

DynaORB http://nexus.carleton.ca/~frederic/dynaorb/index.html 2400
Fnorb http://www.dstc.edu.au/Fnorb/ 2401
Inter-Language Unification (ILU) ftp://ftp.parc.xerox.com/pub/ilu/ilu.html 2402
JacORB http://www.inf.fu-berlin.de/~brose/jacorb/ 2403

© FIPA (1998) FIPA Spec 13 - 1998

Page 60

Jorba http://www.jorba-castle.net.au/ 2404
MICO http://diamant-atm.vsb.cs.uni-frankfurt.de/~mico/ 2405
OmniORB2 http://www.orl.co.uk/omniorb/omniorb.html 2406
Robin http://www-b0.fnal.gov:8000/ROBIN/ 2407
TAO http://www.cs.wustl.edu/~schmidt/tao.html 2408

C.10 Appendix B : Commercial CORBA Implementations 2409

Commercial ORBS 2410

Bionic Buffalo http://www.tatanka.com/orb1.htm 2411
DAIS http://www.iclsoft.com/sbs/daismenu 2412
GemORB http://www.gemstone.com/products/s/gemorb.html 2413
ObjectBus http://www.ob.tibco.com/ 2414
ObjectDirector http://www.hal.com/OD/ 2415
ORBexpress http://www.ois.com/products/items/orbexpress_ada.htm 2416
ORBacus http://www.ooc.com/ob.html 2417
SORBET http://www.sni.de/public/sni.htm 2418
Universal Network Architecture Services (UNAS) http://www.trw.com/unas 2419
Voyager http://www.objectspace.com/voyager/ 2420

Commercial ORBs with free evaluation periods 2421

COOL ORB http://www.sun.com/chorusos/ds-chorusorb.html 2422
CorbaPlus http://www.expersoft.com/products/CORBAplus/corbaplus.htm 2423
OAK http://www.paragon/-software.com/products/oak/index.html 2424
Orbix http://www.iona.com/products/orbix/index.html 2425
OrbixWeb 2426
Orbix Wonderwall 2427
PowerBroker CORBAplus http://www.expersoft.com/Products/CORBAC/corbac.htm 2428
VisiBroker http://www.inprise.com/visibroker/ 2429

C.11 Appendix C : IIOP Engines & Tools 2430

IIOP Engines. 2431

IONA’s Orbix IIOP Engine 2432
http://www.iona.com/products/orbix/iiopengine/index.html 2433
 SunSoft’s IIOP Protocol Engine 2434
http://hobbes.informatik.rwth-aachen.de/docs/CORBA/tu-wien/sw-2435
iiop.html#IIOPPA 2436

IIOP Tools. 2437

 2438
IIOP Parser. 2439
Http://www.caip.rutgers.edu/~francu/Work/IIOP.html 2440
IIOP Decoder. 2441
http://siesta.cs.wustl.edu/~schmidt/ACE_wrappers/build/SunOS5.5/TAO/tao/decode.cpp 2442

© FIPA (1998) FIPA Spec 13 - 1998

Page 61

IIOP Encoder. 2443
http://siesta.cs.wustl.edu/~schmidt/ACE_wrappers/build/SunOS5.5/TAO/tao/encode.cpp 2444
IIOP Analyser. 2445
http://www-usru.broadcom.ie/iiopdump/ 2446

2447

http://www-usru.broadcom.ie/iiopdump/

© FIPA (1998) FIPA Spec 13 - 1998

Page 62

 2447
Annex D 2448

 2449
Case Study 2450

Informative Case Study on a potential method for achieving brokerage functions within the FIPA97 2451
specification. 2452

An intelligent brokerage by Matchmaker 2453

Yuji Takada, Hiroki Iciki, Takao Mohri, Yuji Wada 2454
NetMedia Laboratory, Personal Systems Labs., 2455
FUJITSU LABORATORIES LTD. 2456
2-2-1 Momochihama, Sawara-ku, Fukuoka 814-8588, JAPAN 2457
E-mail: {yuji,iciki,tmohri,wada}@flab.fujitsu.co.jp 2458
 Jul 17, 1998 2459

 2460
2461

© FIPA (1998) FIPA Spec 13 - 1998

Page 63

D.1 Introduction 2461

 Intelligent brokerage is an important functionality for FIPA agent environments to share information 2462
resources in highly distributed and dynamic environment such as the Internet. In multi-agent environment, a 2463
matchmaker facilitates coordination between agents by various communication services. 2464
 In this document, we shall introduce a matchmaker agent and show how four basic ways of brokerage, 2465
subscribing, recommending, brokering, and recruiting, introduced in [1] can be realized by a matchmaker 2466
with FIPA agent environments. These brokerage ways are well known as basic ways of brokerage within 2467
multiple agents and is also useful even for software brokerage through wrapper agents. By defining 2468
matchmaker’s several actions, FIPA agent community can have these brokerage ways, not only based on 2469
current information, but also being able to cope with dynamic changes of a situation. 2470
 Also, we shall show that this brokerage can be easily extended under multiple matchmaker environments. 2471

D.2 Behaviors of agents for requests 2472

 Before describing the intelligent brokerage, let us consider the persistency of the request. Keeping 2473
intentions to commit to do requested brokerage actions enables a matchmaker to cope with a dynamic change 2474
of a situation (e.g. a new agent is registered) in the future from requesting time. This is important in a 2475
dynamically changing situation like the Internet. 2476
 FIPA 97 specification part2 has three types of requesting communicative acts, “request”, “request-when”, and 2477
“request-whenever”. For a “request” message, if a receiver agrees to do the requested action, the receiver can act 2478
instantaneously when it wishes to do. So the receiver’s action is not blocked by other conditions. For a 2479
“request-when” message, the execution of requested action is constrained by the associated condition. Even if a 2480
receiver commits to do the requested action, the execution of the action is delayed until the condition is 2481
satisfied. The commitment to do that action will maintain until the condition becomes true. Once it holds, the 2482
action will be done and the commitment is discharged. So the requested action will be done only once. For a 2483
“request-whenever” message, the commitment will be kept persistently until a “cancel” message is received or 2484
the receiver becomes to stop committing to do so. So the action is repeated persistently when the condition 2485
will be re-evaluated and its value will be changed. 2486

D.3 Matchmaker agent 2487

In the specification of FIPA97 part1 (agent management), there is a Directory Facilitator (DF) in the 2488
reference model. DFs holds agents’ information such as registered agent’s name, address, and service 2489
descriptions that the agent provides, etc. By using this information, DFs provide yellow-page service (i.e. 2490
recommending desirable agents) for another agent by its action “search”. So, agents may request directly a DF 2491
to recommend other agents. But brokering and recruiting services are not provided by a DF. So in this 2492
document, we introduce a matchmaker agent and define its actions that handles brokering and recruiting 2493
brokerages. As for a subscribing brokerage, FIPA ACL already has a communicative act type for this 2494
purpose. FIPA 97 specification part 2 has already prescribed the communicative act type “subscribe” and this 2495
can be used in a straightforward way to a matchmaker for subscribing. However we also define 2496
matchmaker’s action for subscribing and we can treat subscribing and other brokerage requests in a same 2497
manner. And what is more, we also define actions for recommending and advertising. When a matchmaker 2498
receives these two actions it relays requests for recommending and advertising to a DF by requesting “search” 2499
and “register” actions. 2500
 Thus, agents send brokerage request only to a matchmaker, and all brokerage services are provided 2501
uniformly by a matchmaker’s actions. 2502
 2503

© FIPA (1998) FIPA Spec 13 - 1998

Page 64

Note: In this document, we introduce a matchmaker as a separate agent to a DF and in the cases of recommending, brokering and recruiting, a 2504
matchmaker consults a DF. But, in the specific implementation case, a matchmaker can be amalgamated to a DF and all kinds of brokerages can 2505
be supported by a DF itself. But that is a special case of our model described in this document. 2506

2507

© FIPA (1998) FIPA Spec 13 - 1998

Page 65

 2507

D.4 Brokerage with a single matchmaker 2508

D.4.1 Subscribing 2509

 In subscribing (Figure 1), an agent asks a matchmaker to monitor 2510
for an information X. If information providing another agent 2511
subsequently informs the matchmaker about X then the 2512
matchmaker in turn informs the subscribing agent. This is a 2513
popular function of mediating systems called “publish and 2514
subscribe” or “content-based routing” in various distributed 2515
systems. 2516
The subscribing brokerage is generally requesting information 2517
about new status resulting from some world’s change, rather than 2518
agent’s capability description that DF handles. 2519
So a matchmaker itself handles subscribing brokerage. 2520
 We propose to define matchmaker’s actions “SUBSCRIBE” and 2521
“PUBLISH” as follows. 2522
 (SUBSCRIBE :content <requirement pattern about desired 2523
information>) 2524
 (PUBLISH :content <statement about new information>) 2525

 When a matchmaker receives a request for action “SUBSCRIBE”, it records the description of desired 2526
information. When some agent informs the concerning information to a matchmaker by “PUBLISH”, the 2527
matchmaker matches the requested pattern and the new information and desired information is forwarded to a 2528
subscriber. Subscribing requests are persistent; a matchmaker keeps the request and forwards the requested 2529
information to the subscriber until it receives a cancel from the requester. 2530
 We also define matchmaker’s actions “UNSUBSCRIBE” to cancel the subscription. 2531
 (UNSUBSCRIBE :content <pattern>) 2532

2533

Figure 1 Subscribing

MATCHMAKER
Subscribe X

Publish X

Inform X

Agent A Agent B

© FIPA (1998) FIPA Spec 13 - 1998

Page 66

 Followings are example scenarios of messages of subscribing. 2533
Step 1) Requesting message from a subscriber to a matchmaker: 2534

(request2535
:sender <subscribing agent>2536
:receiver <matchmaker>2537
:contents2538

(action <matchmaker>2539
(SUBSCRIBE2540

:content <requirement pattern about desired2541
information>))2542

:reply-with tag12543
:language SL2544
:ontology MATCHMAKER2545
:protocol fipa-request2546
:conversation-id subscribe12547

…)2548
Step 2) At some time, a matchmaker receives publishing message from other agent. 2549

(request2550
:sender <information providing agent>2551
:receiver <matchmaker>2552
:content2553
(action <matchmaker>2554
(PUBLISH :content <statement about new information))2555

:language SL2556
:ontology MATCHMAKER2557

…)2558
Step 3) Then, a matchmaker forwards that information to a subscriber if new information matches the 2559
subscribed requirement pattern. 2560

(inform2561
:sender <matchmaker>2562
:receiver <subscriber agent>2563
:content2564

(result (action <matchmaker>2565
(SUBSCRIBE :content <requirement pattern about requesting2566

information>))2567
<statement about new information matches subscribed requirement2568

pattern>)2569
:language SL2570
:ontology MATCHMAKER2571

:in-reply-to tag12572
:conversation-id subscribe12573

…) 2574
Note: Along with the fipa-request protocol, a replying message such that “agree”, “refuse” or else for requesting action is returned by a receiver. In 2575
this document, such replying messages are omitted in example scenarios for simplicity 2576

2577

© FIPA (1998) FIPA Spec 13 - 1998

Page 67

D.4.2 Recommending and advertising 2577

In recommending brokerage (Figure 2, this is conceptual one), an agent asks a matchmaker to find agents that 2578
can deal with the request X. Other agents independently advertise the matchmaker that they are willing to 2579
deal with requests matching X. Once the matchmaker has both of these messages, it replies the reference of 2580
the informing agent to the asking agent. Then, the requesting agent and the advertising agents can 2581
communicate with each other directly. 2582
 2583

This is a basic service of both DFs in FIPA 97 2584
specification part 1 and ARBs in FIPA 97 specification 2585
part 3, and actions for this brokerage have already been 2586
prepared. The action “register” of DFs and “register-2587
software” of ARBs can be used to express the willingness 2588
of the agents and software services (this is often called 2589
an advertisement). DFs have the action “search” for 2590
recommending. (In ARBs, with the predicate 2591
“registered”, sending a communicative act with “query-2592
ref” finds an entity matching a requesting description 2593
and ARB recommends it to the requester. Sending a 2594
communicative act with “query-if” confirms whether a 2595
specified entity is available or not.) 2596
Although agents can request recommending and 2597
advertising to DF directly by requesting to do its action 2598
“search” and “register”, however we also propose defining 2599
matchmakers’ actions such that “RECOMMEND”, 2600
“ADVERTISE” and “UNADVERTISE” for uniformity. 2601

 (RECOMMEND :agent-condition <desired agents’ description>) 2602
 (ADVERTISE :agent-description <agent’s df-description>) 2603

 (UNADVERTISE :agent-description <agent’s df-2604
description>) 2605
 2606
When a matchmaker receives requests of these actions, it 2607
translates them to the corresponding requests to a DF 2608
using DF’s actions (Figure 3). By requesting brokerage 2609
indirectly through matchmaker’s actions, we can get 2610
uniform and flexible ways as in the case of subscribing. 2611
D.4.2.1 Recommending 2612

The followings are example messages for recommending 2613
with matchmaker and DF. (See Figure 3) 2614
Step 1) An requesting agent requests to a matchmaker 2615
for recommending desired agents. 2616

2617

Figure 2 Recommending (conceptual)

MATCHMAKER(conceptual)

Inform B

Inform X

Request X

Agent A Agent B

Advertise XRecommend X

 Figure 3 Recommending with DF

MATCHMAKERInform B

Inform X

Request X

Agent A Agent B

DF
Inform B

[Un]Advertise X
Recommend X

Search X

[De]Register X

© FIPA (1998) FIPA Spec 13 - 1998

Page 68

(request[-when[ever]]2617
:sender <requesting agent>2618
:receiver <matchmaker>2619
:content2620

[(] (action <matchmaker>2621
(RECOMMEND2622
(:agent-condition <desired agents’ descriptions>)))2623

[<condition-when[ever]>)]2624
:language SL2625
:ontology MATCHMAKER2626
:protocol fipa-request2627
:reply-with tag12628
:conversation-id recommend12629

…)2630
Step 2) Then, a matchmaker requests searching agents to its registered DF by action “search”. 2631

(request[-when[ever]]2632
:sender <matchmaker>2633
:receiver <DF>2634
:content2635

[(] (action <DF>2636
(search2637

(:df-description <desired agent description>)2638
(:df-depth <depth limit>)2639
…))2640

[<condition-when[ever]>)]2641
:language SL2642
:ontology fipa-agent-management2643
:reply-with tag22644
:conversation-id recommend12645

…)2646
Note1: If the first request from original <requesting agent> to matchmaker is using “request-when[ever]”), then this second request from matchmaker 2647
to DF must use same requesting communicative act with same <condition-when[ever]> in original request. 2648
Note2: In order to request recommending agents, a matchmaker must know some DF. Asking its HAP’s default DF or otherwise, registering 2649
some DF to a matchmaker is needed. To register DFs to a matchmaker, we also need define action like “REGISTER-DF” of matchmaker similar to 2650
DFs’ “register” action. 2651
Step 3) DF recommends some agents by replying inform message as a result of performing “search” action. 2652

(inform2653
:sender <DF>2654
:receiver <matchmaker>2655
:content2656

(result2657
(search2658
(:df-description <desired agent description>)2659
(:df-depth <depth limit>)2660

…)2661
(<recommended agents’ descriptions>2662
…2663
<recommended agents’ descriptions>)2664

)2665
:language SL2666
:ontology fipa-agent-management2667

© FIPA (1998) FIPA Spec 13 - 1998

Page 69

:in-reply-to tag22668
:conversation-id recommend12669

…)2670
Step 4) When a matchmaker receives resulting message from DF, it relays the result to requesting agent. 2671

(inform2672
:sender <matchmaker>2673
:receiver <requesting agent>2674
:content2675

(result2676
(action <machmaker>2677

(RECOMMEND2678
(:agent-condition <desired agent description>)))2679

(<recommended agents description>2680
…2681

<recommended agents description >)2682
)2683

:language SL2684
:ontology MATCHMAKER2685
:in-reply-to tag12686
:conversation-id recommend12687

…) 2688
D.4.2.2 Advertising and Unadvertising 2689

The followings are example messages for advertising and unadvertising. 2690
Step 1) First, an agent [un]advertises to its description to a matchmaker. 2691

(request2692
:sender <requesting agent>2693
:receiver <matchmaker>2694
:content2695

(action <matchmaker>2696
([UN]ADVERTISE2697
(:agent-description <agent’s df-description>))2698

:language SL2699
:ontology MATCHMAKER2700
:conversation-id advertise12701

…)2702
Step 2) Then a matchmaker forwards the agent’s description to DF by requesting corresponding DF’s action 2703
“[de]register”. 2704

(request2705
:sender <matchmaker>2706
:receiver <DF>2707
:content2708

(action <DF>2709
([de]register2710

(:df-description <agent’s df-description>)))2711
:language SL2712
:ontology fipa-agent-management2713
:conversation-id advertise12714

…)2715
 2716

2717

© FIPA (1998) FIPA Spec 13 - 1998

Page 70

D.4.3 Brokering and recruiting 2717

 More sophisticated ways of brokerage are brokering and recruiting. In brokering (conceptual one) (Figure 4), 2718
an agent asks a matchmaker to find other agents that can 2719
deal with the request X. Other agents independently inform 2720
the matchmaker that it is willing to deal with requests 2721
matching X. Once the matchmaker has both of these 2722
matched messages, it sends the request X to the advertising 2723
agent and gets a reply and forwards it to the asking agent. 2724
 In recruiting (also conceptual) (Figure 5), an agent also 2725
asks a matchmaker to find an agent that is willing to deal 2726
with the request X. In this case, when the matchmaker 2727
sends X to the agent, it directly replies to the asking agent. 2728
 One of big differences of brokering and recruiting from 2729
recommending is a proxy type of action. For brokering and 2730
recruiting, it is required for matchmakers not only to find 2731
agents suitable to a request but also to ask these agents to 2732
execute the request on the behalf of the requesting agent. 2733
This brings several advantages. Agents have only to access 2734
a matchmaker for requests to other agents. Also, in 2735
brokering, requested agents can be hidden completely from 2736
requesting agents, which may enable certain type of secure 2737
brokerage. 2738
 Because a DF provides only recommending brokerage 2739
service and does not provide brokering and recruiting 2740
brokerage services, to realize these brokerages, another 2741
agent (i.e. a matchmaker) that requests actions to suitable 2742
other agents is needed. So, we introduce a matchmaker 2743
agent and define its action “PROXY” as the proxy type of 2744
action as mentioned in the above. 2745
 2746

 2747
 2748

D.4.3.1 Proxy actions 2749

A proxy type of action required for brokering and recruiting is defined in the following way: 2750
(PROXY :action <action> :agent-condition <condition> [:reply-to <agent>]). 2751
<action> is a communicative act (mainly requesting action) message that a matchmaker is asked to send 2752
agents on the behalf of the original sender. <condition> is a condition that desirable agents must satisfy as a 2753
target of <action>. According to this condition, the matchmaker finds target agents, and sends <action> to all of 2754
them. A parameter “:reply-to <agent>” is optional and, if specified, it indicates that the result messages of the 2755
requested action should be sent back not to the sender, that is, the matchmaker, but to <agent> directly. 2756
With this proxy action, brokering and recruiting can be realized by requesting the following actions to a 2757
matchmaker: 2758
Brokering: (PROXY :action <action> :agent-condition <condition>) 2759
Recruiting: (PROXY :action <action> :agent-condition <condition> :reply-to <agent>). 2760
For brokering, the matchmaker records the original requester and forwards the result messages to it. For 2761
recruiting, “:reply-to” parameter must be specified. In other words, if “:reply-to” option is specified then the 2762
“PROXY” action behaves for recruiting and otherwise it behaves for brokering. With this “PROXY” action 2763

Figure 4 Brokering (conceptual)

MATCHMAKER (conceptual)

Broker X

Inform X

Advertise X

Request

Inform X

Agent BAgent A

Figure 5 Recruiting (conceptual)

MATCHMAKER (conceptual)

Recruit X
Request X

Inform X

Advertise X

Agent BAgent A

© FIPA (1998) FIPA Spec 13 - 1998

Page 71

and in cooperation with DF, a matchmaker provides brokering and recruiting brokerage services (Figure 6, 2764
7). 2765
 Persistent requests for brokerage (i.e. request to a matchmaker) can be realized by combinations of these 2766
“PROXY” actions and “request-when”, “request-whenever” communicative act types, instead of “request”. On the 2767
other hand, in order to request an action to target agents persistently, one can use “request-when”, “request-2768
whenever” in <action>. 2769
Note: In stead of representing brokering and recruiting by one action “PROXY”, two actions “BROKER” and “RECRUIT” may be defined in a matchmaker. In this case, 2770
for recruiting, a parameter ”:reply-to” is not necessary because from “:sender” parameter a matchmaker can extract a destination of result message of requested 2771
action. 2772

 2773
 2774

D.4.3.2775
2 Me2776
ssag2777

es 2778

In 2779
this 2780
sectio2781
n, we 2782
show 2783
exam2784
ples 2785
of 2786
mess2787
ages 2788
dialo2789

gues for brokering, and recruiting. These messages follow FIPA protocols such as “fipa-request” and “fipa-2790
query” in general. 2791
D.4.3.3 Brokering 2792

Step 1) First, a brokering request can be realized with “request”-ing “proxy” action from <requesting agent> to a 2793
matchmaker. 2794

(request[-when[ever]]2795
:sender <requesting agent>2796
:receiver <matchmaker>2797
:content2798

[(]2799
(action <matchmaker>2800

(PROXY2801
:action <action>2802
:agent-condition <desired agents’ description>))2803

[<condition-when[ever]>)]2804
:language SL2805
:ontology MATCHMAKER2806
:protocol FIPA-REQUEST2807
:reply-with tag12808
:conversation-id broker12809

…)2810
Step 2) Only DF has information about agents’ capability description, then a matchmaker consults DF for 2811
recommending (yellow-pages) services by requesting “search” to DF to get agents matches to desired 2812
capability description. 2813

 Figure 6 Brokering with DF

MATCHMAKER
Proxy X

Inform X

 [Un]Advertise X

Request X

Inform X

Agent B
Agent A

[De]Register X

DF Inform B

Search X

Figure 7 Recruiting with DF

MATCHMAKER

Proxy X
Request X

Inform X

[Un]Advertise X

Agent BAgent A

DF

Search X

Inform B
[De]Register X

 :reply-to A

© FIPA (1998) FIPA Spec 13 - 1998

Page 72

(request[-when[ever]]2814
:sender <matchmaker>2815
:receiver <DF>2816
:content2817
[(]2818
(action <DF>2819

(search2820
(:df-description <desired agent description>)2821

…))2822
[<condition-when[ever]>)]2823

:language SL2824
:ontology fipa-agent-management2825
:reply-with tag22826
:conversation-id broker12827

…)2828
Step 3) DF recommends some agents by replying inform message as a result of performing “search” action. 2829

(inform2830
:sender <DF>2831
:receiver <matchmaker>2832
:content2833

(result2834
(search2835
(:df-description <desired agent description>)2836

…)2837
(<recommended agent’s descriptions>2838
…2839
<recommended agent’s descriptions>)2840

)2841
:language SL2842
:ontology fipa-agent-management2843
:in-reply-to tag22844
:conversation-id broker12845

…)2846
Step 4) Forth, when a matchmaker receives recommended agents from DF, then it sends <action> message to 2847
each of recommended agents. 2848

(request2849
:sender <matchmaker>2850
:receiver <one of recommended agents>2851
:content2852
(action <one of recommended agents>2853

<action>)2854
…2855

:language SL2856
:ontology <ontology-of-target-agent>2857
:reply-with tag32858
:conversation-id broker12859

…)2860
Step 5) A matchmaker will receive replying messages from a target agent. 2861

(inform2862
:sender <one of target agent>2863

© FIPA (1998) FIPA Spec 13 - 1998

Page 73

:receiver <matchmaker>2864
:content2865

(result2866
(action <one of target agent> <action>)2867
<statement of resulting information>)2868

:language SL2869
:ontology <ontology-of-target-agent>2870
:in-reply-to tag32871
:conversation-id broker12872

…)2873
Step 6) Then a matchmaker forwards resulting information to original requesting agent. 2874

(inform2875
:sender <matchmaker>2876
:receiver <requesting agent>2877
:content2878
(result2879
(action <action>)2880
<statement of resulting information>)2881

:language SL2882
:ontology MATCHMAKER2883
:protocol fipa-request2884
:in-reply-to tag12885
:conversation-id broker12886

…)2887
 2888
Note: When a matchmaker receives a request for brokering, it must record values of :conversation-id , :reply-with and :sender parameter, and to make 2889
final replying messages and determine its receiver, a matchmaker will use them. 2890
D.4.3.4 Recruiting 2891

Step 1) An recruiting request can be realized with “request”-ing “proxy” actions from <requesting agent> to a 2892
matchmaker with a :reply-to parameter whose value indicates a receiver of replying messages informing result 2893
of requesting action to desired target agents (normally it is equal to <requesting agent>.) 2894

(request[-when[ever]]2895
:sender <requesting agent>2896
:receiver <matchmaker>2897
:content2898

[(] (action <matchmaker>2899
(PROXY2900

:action2901
<action>2902

:agent-condition <desired agents’ description>2903
:reply-to <requesting agent>))2904

[<condition-when[ever]>)]2905
:language SL2906
:ontology MATCHMAKER2907
:protocol FIPA-REQUEST2908
:reply-with tag12909
:conversation-id recruit12910

…)2911
 2912

© FIPA (1998) FIPA Spec 13 - 1998

Page 74

Step 2) A matchmaker asks to DF to recommend desired agents. 2913
(In the case of recruiting brokerage, the second requesting message to DF and the third message 2914
recommending agents are same as brokering.) 2915

(request[-when[ever]]2916
:sender <matchmaker>2917
:receiver <DF>2918
:content2919
[(] (action <DF>2920

(search2921
(:df-description <desired agent description>)2922

…))2923
[<condition-when[ever]>)]2924

:language SL2925
:ontology fipa-agent-management2926
:reply-with tag22927
:conversation-id recruit12928

…)2929
Step 3): DF replies to a matchmaker. 2930

(inform2931
:sender <DF>2932
:receiver <matchmaker>2933
:content2934

(result2935
(search2936
(:df-description <desired agent description>)2937

…)2938
(<recommended agents’ descriptions>2939
…2940
<recommended agents’ descriptions>))2941

:language SL2942
:ontology fipa-agent-management2943
:in-reply-to tag22944
:conversation-id recrit12945

…)2946
Step 4) A matchmaker requests <action> to each recommended agents like brokering. However in recruiting 2947
case they reply resulting messages not to the matchmaker but to the original requesting agent, so a 2948
matchmaker must include the information of <requested agent> in requesting <action> somehow. In order to 2949
tell them the replying destination, in this scenario, a matchmaker set the requesting agent’s name to the value 2950
of “:sender” parameter. Because the receivers (target agents of requested <action>) treat “:sender” value as a 2951
destination of replying message normally, so replying message is send to the original requesting agent. But 2952
this method may be problematic from the point of agent management especially from security management. 2953

(request2954
:sender <requesting agent>2955
:receiver <one of recommended agents>2956
:content2957
(action <one of recommended agents(same as receiver)>2958
<action>2959

)2960
…2961
:language SL2962

© FIPA (1998) FIPA Spec 13 - 1998

Page 75

:ontology <ontology-of-target-agent>2963
:reply-with r32964
:conversation-id recruit12965

…)2966
Step 5): Resulting message is send to the original requesting agent directly from a target agent that performs 2967
the requested action. 2968

(inform2969
:sender <one of target agent>2970
:receiver <requesting agent>2971
:content2972

(result2973
(action <one of target agent> <action>)2974
<proposition about resulting information>)2975

:language SL2976
:ontology <ontology-of-target-agent>2977
:in-reply-to r12978
:conversation-id recruit12979

…)2980
 2981
Note: In Step 4, there may be other ways for replying resulting message to original requesting agent directly. 2982
1) Extend the definition of ACL message parameters (related FIPA97 part2 specification) to include “:reply-to” parameter that indicates the 2983
destination of replying result messages. In this case, agents receive such messages with “:reply-to”, must set generally the replying address to that 2984
value. Note that this case’s parameter “:reply-to” is one on the ACL message level. So, this is a different one to user defined action’s parameter (e.g. 2985
“PROXY”’s “:reply-to”). 2986

(request2987
:sender <matchmaker>2988
:receiver <one of recommended agents>2989
:reply-to <requesting agent>2990
:content2991
(action <one of recommended agents(same as receiver)>2992
<action>2993

)2994
…2995
:language SL2996
:ontology <ontology-of-target-agent>2997
:reply-with r32998
:conversation-id recommend12999

…) 3000
2) If a parameter like a matchmaker’s action “PROXY’s “:reply-to” (this is not in the ACL messages level parameter as in 1)) is defined as the 3001
optional parameter of target agent’s action in the ontology used by them, and the requested agents can understand as the destination of replying 3002
messages, then adding that parameter on requesting. This depends on specific ontology and individual agents’ action definitions. 3003
3) If requested <action>’s result is available by querying result predicate then a matchmaker can requests sequential composite action consists of 3004
<action> and <inform-ref>. In this request, the ”:receiver” of <inform-ref> can be specified by a requesting side agent (i.e. matchmaker) to a original 3005
requesting agent. So, informing result of action message is sent directly to the requesting agent. 3006
(If action of informing the result is implicitly contained in performing <action> definition in the target agents, then the agents also sends a message 3007
informing result to ”:sender” of request of composite action (i.e. a matchmaker.)) 3008

(request3009
:sender <matchmaker>3010
:receiver <one of recommended agents>3011

:content3012
((action <one of recommended agents(same as receiver)>3013

© FIPA (1998) FIPA Spec 13 - 1998

Page 76

<action>) ;3014
(inform-ref3015

:sender <one of recommended agents>3016
:receiver <requesting agents>3017
:content (result3018
(action <one of target agent> <action>)3019
<proposition about resulting information>)3020

:language SL3021
:ontology <ontology-of-target-agent>3022
:in-reply-to tag13023
:conversation-id recruit13024

…))3025
…3026
:language SL3027
:ontology <ontology-of-target-agent>3028
:reply-with tag33029
:conversation-id recommend13030

…) 3031

D.5 Brokerage under multiple matchmaker environment 3032

Brokerage under environment with multiple matchmakers can be realized by registering their matchmaking 3033
services in a similar way to registrations of ordinary agents. When a matchmaker receives a request, it offers 3034
a brokerage service and if it is willing to federate to other matchmakers it asks DF to recommend other 3035
matchmakers. Then the matchmaker forwards the request to the recommended matchmakers whose 3036
registered descriptions match the request. For this purpose, small extensions are required for matchmaker’s 3037
brokerage actions. 3038
 3039
D.5.1 Requesting to matchmakers 3040

Under inter-matchmaker communications, when a matchmaker receives a request, it offers a brokerage 3041
service such as recommending, brokering etc., and at the same time, it forwards the request message to other 3042
matchmakers recommended by DF whose descriptions match the request. Therefore, according to replies 3043
from DF, a matchmaker must change its behavior. To distinguish matchmakers and other agents, a word 3044
“matchmaking-service” should be reserved as a service name registered in DF. 3045
Also, since the topology of links of matchmakers may be not known in general, a request should include 3046
some information to control behaviors of matchmakers. 3047
 To clarify these, we introduce a new optional parameter “:matchmaker-condition”, “:hop-count” and “:reply-by” in 3048
matchmaker’s brokerage actions, which is defined in the following way: 3049
(PROXY :action <Action> :agent-condition <condition>[:reply-to <agent>] 3050
 [:matchmaker-condition <condition-matchmaker>][:hop-count <count>][:reply-by <time limit>]) 3051
(RECOMMEND :agent-condition <condition> 3052
 [:matchmaker-condition <condition-matchmaker>][:hop-count <count>][:reply-by <time limit>]) 3053
 When a matchmaker receives a request of action with these parameters, it executes and at the same time 3054
forwards this message to other matchmakers. Matchmakers for forwarding are selected by matching 3055
<condition-matchmaker> with their registered descriptions by requesting “search” with that condition to DF 3056
similar to selecting agents by <condition>. If <condition-matchmaker> is not specified, <condition> is used to 3057
select matchmakers. 3058

© FIPA (1998) FIPA Spec 13 - 1998

Page 77

A parameter “:hop-count” controls how many matchmakers a request is forwarded to. The value of this 3059
parameter must be a nonnegative integer. When a matchmaker forwards a request to other matchmakers, the 3060
value of “:hop-count” must be decreased by 1 and if the value is zero then the request must not be forwarded 3061
further. For example, if a request has the parameter “:hop-count” with value 2 then the request is forwarded to 3062
at most three matchmakers. In the following figure, the matchmaker4 is not reachable. 3063

3064

© FIPA (1998) FIPA Spec 13 - 1998

Page 78

The parameter “:reply-by” may also control the behavior of matchmakers; each matchmaker must reply until 3064
the specified time so that the scope of forwarding messages may be restricted. 3065

When requesting brokerage message is forwarded from one matchmaker to another matchmaker, the 3066
“:sender” and the “:receiver of the propagated message must be changed in the appropriate way. 3067
D.5.2 Brokerage by inter-matchmaker communications 3068

For example, a recommending request from a requesting agent to a (first) matchmaker can be described in 3069
the following way. 3070

(request[-when[ever]]3071
:sender <requesting agent>3072
:receiver <first matchmaker>3073
:content3074
[(] (action <first matchmaker>3075

(RECOMMEND3076
:agent-condition <requirement pattern of desired agent>3077
:matchmaker-condition <condition-matchmaker>3078
:hop-count 3))3079

[<condition-when[ever]>)]3080
)3081

:language SL3082
:ontology MATCHMAKER3083
:protocol fipa-request[when[ever]]3084

…).3085

When first matchmaker receives this request, it asks DF to search matchmakers matching its registered 3086
description to the <condition-matchmaker>. If such a matchmaker is recommended, then this requesting 3087
message is forwarded to matchmaker as follows. Note that “:hop-count” is decreased. 3088

(request[-when[ever]]3089
:sender <first matchmaker>3090
:receiver <second matchmaker>3091
:content3092
[(] (action <first matchmaker>3093

(RECOMMEND3094
:agent-condition <requirement pattern of desired agent>3095
:matchmaker-condition <condition-matchmaker>3096
:hop-count 2))3097

[<condition-when>)]3098
)3099

:language SL3100
:ontology MATCHMAKER3101
:protocol fipa-request3102

…).3103

MATCHMAKER1
1

MATCHMAKER2 MATCHMAKER3 MATCHMAKER4

hop-count=2 :hop-count=1 :hop-count=0 Not reachable

© FIPA (1998) FIPA Spec 13 - 1998

Page 79

 3104

A example of brokering is shown below. In this case, if there is a matchmaker (i.e. it has “matchmaking-3105
service” as a service name) among agents that match <condition>, then this requesting message is forward to it. 3106

(request[-when[ever]]3107
:sender <requesting agent>3108
:receiver <first matchmaker>3109
:content3110
[(] ((action <first matchmaker>3111

(PROXY3112
:action <action>3113
:agent-condition <condition>3114
:hop-count 3))3115

[<condition-when[ever]>)]3116
)3117

:language SL3118
:ontology MATCHMAKER3119
:protocol fipa-request3120

…).3121

D.6 Other issues 3122

The matchmaker service is closely related to the CORBA trader service [2]. The CORBA trader service also 3123
offers mediation functionality with interworking (federation) of traders although it provides only the 3124
recommending service. The CORBA trader service prescribes the brokerage with many detailed parameters 3125
for various policies on trading services. Considering these parameters for matchmakers may be useful even 3126
for FIPA agent environments although the distributed object environments are tighter than FIPA agent 3127
environments as far as collaborations are concerned. In this proposal, we introduced only “:hop-count” 3128
parameter from the CORBA trader service; we think that other parameters of the CORBA trader service are 3129
too much detailed for FIPA agent environments and may weaken the autonomy of agents. 3130

D.7 Conclusion 3131

A matchmaker agent having “SUBSCRIBE”, “UNSUBSCRIBE”, “PUBLISH”, “RECOMMEND”, “ADVERTISE”, 3132
“UNADVERTISE” and “PROXY” actions is introduced. By requesting these actions, various brokerages are 3133
realized uniformly. Action “PROXY introduced here can also be used for other purposes. It is useful to realize 3134
general proxy type of actions of agents. 3135

D.8 References 3136

[1] Finin, T., Labrou, Y. and Mayfield, J.: KQML as an agent communication language. In Bradshaw, J. 3137
(Ed.), Software Agents. MIT Press. Cambridge. 1997. 3138

[2] Object Management Group: Trading Object Service. CORBA services: Common Object Services 3139
Specification 3140

 3141
 3142

3143

© FIPA (1998) FIPA Spec 13 - 1998

Page 80

Annex E 3143

 Result of the first interoperability trials 3144

Author FIPA TC D

Date Seoul, 25-29 January, 1999

Title Result of the first interoperability trials
Distribution Public
 3145

Abstract: FIPA started a campaign of interoperability tests between Agent Platforms separately 3146
implemented by different companies. For this purpose, a new Technical Commette (TC D) has 3147
been established. At the Seoul meeting, 4 companies (Broadcom, Comtec, Cselt and Siemens) 3148
joined this TC by connecting their platforms together and running basic application scenario of 3149
appointment scheduling. The tests were mostly successful, although not every combination of 3150
different implementations functioned properly. The trial members came up with a set of comments 3151
and suggestions to the specifications, which will be investigated by appropriate technical 3152
committees responsible for the maintenance of the specification. The group established a future 3153
plan of interoperability trials for the rest of the year. It is expected that public agent platform 3154
accessible at anytime and from anywhere in the Internet will be deployed by the members. In order 3155
to improve the effectiveness of these tests, FIPA solicits member and non-member companies to 3156
join the TC and test their agent platform implementations. 3157

1. Interoperability Target 3158

The goal for the first interoperability trials was to test: 3159
- FIPA 97 Specification Part 1 (Agent Management): functionality of the Directory Facilitator (DF); and 3160
- FIPA 97 Specification Part 2 (Agent Communication Language): the grammar, the communicative acts, 3161

the SL0 content language, and some interaction protocols. 3162
In the first step, the tests concentrated on the interoperability between agent platforms. The following tests 3163
were performed: 3164
- send a message from an agent located on a platform to other agent located on a different platform; 3165
- registration with a DF of a different platform; 3166
- use of the DF services; 3167
- creation of a federation of DFs from different agent platforms ; and 3168
- basic calendar scheduling using CFP communicative act and FIPA-CONTRACT-NET interaction 3169

protocol. 3170

2. Setup of the test bed 3171

2.1 Agent Platforms 3172

Company Hostname OS ORB Programming
Language

Broadcom scooter Solaris Orbix SICStus Prolog

© FIPA (1998) FIPA Spec 13 - 1998

Page 81

Comtec shox Windows
NT

JDK
1.2

kawa

CSELT cpq6445 Windows
NT

JDK
1.2

Java

Siemens M11077PP Windows
NT

JDK
1.2

Java

 3173
2.2 Bootstrapping 3174

IIOP is the baseline communication protocol between agent platforms. FIPA specifies the IDL but how 3175
initially IORs are exchanged is not mentioned in the specification. The adopted solution in the group is to 3176
share a directory where all platforms put a file with their IOR. Anonymous FTP and Microsoft file sharing 3177
was set up on shox to exchange IOR. 3178

File names: 3179
 Broadcom.ior 3180
 Comtec.ior 3181
 Cselt.ior 3182
 Siemens.ior 3183
File format: 3184

 IOR<sp>IIOP-URL<cr> 3185
 Example: 3186

IOR:0123456789ABCDEF… iiop://shox:50/acc/ 3187
 3188

3 Result of the interoperability trials 3189

 from
to

Broadcom Comtec Cselt Siemens

Broadcom F T P R F I P R S C F I P R S
Comtec F T P R S F T P R S F T P R S
Cselt F I P R S F F I P R S
Siemens F I P R S F T P R F I P R S C

Legend: 3190
F - FTP Ready 3191
I – IIOP reached 3192
T – Text-based communication (without IIOP) 3193
P – message parsed 3194
R – registered an agent with the DF 3195
S – search with the DF 3196
C – cfp/contract net works 3197

4 Comments from the group 3198

4.1 Agent Management 3199

4.1.1 Agent Management Grammar 3200
The "unknown" state should be included in the list of valid DFLifeCycle states. 3201
4.1.2 ACC 3202
The current ACC specification is weak. Its role in the multi-agent system is currently to serve all the "request 3203
(forward …)" messages. The burden of selecting the transport protocol is given to each agent. 3204

© FIPA (1998) FIPA Spec 13 - 1998

Page 82

The proposal is to extend the IPTM (Internal Platform Transport Mechanism) by specifying that it must be 3205
able to access the IIOP transport mechanism (or whatever baseline protocol FIPA will use) when it 3206
recognizes that a receiver is not internal to the platform. The burden to decide which form of message, i.e. 3207
request to forward, or just the message, should be removed by the agents. 3208
That means to decide to remove, or not, the Request Forward action. 3209
4.1.3 Agent Name 3210
The current TC1 specs specifies 3211
AgentName = Word "@" CommAddress 3212
CommAddress = CommProtocol "://" (IPAddress|DNSName) ":" Integer "/" ACCObj. 3213
Problem with the specification of the Agent Name (TC1). In some cases it is usefull to use the IOR address, 3214
the agent name should become the following: 3215
AgentName = Word "@" CommAddress 3216
CommAddress = IORAddress | URLAddress 3217
IORAddress = "IOR:" HexWord 3218
URLAddress = CommProtocol "://" (IPAddress|DNSName) ":" Integer "/" ACCObj 3219
HexWord = ["0"-"9","a"-"f","A"-"F"]+ 3220
It must be clarified that the AgentName must be a valid transport address and not only a logical name. 3221
It is necessary to analyse the difference between agent-name and agent-address, if both are really necessary, 3222
and if it is better to introduce a new DF description attribute with the physical location of the agent (e.g. 3223
comtec.shox). 3224
4.1.4 Agent Description and Service Description 3225
The current FIPA specs allow to register with the DF both an agent description and a description of the 3226
services it provides. Both descriptions include 3 common properties: type, name, and ontology. It is proposed 3227
to specify clearly the difference, that is "what is the description of an agent" and "what is the description of 3228
its services". Some examples may clarify. 3229
Same problem applies both for part 1 and part 3. 3230
4.1.5 FIPA_Agent_97 interface 3231
This interface must not be part of any package, otherwise an exception is thrown. Even if this is implicitly 3232
defined in the Part 1 specs, it is better to explictly reinforce this concept. 3233
The interface must be statically constructed. Some implementation of DII does not work with static 3234
interface. 3235
4.1.6 Multiple registration to DF 3236
If agent crashes after registering to a DF, the agent must restart and register to the DF again. However, the 3237
previous instance of the agent is already registered in the DF and duplicated registration request from the new 3238
instance of the agent is refused. DF must be able to handle the situation (possibly by communicating with 3239
AMS which manages the agent’s physical lifecycle). 3240
 3241
4.2 Agent Communication Language 3242

4.2.1 Content Language SL 3243
Expressing list in SL. The DF and the AMS results can be a list of agent descriptions, in this case we need a 3244
standard way to express list in the Fipa-Agent-Management. 3245
Three proposals are proposed by this group: 3246
1. (result (action …) ((:df-description …) (:df-description …) (:df-description 3247
…))) 3248
 in this case the SL syntax must be extended 3249
2. (result (action …) (list (:df-description …) (:df-description …) (:df-3250
description …))) 3251
 in this case the list functional symbol must be added to the 3252
fipa-agent-management ontology 3253

© FIPA (1998) FIPA Spec 13 - 1998

Page 83

3. (result (action …) (:df-description …) (:df-description …) (:df-description …) 3254
) 3255

without external parenthesis 3256
 in this case the grammar of Fipa97 Part 1 result predicate 3257
must be modified 3258
4.2.2 Use of the lists 3259
It is suggested to establish a standard policy of using ":" keyword and lists. In Lisp the ":" keywords are used 3260
to reduce the number of cons cells. The ACL adopts in fact the Lisp convention, while the Agent 3261
Management Ontology not. 3262
In the current specs sometimes the value of a property is specified to be a list and sometimes not. Some 3263
inconsistencies appear: 3264
For instance, in the following cases the value is not a list: 3265
"(" ":address" CommAddress+ ")" 3266
"(" ":services" Fipa-service-desc+ ")" 3267
in the following cases, instead, the value is specified to be a list: 3268
"(" ":interaction-protocols" "(" Word+ ")" ")" 3269
"(" ":language" "(" ContentLanguage+ ")" ")" 3270
in the following cases, finally, the value is specified to be a SLTerm: 3271
"(" ":ontology" SL0Term ")" 3272
"(" ":ownership" SL0Term ")" 3273
The proposal is to unify the notation. The following proposal was made by Luis Botelho: 3274
 3275

Syntax for SL terms: represent descriptions 3276
 3277
The main idea is to represent descriptions as functional expressions 3278
in which the function is the constructor of the type and the 3279
parameters are the components. 3280
 3281
Simple example 3282
 3283
 (Car 3284
 :color red 3285
 :position (Position :x 1365 :y 12) 3286
 :speed (Speed :vx 145 :vy 0)) 3287
 3288
 Expression 1 3289
 3290
Car is the constructor of type car, Position is the constructor of type 3291
position, Speed is the constructor of type speed. 3292
 3293
:color, :position and :speed are role names - this is just notation 3294
for 3295
 3296
 (Car red (Position 1365 12) (Speed 145 0)) 3297
 3298
 Expression 2 3299
 3300
but has the advantage that the parameters can come in arbitrary order 3301
and that you can omit parameters when you are not interested or you 3302
don't know their values. 3303

© FIPA (1998) FIPA Spec 13 - 1998

Page 84

 3304
[You might think that the following expression 3305
 3306
 (Car 3307
 (color red) 3308
 (position (Position (x 1365) (y 12))) 3309
 (speed (Speed (vx 145) (vy 0)))) 3310
 3311
 Expression 3 3312
 3313
has the same advantage mentioned above. However, the number of cons 3314
cells (basic memory units of s-expression) for Expression 3 is 25 3315
while it is 18 for Expression 1. Expression 1 requires less memory 3316
than Expression 3. 3317
 3318
-- Suguri] 3319
 3320
Complex example 3321
 3322
(mobject ; Constructor of the mobile object type 3323
 :object-id 3324
 (objID ; Constructor of the mobile object id type 3325
 :camera 2 3326
 :object-number 275) 3327
 :tyme-stamp 3328
 (TimeStamp ; Constructor of the TimeStampDS data type 3329
 :year 1998 3330
 :month 12 3331
 :day 14 3332
 :hour 10 3333
 :minute 14) 3334
 :object-description 3335
 (list-quote ; The description of an object is a list of features. 3336
 ; The type, implicit in the syntax, is list. 3337
 ((position 3338
 :x (uncertain-object 1534 0.7) 3339
 :y (uncertain-object 10 0.8) 3340
 :z (uncertain-object 0.5 0.8)) 3341
 (color 3342
 (uncertain-object 3343
 (list-quote (:h 255 :s 2 :v 23)) 3344
 0.7))))) 3345
 3346
Constructor of the mobile object data type 3347
mobject: ObjectIdDS x TimeStampDS x ObjectDescriptionDS -> OjbectDS 3348
 3349
Constructor of the mobile object id type 3350
objID: Byte x ULong -> ObjectIdDS 3351
 3352

© FIPA (1998) FIPA Spec 13 - 1998

Page 85

Constructor of the TimeStampDS data type 3353
TimeStamp: UShort x UByte x UByte x UByte x UByte x Ubyte x Ushort -> TimeStampDS 3354
 3355
Constructor of the type PositionDS 3356
position: UncertainFloat x UncertainFloat x UncertainFloat -> PositionDS 3357
 3358
Constructor of the type ColorDS 3359
color: UncertainList -> ColorDS 3360
 3361
Syntax 3362
 3363
ExtendedSLTerm = SLTerm | // original grammar 3364
 Description | 3365
 Collection | 3366
 UncertainTerm. 3367
Description = "(" ConstructorSymbol ConstructorSpec* ")" 3368
ConstructorSymbol = SLFunctionSymbol. 3369
ComponentSpec = ":" RoleName Value. 3370
RoleName = Word. 3371
Value = ExtendedSLTerm. 3372
Collection = "(" "quoted-list" "(" ExtendedSLTerm+ ")" ")" | 3373
 "(" "quoted-list-of" TypeName "(" ExtendedSLTerm+ ")" ")" | 3374
 "(" "quoted-array-of" N TypeName "(" ExtendedSLTerm+ ")" ")". 3375
TypeName = Word. 3376
N = NaturalNumber. 3377
UncertainTerm = "(" "uncertain-object" ExtendedSLTerm Confidence ")". 3378
Confidence = RealNumber. 3379

 3380
4.2.3 SL0 and tuples 3381
The current specs of SL does not allow to express tuples. Tuples are widely used, instead, to express the 3382
content of several communicative acts, like agree, failure, … It is here proposed to extend the SL grammar to 3383
allow expressing tuples. 3384
4.2.4 Contract-Net Interaction Protocol 3385
The definition of this protocol allows the initiator to "cancel" an accepted proposal without any constraints on 3386
the time either on the status of the responders. The protocol should be better defined in order to constaint the 3387
communicative act "cancel", for instance to given time constraints. 3388
4.2.5 Rules to handle conversations 3389
In Part 2 the following two rules should be added : 3390
"If an agent receives a message that has a value for the parameter :conversation-id, then every message that is 3391
sent in response to that one MUST include the parameter :conversation-id with the same value. In an 3392
interaction protocol, the same value of :conversation-id must be used for all the messages in the protocol." 3393
"If an agent receives a message that has a value for the parameter :reply-with, then every message that is sent 3394
in response to that one MUST include the parameter :in-reply-to with the same value" 3395
Example of a Contract-net protocol: 3396
Comm. Act :conversation-

id
:reply-
with

:in-reply-
to

Cfp C1 R1
Propose /refuse
/ not-
understood

C1 R2 R1

© FIPA (1998) FIPA Spec 13 - 1998

Page 86

Accept-
proposal /
reject-proposal

C1 R3 R2

Inform /failure C1 R3
Cancel C1
 3397
4.2.6 Time token 3398
Part 2 specifies that the value of the parameter :reply-by is a time token. This token is based on the ISO 8601 3399
format, with extensions for relative time and millisecond durations. It is also specified that, optionally, the 3400
token can also include a type designator, where the type designator for UTC is the character "Z". Part 2 also 3401
says that "UTC is preferred to prevent time zone ambiguities". 3402
It is here proposed to modify the specifications by allowing only the usage of relative times (that continues to 3403
be designated by the character "+" in first position) and the UTC type designator. 3404
The reason for this proposal is to simplify implementation without any impact on the expressive power of the 3405
time token. 3406
4.3 General comments 3407

4.3.1 Summary of changes 3408
In Fipa97 version2.0 the value of some constant symbols is changed. It is proposed to add an annex with all 3409
the changes to simplify the implementors to maintain their implementations. 3410

5 Working Assumptions 3411

In order to continue the test campaign the following working assumptions have been made: 3412
- "unknown" is a valid DFLifecycle state; 3413
- the request to forward to the ACC is not used. It is assumed that the ACC is not an agent; 3414
- the agent name is a valid transport address. In particular it is formed by the concatenation of the actual 3415

agent name and its transport address (e.g. fabio@IOR:00…..) 3416
- The IOR of the agent platform is exchanged via directory sharing or ftp; 3417
- The SL syntax is extended and the results of a search are expressed as shown in proposal 1 of section 3418

4.2.1; 3419
- The use of lists continues to comply with the Agent Management Ontology until it will be definitivly 3420

unified by the appropriate TC; 3421
- The SL syntax is extended to allow t-uples as content of some communicative acts (e.g. agree, failure, 3422

…); 3423
- A conversion is handle by using the rules specified in section 4.2.5; 3424
- Time tokens are expressed as proposed in section 4.2.6; 3425

6 Acknowledgments 3426

The implementation of JADE, the CSELT Agent Platform, and of ASL FIPA gateway, the Broadcom Agent 3427
Platform, has been partly done within the framework of the European project FACTS, ACTS AC317. 3428
The implementation of Comtec Agent Platform was partly supported by Information-technology Promotion 3429
Agency, Japan, contracts titled Promotion of Advanced Software Enrichment Project (Contract Number 3430
8JOUKOUDAI95GOU) and Promotion of Support for Advanced Information-orientation Software Project 3431
(Contract Number 9JOUGIOUDAI596GOU). 3432

Annex F 3433

 3434

An iterative specification validation scheme based on negotiation 3435

mailto:fabio@IOR:00%83..

© FIPA (1998) FIPA Spec 13 - 1998

Page 87

 3436
Laurent Maillet-Contoz, Isabelle Mougenot, Jean Sallantin 3437

and Francois Arlabosse 3438
{maillet_contoz, mougenot, sallantin}@lirmm.fr 3439

farlabos@club-internet.fr 3440
 3441

LIRMM - UMR 5506 Universit Montpellier II / CNRS 3442
161, Rue Ada 34 392 Montpellier Cedex 5 France 3443

 3444
AFSJ, Rue de la Croix Rouge, 78 430 Louveciennes, France 3445

 3446
 3447
 3448
 3449
 3450
1 - Introduction 3451
 3452
In this proposal, we introduce formal aspects for the validation of specifications. Methods such as B or VDM and languages such as 3453
Z are devoted to the formal specification of software. However, the purpose of these methods is to produce executable code with 3454
respect to the specifications, for software whose specifications are known in advance and invariant during the development. In our 3455
case, it is rather a question of hardening the specifications in order to validate them and to envisage their evolution. The validation 3456
corresponds to the stabilisation of knowledge, whereas the adaptation and the evolution can be perceived like the result of a 3457
reasoning on a stabilised knowledge. In this sense, we represent the specifications through ontology, in order to identify the set of 3458
terms which must be defined as well as the constraints connecting them. The originality of this approach lies in the use of 3459
mechanisms of negotiation, to allow the adaptation and the evolution of the specifications according to the developments and the 3460
uses. 3461
 3462
 3463
 3464
In the problems concerned (part 2 of the CFP °7), the specifications are supposed to evolve according to the developments of new 3465
platforms and thus require a particularly effective refinement method. To address this issue, we propose an approach in three steps: 3466
 3467
 3468

* Internal validation of the specifications, in order to check their total coherence 3469
* 3470
 3471

 3472
* Negotiation of the adaptation of the specifications according to the lacks identified by the developments 3473
* 3474
 3475

 3476
* Negotiation of the evolution of the specifications according to the evolution of the domain. 3477
* 3478

 3479
We detail in this proposal the three points of this approach and identify the needed tools. We develop in the following document our 3480
methodology of validation and adaptation of the specifications. 3481
 3482
 3483
 3484
2 - Validation and adaptation of the specifications 3485
 3486
 3487
 3488
The validation of the specifications consists in checking their total coherence. In this sense, we have to extract relevant information 3489
from the informal specifications given as a text in natural language, then to model this information as a hierarchy of terms bound by 3490
constraints, and finally to check its coherence. 3491
 3492
 3493
 3494
The formal methods are not relevant in this context, because the initial specifications are far too informal, and because of their fast 3495
evolution it is not possible to pass easily from an informal description to a completely formal description. 3496
 3497
 3498

© FIPA (1998) FIPA Spec 13 - 1998

Page 88

 3499
 3500
 3501
Consequently, our approach is based on the identification of the concepts and the relations between them intervening in the 3502
specifications. We define an ontology as a hierarchy of terms connected by constraints. Thus, it is possible to represent the domain 3503
knowledge and to highlight for example the lacks of definitions, the inconsistency between the concepts present, or the lacks or 3504
excesses of constraints in the field. 3505
 3506
 3507
 3508
Thus, for example, we can model the sending of the various messages which the agents must exchange in order to lead to an 3509
agreement for a meeting. We define two particular contexts of transmitter and receiver of message, and identify the messages which 3510
it is possible to receive. 3511
 3512
 3513
 3514
Sender 3515
 3516
ScheduleRequest 3517
 3518
CFP 3519
 3520
Accept 3521
 3522
Reject 3523
 3524
Receiver 3525
 3526
Propose 3527
 3528
Refuse 3529
 3530
Inform 3531
 3532
Failure 3533
 3534
Notify 3535
 3536
 3537
 3538
The associated constraints describe which are the possible answers between the various agents, in order to check that the protocol 3539
given in the specifications is respected: 3540
 3541
 3542
 3543
Imply ScheduleRequest, Notify 3544
 3545
Imply CFP, Propose 3546
 3547
Imply CFP, Refuse 3548
 3549
Exclude Propose, Refuse 3550
 3551
Imply Accept, Inform 3552
 3553
Imply Reject, Inform 3554
 3555
Imply Accept, Failure 3556
 3557
Imply Reject, Failure 3558
 3559
Exclude Inform, Failure 3560
 3561
 3562
 3563
 3564

© FIPA (1998) FIPA Spec 13 - 1998

Page 89

 3565
We call ontology, or grid, the hierarchy of terms and the associated constraints. This ontology is used with a constraint propagator, 3566
to select the presence or the absence of terms in the grid, in order to identify situations in which paradoxes can be highlighted. This 3567
indicates insufficiencies in the specifications. In this case, it is necessary to re-examine them, and to refine consequently the 3568
corresponding ontology. 3569
 3570
 3571
 3572
The ultimate goal of this step is to provide a valid and coherent version of the grid modelling the specifications, depending on the 3573
state of the informal specifications. Once this grid is stabilised, it should be made persistent: 3574
 3575
 3576

* to provide a grid in order to analyse the conformity of the applications with the specifications 3577
* 3578
 3579

 3580
* to allow the consultation of the specifications and the search for specifications from particular points of view 3581
* 3582
 3583

 3584
* to allow reasoning on this grid to improve it 3585
* 3586

 3587
 3588
 3589
However, the specifications are supposed to evolve according to the gaps which were identified during the construction of the grid, 3590
relating to the comments or the needs of the developers. It is in consequence necessary, in a second step, to provide adaptation of 3591
the specifications according to the developments. 3592
 3593
This adaptation is carried out by identifying the gaps of the specifications, through developments carried out on the platforms, and 3594
by using negotiation mechanisms. The adaptation of the specifications occurs through several aspects: 3595
 3596
 3597

* Insufficiency of the specifications, it is then necessary to enrich the specifications, by respecting their initial coherence. For that, 3598
the negotiation engine is used so that enrichments produce a new version of the specifications, which is correct by 3599
construction, i.e. which respects the previous constraints, 3600

* 3601
 3602
 3603

* Refutation of part of the specifications: That indicates an over-specification, which it is illusory to respect from an 3604
implementation point of view. Two aspects are then identifiable: 3605

* 3606
 3607

 3608
* Relating to terms, which indicates that the concepts defined in the specifications are not satisfactory, according to the various 3609

developments, 3610
* 3611
 3612

 3613
* Relating to the constraints imposed on these terms: In this case, that indicates an excess or a lack of precision. 3614
* 3615

 3616
The mechanisms of negotiation are well-suited to the adaptation of the specifications, because their purpose is to find an agreement 3617
between users who may have conflicting goals and interests. The base of the negotiation is provided by the grid which represents a 3618
state of the specifications to be improved. The negotiation intervenes to let the users express the potential refutation of the elements 3619
of the grid, and produce a new consensual and coherent grid, which refines the preceding specification. A module to be envisaged is 3620
the automatic generation of the specifications in a formal language from the grid, in order to engage mechanisms of proof. 3621
 3622
 3 - Conclusion 3623
 3624
 3625
 3626
We have presented in this contribution a methodology of validation and adaptation of the specifications, based on the extraction of a 3627
set of terms and constraints since specifications are provided as an informal text. We showed that the formal methods for the 3628
validation of the specifications are not relevant, because of the very informal nature of the specifications, and because of their fast 3629

© FIPA (1998) FIPA Spec 13 - 1998

Page 90

evolution. Our approach, based on an extraction of the terms of the text, identifies the set of the concepts to be present or to be 3630
excluded in an application so that it respects the specifications. 3631
 3632
 3633
 3634
The adaptation of the specifications is carried out according to the developments which can show gaps or errors in the 3635
specifications. In this case, it is a question of negotiating the modifications to be made in the specifications, based on a common grid 3636
representing the state of initial specifications, while respecting to the maximum the initial constraints. Lastly, the evolution of the field 3637
forces to make evolve the specifications according to same principles. 3638
 3639
References 3640
 3641
[Abr96] J.R. Abrial, The B Book, Assigning programs to meanings, Cambridge University Press, 1996 3642
 3643
[AI91] D. Andrews and D. Ince, Practical Formal Methods with VDM, Mc Graw Hill, 1991 3644
 3645
 3646
 3647
 3648

	Scope
	Normative reference(s)
	Terms and definitions
	Symbols (and abbreviated terms)
	Overview
	Benefits of using the FIPA97 Standard
	Agents in FIPA
	Ontologies in FIPA

	Communication between Agents
	RPC-based communications
	Agent-based messaging
	Overview of Agent Communication in FIPA97
	Agent Communication Language (ACL), Content Language and Ontology
	Message Transport
	Use of proprietary APIs

	Implementation Requirements of FIPA agents
	Ping Agent Implementation Requirements
	Implementation
	Towards Realistic Agent Implementations
	ACL Message Queue
	ACC Implementation Issues
	Example message transfer
	Confirmations

	An agents Global Unique Identifier (GUID)
	Use of FIPA Interaction Protocols
	Agent Communication over a protocol other than IIOP

	Application Scenario Description
	Meeting Scheduling Scenario
	Meeting Scheduling Ontology

	Implementation Guidelines
	Description of the agent negotiation
	Example meeting time resolution
	Application specific ontology descriptions
	PA Meeting Scheduler Ontology
	Rules for well formed messages
	Further semantics for the ontology

	Agent Platform Registration
	Agent Service Registration
	Remote Agent Registration
	User Initiated Agent Interactions
	Agent Services Location Interactions
	De-registration of service agent

	Interoperability Target
	Setup of the test bed
	2.1 Agent Platforms
	2.2 Bootstrapping

	Result of the interoperability trials
	Agent Management
	Agent Management Grammar
	ACC
	Agent Name
	Agent Description and Service Description
	FIPA_Agent_97 interface
	Multiple registration to DF

	Agent Communication Language
	Content Language SL
	Use of the lists
	SL0 and tuples
	Contract-Net Interaction Protocol
	Rules to handle conversations
	Time token

	General comments
	Summary of changes

	Acknowledgments

