
 1
 2

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 3
 4

 5

FIPA Agent Message Transport 6

 Specification 7

 8

Document title FIPA Agent Message Transport Specification
Document number OC00024D Document source FIPA TC B
Document status Obsolete Date of this status 2001/08/10
Supersedes None
Contact fab@fipa.org
Change history
2000/04/11 Made obsolete by FIPA00067
2001/08/10 Line numbering added

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37
 38

Contents 39

1 Scope.. 1 40
2 Normative References .. 2 41
3 Agent Message Transport Reference Model .. 3 42

3.1 Message Transport Model ... 3 43
3.2 Message Structure... 3 44

4 Message Transport Service .. 5 45
4.1 Expressing Message Transport Information.. 5 46

4.1.1 Abstract Message Envelope Syntax... 5 47
4.1.2 Message Envelope Slot Semantics .. 5 48
4.1.3 Updating Message Envelope Slot Information ... 7 49
4.1.4 Additional Message Envelope Slots ... 7 50

4.2 Agent Identifiers and Transport Addresses ... 7 51
4.3 Message Transport Functions of the ACC... 7 52

4.3.1 Interfaces to the Message Transport Service... 7 53
4.3.2 Agent Communication Channel Message Handling Behaviour.. 8 54
4.3.3 Error and Confirmation Messages.. 10 55

4.4 Using the Message Transport Service... 10 56
4.4.1 Sending Messages ... 10 57
4.4.2 Receiving Messages .. 11 58

4.5 Querying Message Transport Service Polices and Capabilities .. 11 59
4.5.1 Agent Platform Transport Descriptions... 11 60
4.5.2 Minimal Transport Requirements for FIPA Interoperability... 12 61

5 Representation of Time... 13 62
6 Message Transport Protocols ... 14 63

6.1 Message Transport Protocol for IIOP: fipa-iiop-std .. 14 64
6.1.1 Interface Definition.. 14 65
6.1.2 Concrete Message Envelope Syntax ... 14 66

6.2 Message Transport Protocol for Wireless Networks: fipa-wap-std ... 14 67
6.2.1 Concrete Message Envelope Syntax ... 15 68

7 Representations of ACL Messages .. 16 69
7.1 String Representation: fipa-string-std ... 16 70

7.1.1 Message Syntax ... 16 71
7.1.2 Grammar Rules .. 16 72
7.1.3 Lexical Rules .. 17 73
7.1.4 Notes on the Grammar Rules... 18 74

7.2 Bit-Efficient Representation: fipa-bitefficient-std.. 20 75
7.2.1 Tokenised ACL Syntax ... 20 76
7.2.2 Using Dynamic Code Tables .. 22 77
7.2.3 Notes on the Grammar Rules... 23 78

7.3 XML Representation: fipa-xml-std ... 25 79
7.3.1 XML DTD.. 25 80

8 References.. 28 81
9 Normative Annex A: Concrete Message Envelope Syntax... 29 82

9.1 Lexical analysis.. 29 83
9.2 Syntax.. 30 84
9.3 Additional Syntax Rules... 31 85

 86

1 Scope 87

This document is part of the FIPA specifications and deals with message transportation between inter-operating agents. 88
This document also forms part of the FIPA Agent Management specification and contains specifications for agent 89
message transport, including: 90
 91
 A reference model for an agent Message Transport Service. 92
 93
 Definitions for the expression of message transport information to an agent Message Transport Service. 94
 95
 Definitions of Agent Message Transport Protocols for transportation of messages between agents. 96
 97
 Specifications of syntactic representations of ACL. 98

99

©FIPA (2000) FIPA Agent Message Transport

2

2 Normative References 99

 ”FIPA Agent Management” [FIPA00023]. 100
 101
 ”FIPA Agent Communication Language” [FIPA00061]. 102
 103
 ”FIPA Communicative Acts” [FIPA00037]. 104
 105
 ”FIPA Content Languages” [FIPA00007]. 106
 107
 ”FIPA SL Content Language” [FIPA00008]. 108
 109
 Internet Inter-ORB Protocol (IIOP): Common Object Request Broker Architecture Version 2.2. 110

111

©FIPA (2000) FIPA Agent Message Transport

3

3 Agent Message Transport Reference Model 111

3.1 Message Transport Model 112

The FIPA Message Transport Model (MTM) comprises three levels (see Figure 1): 113
 114
1. The Message Transport Protocol (MTP) is used to carry out the physical transfer of messages between two ACCs. 115
 116
2. The Message Transport Service is a service provided by the AP to which an agent is attached. The MTS supports 117

the transportation of FIPA ACL messages between agents on any given AP and between agents on different APs. 118
The MTS is provided by the ACC. 119

 120
3. The ACL represents the content of the messages carried by both the MTS and MTP. 121
 122

Agent Platform

Agent Platform

Agent

Agent

Message Transport
Protocol

ACL Message sent over
Message Transport
Service

Agent Communication Channel

Agent Communication Channel

 123
 124

Figure 1: Overview of the Message Transport Model 125
 126

3.2 Message Structure 127

In its abstract form, a message is made up of two parts: a message envelope expressing transport information and the 128
message body comprising the ACL message of the agent communication. 129
 130
For the purposes of message interpretation by an agent: 131
 132

 ACL semantics are defined only over the ACL message delivered in the message body of a FIPA message 133
(see [FIPA00023]). 134

 135

©FIPA (2000) FIPA Agent Message Transport

4

 All information in the message envelope is supporting information only. How and if this information is used to by 136
an agent for any kind of additional inference is undefined by FIPA. 137

 138

139

©FIPA (2000) FIPA Agent Message Transport

5

4 Message Transport Service 139

The Message Transport Service (MTS) provides a mechanism for the transfer of FIPA ACL messages between agents. 140
The agents involved may be local to a single AP or on different APs. On any given AP, the MTS is provided by an ACC. 141
 142

4.1 Expressing Message Transport Information 143

Information relating to the delivery and transportation of messages can be specified in the message envelope of a 144
message. 145
 146

4.1.1 Abstract Message Envelope Syntax 147

The syntax described here is an abstract representation. Any MTP may use a different internal representation, but must 148
express the same terms, represent the same semantics and perform the corresponding actions. See Section 0, 149
Normative Annex A: Concrete Message Envelope Syntax for the lexical and syntactical representation of a message 150
envelope for the FIPA baseline MTP. 151
 152
The following are general statements about the form of a message envelope: 153
 154
 A message envelope comprises a collection of slots. 155
 156
 A slot is a name/value pair. 157
 158
 A message envelope contains at least the mandatory to, from, date and acl-representation slots. 159
 160
 A message envelope can contain optional slots. 161
 162
Each ACC handling a message may add new information to the message envelope, but it may never overwrite existing 163
information. ACCs can add new slots to a message envelope which override existing slots that have the same slot 164
name; the mechanism for disambiguating message envelope entries in this case is specified by each concrete message 165
envelope syntax. 166
 167

4.1.2 Message Envelope Slot Semantics 168

4.1.2.1 Agent Message Transport Objects 169
 170
The following terms are used to identify the ontology of the agent message transport objects: 171
 172
 Frame. This is the name of this entity. 173
 174
 Ontology. This is the name of the ontology, whose domain of discourse includes the slots described in the table. 175
 176
 Slot. This identifies each component within the frame. 177
 178
 Description. This is a natural language description of the semantics of each slot. 179
 180
 Presence. This indicates whether each slot is mandatory or optional. 181
 182
 Type. This indicates the type of each slot: Integer, String, Word, URL, Set, Sequence, Term or other object 183

description. 184
 185
 Reserved Values. This is a list of FIPA-defined constants associated with each slot. 186
 187

©FIPA (2000) FIPA Agent Message Transport

6

4.1.2.2 Message Envelope Description 188
 189
Frame
Ontology

envelope
fipa-agent-management

Slot Description Presence Type Reserved
Values

to This contains the names of the primary
recipients of the message.

Mandatory Sequence of
agent-identifier

from This is the name of the agent who
actually sent the message.

Mandatory agent-identifier

comments This is a comment in the message
envelope.

Optional String

acl-
representation

This is the name of the syntax
representation of the message body.

Mandatory String See Section 7

content-length This contains the length of the
message body.

Optional String

content-
encoding

This contains the language encoding of
the message body

Optional1 String US-ASCII,
ISO-8859-{1..9},
UTF-8,
Shift_JIS,
EUC-JP,
ISO-2022-JP,
ISO-2022-JP-2

date This contains the creation date and
time of the message envelope – added
by the sending agent.

Mandatory Date

encrypted This contains information indicating
how the message body has been
encrypted.

Optional Sequence of
String2

intended-
receiver

This is the name of the agent to whom
this instance of a message is to be
delivered.

Optional Sequence of
agent-identifier

received This is a stamp representing the
receipt of a message by an ACC.

Optional received-object

transport-
behaviour

This contains the transport
requirements of the message.

Optional (Undefined)

 190
191

1 If this field is not present, the default value US-ASCII is assumed for the content encoding.
2 See [RFC822] for the structure, order and semantics of this field.

©FIPA (2000) FIPA Agent Message Transport

7

4.1.2.3 Received Object Description 191
 192
Frame
Ontology

received-object
fipa-agent-management

Slot Description Presence Type Reserved
Values

by The URL of the receiving ACC. Mandatory URL
from The URL of the sending ACC. Optional URL
date The time and date when a message

was received.
Mandatory DateTime

id The unique identifier of a message. Optional String
via The type of MTP the message was

delivered over.
Optional String See Section 7

 193

4.1.3 Updating Message Envelope Slot Information 194

An ACC may never overwrite information in a message envelope. To update a value in one of the envelope slots, the 195
ACC must add a new copy of the message envelope slot (containing the new value) to the envelope. 196
 197
Since this mechanism permits multiple occurrences of the same slots in a message envelope (with different values), 198
each concrete message envelope syntax must provide a general mechanism for identifying which copy of the slot (and 199
hence which value) is current. For example, The concrete envelope syntax given in Section 0, Normative Annex A: 200
Concrete Message Envelope Syntax, specifies that the first occurrence of a slot overrides any subsequent occurrence. 201
 202

4.1.4 Additional Message Envelope Slots 203

Any concrete syntax definition for the message envelope must include a clear mechanism for adding and distinguishing 204
new and user defined slots added to the message envelope. For example, the concrete envelope syntax given in 205
Section 0, Normative Annex A: Concrete Message Envelope Syntax, specifies that all new and user defined slots must 206
be prefixed by “X-“. 207
 208

4.2 Agent Identifiers and Transport Addresses 209

Agent Identifiers (AIDs) and transport addresses are defined in [FIPA00023]. 210
 211

4.3 Message Transport Functions of the ACC 212

The ACC is an entity providing a service directly to the agents on an AP. The ACC may access information provided by 213
the other AP services (such as the AMS and DF) to carry out its message transport tasks. 214

4.3.1 Interfaces to the Message Transport Service 215

To support its task, the ACC provides one or more interfaces for the transfer of messages to and from agents and APs. 216
 217

4.3.1.1 Standard MTP Interfaces to the MTS 218
The standard MTP interfaces of an ACC are used to provide message transport interoperability between FIPA-219
compliant APs. To be FIPA-compliant an ACC must have at least one such interface which supports a FIPA agent MTP 220
as specified in Section 6, Message Transport Protocols. Furthermore, as a minimum, the ACC must support the FIPA 221
baseline MTP for its AP description, additionally other standard MTP interfaces may also be provided. Refer to Section 222
4.5.2, Minimal Transport Requirements for FIPA Interoperability for information on the required standard MTP interfaces 223
for each MTP transport profile. 224
 225

©FIPA (2000) FIPA Agent Message Transport

8

When messages are received over a message interface advertised as implementing one of the FIPA standard MTPs, 226
these messages must be handled as specified in Section 4.3.2, Agent Communication Channel Message Handling 227
Behaviour. 228
 229

4.3.1.2 Proprietary MTP Interfaces to the MTS 230
FIPA does not specify how agents communicate using proprietary interfaces with the MTS. 231
 232

4.3.2 Agent Communication Channel Message Handling Behaviour 233

To provide the MTS, an ACC must transfer the messages it receives in accordance with the transport instructions 234
contained in the message envelope. An ACC is only required to read the message envelope; it is not required to parse 235
the message body. 236
 237
Section 4.1.2, Message Envelope Slot Semantics specifies the expected behaviour of an ACC receiving each message 238
envelope instruction in a message. In performing message transfer tasks, the ACC may be required to obtain 239
information from the AMS or DF on its own AP. 240
 241
Some implementations of ACCs may provide some form of buffering capability to help agents manage their messages. 242
 243

4.3.2.1 Interpretation of Message Envelope Instructions 244
ACC message forwarding behaviour is determined by the instructions for message delivery expressed in the message 245
envelope. Table 1 gives an overview of the ACC’s basic interpretation of each slot. 246
 247
Slot Description
to If no intended-receiver parameter is present the information in this slot is used to

generate intended-receiver field for the messages the ACC subsequently forwards.
from If required, the ACC returns error and confirmation messages to the agent specified in

this slot.
comments None.
acl-representation None, this information is intended for the final recipient of the message.
content-length The ACC may use this information to improve parsing efficiency.
content-encoding None, this information is intended for the final recipient of the message.
date None, this information is intended for the final recipient of the message.
encrypted None, this information is intended for the final recipient of the message.
intended-receiver An ACC uses this parameter to determine where this instance of a message should be

sent. If this parameter is not provided, then the first ACC to receive the message should
generate an intended-receiver parameter using the to parameter.

received A new received slot is added to the envelope by each ACC that the message passes
through. Each ACC handling a message must add a completed received slot.

transport-behaviour If this parameter is present, the handling ACC must deliver the message according to
the transport requirements specified in this parameter. If these requirements cannot be
met (or understood) then the ACC raises an error (See Section 4.3.3, Error and
Confirmation Messages).

 248
Table 1: ACC interpretation of message envelope instructions 249

 250

4.3.2.2 Forwarding Messages 251
The recipients of a message are specified in the to slot of a message envelope and take the form of AIDs. Depending 252
upon the presence of intended-receiver slots the ACC forwards the message in one of the following ways: 253
 254
 If an ACC receives a message envelope without an intended-receiver, then it generates a new intended-255

receiver slot from the to slot (possibly containing multiple AIDs). It may also generate multiple copies of the 256

©FIPA (2000) FIPA Agent Message Transport

9

message with different intended-receiver slots if multiple receivers are specified. The intended-receiver 257
slots form a delivery path showing the route that a message has taken. 258

 259
 If an ACC receives a message envelope with an intended-receiver slot, this is used for delivery of this 260

instance of the message (the to slot is ignored). 261
 262
 If an ACC receives a message envelope with more than one intended-receiver slot, the most recent is used. 263

Identifying which is the most recent is done using the conventions set for the concrete envelope syntax in use. 264
 265
Before forwarding the message, the ACC adds a completed received slot to the message envelope. Once an ACC 266
has forwarded a message it no longer needs to keep any record of that message’s existence. 267
 268

4.3.2.2.1 Handling a Single Receiver 269
In delivering a message to a single receiver specified in the to or intended-Receiver slot of a message envelope, 270
the ACC forwards the message to one of the addresses in the addresses slot of the AID (see Section 4.3.2.2.2 for 271
how to handle multiple transport addresses). If this address leads to another ACC, then it is the task of the receiving 272
ACC to deliver the message to the receiving agent (if the agent is resident on the local platform) or to forward it on to 273
another ACC (if the agent is not locally resident). 274
 275

4.3.2.2.2 Handling Multiple Transport Addresses for a Single Receiver 276
The AID given in the to or intended-receiver slot (in the case of both slots being present, the information in the 277
intended-receiver slot is used) of an agent message envelope may contain multiple transport addresses for a 278
single receiving agent. The ACC uses the following method to try to deliver the message: 279
 280
 Try to deliver the message to the first transport address in the addresses slot; the first is chosen to reflect the fact 281

that the transport address list in an AID is ordered by preference. 282
 283
 If this fails (because the agent or AP was not available, because the ACC does not support the appropriate 284

message transport protocol, etc.), the ACC creates a new intended-receiver slot containing the AID with the 285
failed transport address removed. The ACC then attempts to send the message to the next transport address in 286
AID in the intended receiver list (now the first in the newly created intended-receiver slot). 287

 288
 If delivery is still unsuccessful when all transport addresses have been tried (or the AID contained no transport 289

addresses), the ACC may try to resolve the AID using the resolvers named in the resolvers slot of the AID. 290
Again, the resolvers should, where possible, be tried in order of their appearance. 291

 292
 As a last resort the ACC may try to deliver the message to the HAP of the agent (as specified in the hap slot of the 293

AID). 294
 295
Finally, if all previous message delivery attempts have failed, then an appropriate error message for the final failure is 296
passed back to the sending agent (see Section 4.3.3, Error and Confirmation Messages). 297
 298

4.3.2.2.3 Handling Multiple Receivers 299
An ACC uses the following rules in delivering messages to multiple intended receivers3: 300
 301
 If an ACC receives a message envelope with no intended-receiver slot and a to slot containing more than 302

one AID, it may or may not split these up to form separate messages4 (each containing a subset of the agents 303
named in the to slot in the intended-receiver slot). 304

 305

3 An ACC may decide to optimise the delivery of messages where a given message is intended for multiple receivers that reside on the same host.
However, whether an ACC decides to make this optimisation or not, the semantics of message delivery within an ACC must remain the same. This
is so that optimised ACCs and non-optimised ACCs can inter-operate.
4 Not splitting up messages may be more efficient when several copies would be delivered to the same address.

©FIPA (2000) FIPA Agent Message Transport

10

 If an ACC receives a message envelope with an intended-receiver slot containing more than one AID, it may 306
or may not split these up to form separate messages. 307

 308
The resulting messages are handled as in the single receiver case (see Section 4.3.2.2.1). 309
 310

4.3.2.3 Delivering Messages 311
Once a message has arrived at ACC that can directly deliver it to the agent or agents named in the intended-312
receiver slot of the message envelope, this ACC should pass the message directly to the agent(s) concerned. FIPA 313
does not specify how final message delivery is carried out - the message may be passed to the agent(s) using any of 314
the ACC’s interfaces (proprietary or standard MTPs). An ACC should deliver the whole message, including the 315
message envelope, to the receiving agent, however particular AP implementations may provide middleware layers to 316
free agents of the task of processing this information. 317
 318

4.3.2.4 Using a resolver 319
In certain circumstances, if an AID for a receiver contains no transport addresses then the ACC may try to resolve the 320
AID by contacting one of the entities listed in the resolvers slot of the AID. The interface used by the ACC to do this 321
is not specified by FIPA, it may be proprietary (if the resolver is the local platform AMS for example), ACL (if the ACC 322
can also act as an agent and communicate using ACL) or specific to some third party resolving service. 323
 324

4.3.3 Error and Confirmation Messages 325

Error and confirmation messages sent to a sending agent by the MTS are sent in the form of ACL messages over the 326
MTS. These MTS information messages are sent on behalf of the AMS agent responsible (the sender slot of the 327
message must be set the local AMS’s AID) for the AP the ACC is running on. How the message is generated (whether 328
by the AMS or by the ACC on behalf of the AMS) is not specified by FIPA. 329
 330
If an error message needs to be returned, the message generated must follow the exception model defined in Section 331
7.3 of [Agent Management] such that: 332
 333
 The communicative act is a failure, 334
 335
 The predicate symbol is internal-error, 336
 337
 The argument is a string describing the error that occurred (the form and content of which is not defined here). 338
 339

4.4 Using the Message Transport Service 340

4.4.1 Sending Messages 341

An agent has three options when sending a message to another agent resident on a remote AP (see Figure 2): 342
 343
1. Agent A sends the message to its local AP ACC using a proprietary or standard interface. The ACC then takes care 344

of sending the message to the correct remote ACC using an MTP. The remote ACC that will eventually deliver the 345
message. 346

 347
2. Agent A sends the message directly to the ACC on the remote AP on which Agent B resides. This remote ACC then 348

delivers the message to B. To use this method, Agent A must support access to one of the remote ACC’s MTP 349
interfaces. 350

 351
3. Agent A sends the message directly to Agent B, by using a direct communication mechanism. The message 352

transfer, addressing, buffering of messages and any error messages must be handled by the sending and receiving 353
agents. This communication mode is not covered by FIPA. 354

 355

©FIPA (2000) FIPA Agent Message Transport

11

Agent Platform

Agent Communication Channel

Agent A

1

Agent Platform

Agent Communication Channel

Agent B

2

1

1 & 2

3

 356
 357

Figure 2: Three Methods of Communication between Agents on Different APs5 358
 359

4.4.2 Receiving Messages 360

An agent receives an entire message including both the message envelope and message body. Consequently, the 361
receiving agent has access to all of the message transport information expressed in the message envelope, such as 362
encryption details, ACL representation information, the delivery path of the message, etc. 363
 364

4.5 Querying Message Transport Service Polices and Capabilities 365

An AP must support queries about its message transport policies and capabilities. Information pertinent to the MTS 366
(such as the particular MTPs supported by an ACC) is given in the :transport-profile attribute of the APs :ap-367
description (see [FIPA00023]). The AP description of an AP can be accessed by sending a get-description 368
request to the AP AMS. 369
 370

4.5.1 Agent Platform Transport Descriptions 371

The information contained in the AP description (:ap-description) related to transport capabilities is specified in the 372
AP :transport-profile as defined in this section. The slots defined here are all part of the agent management 373
ontology. 374
 375

4.5.1.1 Agent Platform Transport Description 376
 377
Frame
Ontology

ap-transport-description
fipa-agent-management

Slot Description Presence Type Reserved
Values

Available-mtps List of names of MTPs supported by
the AP.

Optional Set of mtp-
description

 378

4.5.1.2 Message Transport Protocol Description 379
 380
Frame
Ontology

mtp-description
fipa-agent-management

Slot Description Presence Type Reserved
Values

profile Gives the name of the profile this mtp
forms a part of.

Optional String See Section
4.5.2

5 A fourth possibility (not illustrated) as that instead of completing the last two stages of the first path, the ACC on the first platform contacts Agent B
directly – this depends upon the address the ACC is delivering to.

©FIPA (2000) FIPA Agent Message Transport

12

mtp-name Gives the name of the message
transport protocol being supported

Optional String See Section 6

addresses The transport addresses this mtp is
supported on which this MTP
supported.

Mandatory Sequence of URL

 381
The transport description forms part of an AP description (see [FIPA00023]) and is expressed in SL0. A platform which 382
supports transport profiles fipa-alpha (on address iiop://monitorix_platform.pt/acc) and fipa-beta (on addresses 383
http://wap.example1.com:8001/acc and http://wap.example1.com:8002/acc). 384
 385
(ap-transport-description386

:available-mtps387
(set388

(mtp-description389
:profile fipa-alpha390
:mtp-name fipa-iiop-std391
:addresses (set iiop://monitorix_platform.pt/acc)392

)393
(mtp-description394

:profile fipa-beta395
:mtp-name fipa-wap–std396
:addresses (set http://wap.example1.com:8001/acc397

http://wap.example1.com:8002/acc)398
)399

)400
401

)402
 403
For more information on how to generate a concrete representation of a transport description, see [FIPA00061] and 404
[FIPA_sl]. 405
 406

4.5.2 Minimal Transport Requirements for FIPA Interoperability 407

To promote interoperability, FIPA mandates certain minimum transport capabilities for APs. The minimal transport 408
requirements for interoperability are classified by type of network environment an AP has access to and are grouped 409
into named interoperability transport profiles (see Table 2). Each named transport profile defined here has a name6, a 410
description, and a single baseline MTP. 411
 412
Profile Name Description Baseline ACL-Representation Baseline MTP
fipa-alpha This transport profile is suggested for use

in TCP/IP capable wireline environments.
fipa-string-std
(see Section 7.1)

fipa-iiop-std
(see Section 6.1)

fipa-beta This transport profile is suggested for use
in wireless environments.

fipa-bitefficient-std
(see Section 7.2)

fipa-wap-std
(see Section 6.2)

 413
Table 2: Named Interoperability Transport Profiles 414

 415
To match an AP description, an AP must have an ACC which supports the specified baseline MTP on at least one 416
interface. 417
 418

419

6 Note that there is no ordering intended over the profiles defined in this section.

©FIPA (2000) FIPA Agent Message Transport

13

5 Representation of Time 419

Time tokens are based on the ISO 8601 format [ISO8601], with extensions for relative time and millisecond durations. 420
Time expressions may be absolute, or relative to the current time. Relative times are distinguished by the character + 421
appearing as the first character in the construct. If no type designator is given, the local timezone is used. The type 422
designator for UTC is the character Z. UTC is preferred to prevent timezone ambiguities. Note that years must be 423
encoded in four digits. As examples, 8:30am on April 15th, 1996 local time would be encoded as: 424
 425
 19960415T083000000426
 427
The same time in UTC would be: 428

 429
19960415T083000000Z430

 431
While one hour, 15 minutes and 35 milliseconds from now would be: 432

 433
 +00000000T011500035434

435
 436

437

©FIPA (2000) FIPA Agent Message Transport

14

6 Message Transport Protocols 437

A Message Transport Protocol (MTP) is used to carry out the physical transportation of messages between two ACCs, 438
between an agent and an ACC or between two agents. The MTPs and the interfaces provided by an AP are described 439
in the AP description. See Section 4.5.2, Minimal Transport Requirements for FIPA Interoperability for information on 440
which of the following MTPs also serve as baseline protocols. 441
 442

6.1 Message Transport Protocol for IIOP: fipa-iiop-std 443

This MTP is based on the transfer of a single string representing the entire agent message including the message 444
envelope in an IIOP one-way message. 445
 446
Once the string has been received, the message envelope is parsed by the ACC and the message is handled 447
according to the instructions and information given in the message envelope. 448
 449

6.1.1 Interface Definition 450

The following IDL specifies the agent message interface. This interface contains a single operation message that 451
supplies a string containing the ACL message as a slot. 452
 453
module FIPA {454

interface MTS {455
oneway void message (in string acl_message);456

}457
};458

459

6.1.2 Concrete Message Envelope Syntax 460

The syntax used for the message envelope is that defined in Section 0, Normative Annex A: Concrete Message 461
Envelope Syntax. 462
 463

6.2 Message Transport Protocol for Wireless Networks: fipa-wap-std 464

This MTP is based on WAP Version 1.2 [WAPForum99c]. This MTP is based on the transfer of a message representing 465
the entire agent message (including the message envelope) in a WAP message. Once the message has been received, 466
the message envelope is parsed by the ACC and the message is handled according to the instructions and information 467
given in the message envelope. 468
 469
The following rules apply when using WAP: 470
 471

 The transport addresses given must be complete, for example, wap://example1.com:8001/acc for a WAP 472
phone or a http://example2.com:9000/acc for a WAP content server in a wireline network. 473

 474
 The WAP content type for any data transfer must be set to x-application/fipa-message. 475

 476
The WAP specification defines two modes of interaction between wireless client devices and hosts in a wireline 477
network: through a WAP gateway and to a WAP server. The specification of this MTP does not distinguish between 478
these. However, it should be noted that these two modes lead to different combinations of interfaces for the wireless 479
and wireline environment hosts. 480
 481
Supporting information about the management of wireless communication environments for agent communication can 482
be found in [FIPA00014]. 483

©FIPA (2000) FIPA Agent Message Transport

15

6.2.1 Concrete Message Envelope Syntax 484

The syntax used for the message envelope is that defined in Section 0, Normative Annex A: Concrete Message 485
Envelope Syntax. 486
 487

488

©FIPA (2000) FIPA Agent Message Transport

16

7 Representations of ACL Messages 488

ACL messages need to be encoded in a particular representation before they are transported by an ACC. The 489
representation is expressed in the acl-representation slot. 490
 491
Some of these ACL representations must be supported dependant upon the description of a given AP, see Section 492
4.5.2, Minimal Transport Requirements for FIPA Interoperability for information on which representations are mandated 493
for which transport profile. The FIPA defined representations given in this document are as follows: 494
 495

ACL Representation Name Description
fipa-string-std String based representation of ACL (see Section 7.1).
fipa-bitefficient-std Bit efficient representation of ACL suited to wireless environments (see Section 7.2).
fipa-xml-std An XML based representation of ACL (see Section 7.3).

 496

7.1 String Representation: fipa-string-std 497

7.1.1 Message Syntax 498

This section defines the message transport syntax which is expressed in standard EBNF format. For completeness, the 499
notation is as follows: 500
 501

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("

Non-terminals are written as capitalised identifiers Expression

Square brackets denote an optional construct ["," OptionalArg]

Vertical bars denote an alternative between choices Integer | Float

Asterisk denotes zero or more repetitions of the preceding expression Digit*

Plus denotes one or more repetitions of the preceding expression Alpha+

Parentheses are used to group expansions (A | B)*

Productions are written with the non-terminal name on the left-hand side,
expansion on the right-hand side and terminated by a full stop

ANonTerminal = "terminal".

 502

7.1.2 Grammar Rules 503

This section defines the grammar for a string representation of ACL. 504
 505
ACLCommunicativeAct = Message.506

507
Message = "(" MessageType MessageSlot* ")".508

509
MessageType = See [FIPA00037] for a full list of valid performatives510

511
MessageSlot = ":sender" AgentIdentifier512

| ":receiver" AgentIdentifierSet513
| ":content" (Expression)514
| ":reply-with" Expression515
| ":reply-by" DateTime516
| ":in-reply-to" Expression517
| “:reply-to” AgentIdentifierSet518
| ":language" Expression519
| “:content-language-encoding” Expression520
| ":ontology" Expression521
| ":protocol" Word522
| ":conversation-id" Expression523
| UserDefinedSlot Expression.524

©FIPA (2000) FIPA Agent Message Transport

17

525
UserDefinedSlot = Word7.526

527
Expression = Word528

| String529
| Number530
| "(" Expression* ")".531

532
AgentIdentifier = "(" "AID"533

":name" word534
":hap" URL535
[":addresses" URLSequence]536
[":resolvers" AgentIdentifierSequence]537
(UserDefinedSlot Expression)* ")".538

539
540

AgentIdentifierSequence = "(" "sequence" AgentIdentifier* ")".541
542

AgentIdentifierSet = “(“ “set” AgentIdentifier* “)”.543
544

URLSequence = "(" "sequence" URL* ")".545
546

DateTime = DateTimeToken.547
548

URL = See [RFC2396] 549
550

7.1.3 Lexical Rules 551

Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as above, 552
except: 553
 554

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]

Dash in a character set denotes a range ["a” – "z"]

Tilde denotes the complement of a character set if it is the first character [~ "(", ")"]

Post-fix question-mark operator denotes that the preceding lexical
expression is optional (may appear zero or one times)

["0" – "9"] ? ["0" – "9"]

 555
The lexical analyser should skip all the white space, tabs, carriage returns and line feeds between tokens. 556
 557
Word = [~ "\0x00" – "\0x20", "(", ")", "#", "0" – "9", "-", "@"]558

[~ "\0x00" – "\0x20", "(", ")"]*.559
560

String = StringLiteral | ByteLengthEncodedString.561
562

StringLiteral = "\"" ([~ "\""] | "\\\"")* "\"".563
564

ByteLengthEncodedString8 = "#" Digit+ "\"" <byte sequence>.565
566

Number = Integer | Float.567
568

URL = See [RFC2396]569
570

DateTimeToken = "+" ?571
Year Month Day "T"572
Hour Minute Second MilliSecond573
(TypeDesignator ?).574

7 User-defined parameters must start with X-.
8 Note that this cannot be transmitted over the fipa-iiop-std MTP.

©FIPA (2000) FIPA Agent Message Transport

18

575
Year = Digit Digit Digit Digit.576

577
Month = Digit Digit.578

579
Day = Digit Digit.580

581
Hour = Digit Digit.582

583
Minute = Digit Digit.584

585
Second = Digit Digit.586

587
MilliSecond = Digit Digit Digit.588

589
TypeDesignator = AlphaCharacter.590

591
AlphaCharacter = ["a" – "z"] | ["A" – "Z"].592

593
Digit = ["0" – "9"].594

595
Sign = ["+" , "-"] .596

597
Integer = Sign? Digit+.598

599
Dot = ["."].600

601
Float = Sign? FloatMantissa FloatExponent?602

| Sign? Digit+ FloatExponent603
604

FloatMantissa = Digit+ Dot Digit*605
| Digit* Dot Digit+606

607
FloatExponent = Exponent Sign? Digit+608

609
Exponent = ["e", "E"]610
 611

7.1.4 Notes on the Grammar Rules 612

1. The standard definitions for integers and floating-point numbers are assumed. 613
 614
2. All keywords are case-insensitive. 615
 616
3. A length-encoded string is a context sensitive lexical token. Its meaning is as follows: the message envelope of the 617

token is everything from the leading # to the separator " inclusive. Between the markers of the message envelope 618
is a decimal number with at least one digit. This digit then determines that exactly those numbers of 8-bit bytes are 619
to be consumed as part of the token, without restriction. It is a lexical error for less than that number of bytes to be 620
available. 621

 622
4. Note that not all implementations of the ACC (see [FIPA00023]) will support the transparent transmission of 8-bit 623

characters. It is the responsibility of the agent to ensure, by reference to internal API of the ACC, that a given 624
channel is able to faithfully transmit the chosen message encoding. 625

 626
5. A well-formed message will obey the grammar, and in addition, will have at most one of each of the slots. It is an 627

error to attempt to send a message that is not well formed. Further rules on well-formed messages may be stated 628
or implied the operational definitions of the values of slots as these are further developed. 629

 630
6. Strings encoded in accordance with ISO/IEC 2022 may contain characters that are otherwise not permitted in the 631

definition of Word. These characters are ESC (0x1B), SO (0x0E) and SI (0x0F). This is due to the complexity that 632
would result from including the full ISO/IEC 2022 grammar in the above EBNF description. Hence, despite the basic 633

©FIPA (2000) FIPA Agent Message Transport

19

description above, a word may contain any well-formed ISO/IEC 2022 encoded character, other (representations 634
of) parentheses, spaces, or the # character. Note that parentheses may legitimately occur as part of a well-formed 635
escape sequence; the preceding restriction on characters in a word refers only to the encoded characters, not the 636
form of the encoding. 637

 638
7. The format for time tokens is defined in Section 5. The format for AIDs is defined in [FIPA00023]. 639
 640

641

©FIPA (2000) FIPA Agent Message Transport

20

7.2 Bit-Efficient Representation: fipa-bitefficient-std 641

This section defines the message transport syntax for a bit-efficient representation of ACL. The syntax is expressed in 642
standard EBNF format with a some extensions which are described below. Note that this representation is not 643
compatible with the fipa-iiop-std MTP. 644
 645

Grammar rule component Example
0x?? is a hexadecimal byte 0x00

White space is not allowed between tokens
 646

7.2.1 Tokenised ACL Syntax 647

 648
649

ACLCommunicativeAct = Message.650
651

Message = Header MessageType MessageParameter* EndofMsg.652
653

Header = MessageId Version.654
655

MessageId = 0xFA656
| 0xFB657
| 0xFC. /* see comment a) below */658

659
Version = Byte. /* see comment b) below */660

661
EndofMsg = EndOfCollection.662

663
EndOfCollection = 0x01.664

665
MessageType = 0x00 BinWord666

| PredefinedMsgType. /* see comment c) below */667
668

MessageParameter = 0x00 BinWord BinExpression.669
| PredefinedParam. /* see comment d) below */670

671
PredefinedMsgType = 0x01 /* accept-proposal */672

| 0x02 /* agree */673
| 0x03 /* cancel */674
| 0x04 /* cfp */675
| 0x05 /* confirm */676
| 0x06 /* disconfirm */677
| 0x07 /* failure */678
| 0x08 /* inform */679
| 0x09 /* inform-if */680
| 0x0a /* inform-ref */681
| 0x0b /* not-understood */682
| 0x0c /* propagate */683
| 0x0d /* propose */684
| 0x0e /* proxy */685
| 0x0f /* query-if */686
| 0x10 /* query-ref */687
| 0x11 /* refuse */688
| 0x12 /* reject-proposal */689
| 0x13 /* request */690
| 0x14 /* request-when */691
| 0x15 /* request-whenever */692
| 0x16. /* subscribe */693

694
PredefinedMsgParam = 0x02 AgentIdentifier /* :sender */695

| 0x03 RecipientExpr /* :receiver */696

©FIPA (2000) FIPA Agent Message Transport

21

| 0x04 BinExpression /* :content */697
| 0x05 BinExpression /* :reply-with */698
| 0x06 BinDateTimeToken /* :reply-by */699
| 0x07 BinExpression /* :in-reply-to */700
| 0x08 BinExpression /* :language */701
| 0x09 BinExpression /* :ontology */702
| 0x0a BinWord /* :protocol */703
| 0x0b BinExpression. /* :conversation-id */704

705
AgentIdentifier = 0x02 BinWord BinWord706

[Addresses]707
[Resolvers]708
(UserDefinedParameter)*709
EndOfCollection.710

711
Addresses = 0x02 UrlCollection.712

713
Resolvers = 0x03 AgentIdentifierCollection.714

715
UserDefinedParameter = 0x04 BinWord BinExpression.716

717
UrlCollection = (BinWord)* EndofCollection.718

719
AgentIdentifierCollection720

= (AgentIdentifier)* EndOfCollection.721
722

RecipientExpr = AgentIdentifierCollection.723
724

BinWord = 0x10 Word 0x00725
| 0x11 Index.726

727
BinNumber = 0x12 Digits /* Decimal Number */728

| 0x13 Digits. /* Hexadecimal Number */729
730

Digits = CodedNumber+.731
732

BinString = 0x14 String 0x00 /* New string literal */733
| 0x15 Index /* String literal from code table*/734
| 0x16 Len8 ByteSeq /* New ByteLengthEncoded string */735
| 0x17 Len16 ByteSeq /* New ByteLengthEncoded string */736
| 0x18 Index /* ByteLengthEncoded from code table*/737
| 0x19 Len32 ByteSeq. /* New ByteLengthEncoded string */738

739
BinDateTimeToken = 0x20 BinDate /* Absolute time */740

| 0x21 BinDate /* Relative time */741
| 0x22 BinDate TypeDesignator /* Absolute time */742
| 0x23 BinDate TypeDesignator. /* Relative time */743

744
BinDate = Year Month Day Hour Minute Second Millisecond.745

/* see comment h) below */746
747

BinExpression = BinExpr748
| 0xFF BinString. /* See comment i) below */749

750
BinExpr = BinWord751

| BinString752
| BinNumber753
| ExprStart BinExpr* ExprEnd.754

755
ExprStart = 0x40 /* Level down (i.e. ‘(’ –character) */756

| 0x70 Word 0x00 /* Level down, new word follows */757
| 0x71 Index /* Level down, word code follows */758
| 0x72 Digits /* Level down, number follows */759
| 0x73 Digits /* Level down, hex number follows */760

©FIPA (2000) FIPA Agent Message Transport

22

| 0x74 String 0x00 /* Level down, new string follows */761
| 0x75 Indexn /* Level down, string code follows */762
| 0x76 Len8 String /* Level down, new byte string (1 byte) */763
| 0x77 Len16 String /* Level down, new byte string (2 byte) */764
| 0x78 Len32 String /* Level down, new byte string (4 byte) */765
| 0x79 Indexn. /* Level down, byte string code follows */766

767
ExprEnd = 0x40 /* Level up (i.e. ‘)’ –character) */768

| 0x50 Word 0x00 /* Level up, new word follows */769
| 0x51 Index /* Level up, word code follows */770
| 0x52 Digits /* Level up, number follows */771
| 0x53 Digits /* Level up, hexadecimal number follows */772
| 0x54 String 0x00 /* Level up, new string follows */773
| 0x55 Index /* Level up, string code follows */774
| 0x56 Len8 String /* Level up, new byte string (1 byte) */775
| 0x57 Len16 String /* Level up, new byte string (2 byte) */776
| 0x58 Len32 String /* Level up, new byte string (4 byte) */777
| 0x59 Index. /* Level up, byte string code follows */778

779
ByteSeq = Byte*.780

781
Index = Byte782

| Short. /* See comment f) below */783
784

Len8 = Byte. /* See comment g) below */785
786

Len16 = Short. /* See comment g) below */787
788

Len32 = Long. /* See comment g) below */789
790

Year = Byte Byte.791
792

Month = Byte.793
794

Day = Byte.795
796

Minute = Byte.797
798

Second = Byte.799
800

Millisecond = Byte Byte.801

 802

Word = /* as in fipa-string-std */ 803

 804

String = /* as in fipa-string-std */ 805

 806

CodedNumber = /* See comment 0 below */ 807
808

TypeDesignator = /* as in fipa-string-std */ 809
 810

7.2.2 Using Dynamic Code Tables 811

The transport syntax can be used with or without dynamic code table. Using dynamic code table is an optional feature, 812
which gives more compact output, but might not be appropriate if communicating peers does not have sufficient 813
memory (e.g., in case of low-end PDAs or smart phones). 814
 815

©FIPA (2000) FIPA Agent Message Transport

23

To use dynamic code tables the encoder inserts new entries (e.g., Words, Strings, etc.) into a code table while 816
constructing bit-efficient representation for ACL message. The code table is initially empty. Whenever a new entry is 817
added to the code table, the smallest available code (number) is allocated to it. There is no need to transfer these index 818
codes explicitly over the communication channel. Once the code table becomes full, and something new shall be 819
added, the sender first removes size>>39 entries from the code table using LRU algorithm (see pages 111-114 of 820
[Tanenbaum92] for example), and then adds a new entry to code table. For example, should the code table size be 512 821
entries, 64 entries are removed. Correspondingly the decoder removes entries from the code table when it receives a 822
new entry from the encoder. 823
 824
The size of the code table, if used, is between 256 (28) entries and 65536 (216) entries. The output of this code table is 825
always one or two bytes (one byte only when the code table size is 28). Using two-byte output code wastes some bits, 826
but allows much faster parsing of messages. The code table is unidirectional, that is, if sender A adds something to 827
code table when sending message to B, the B cannot use this code table entry when sending message back to A. 828

7.2.3 Notes on the Grammar Rules 829

a) The first byte defines the message identifier. The identifier byte can be used to separate bit-efficient ACL messages 830
from (for example) string-based messages and separate different coding schemes. The value 0xFA defines bit-831
efficient coding scheme without dynamic code tables and the value 0xFB defines bit-efficient coding scheme with 832
dynamic code tables. The message identifier 0xFC is used, when dynamic code tables are being used, but the 833
sender does not want to update code tables (even if message contains strings that should be added to code table). 834

 835
b) The second byte defines the version number. The version number byte contains the major version number in the 836

upper four bits and minor version number in the lower four bits. This specification defines version 1.0 (coded as 837
0x10). 838

 839
c) All message types defined in [FIPA00061] have a predefined code. If an encoder sends an ACL message with 840

message type that has no having predefined code, it must use the extension mechanism, which adds a new 841
message type into code table (if code tables are being used). 842

 843
d) All message parameters defined in [FIPA00061] have a predefined code. If a message contains an user defined 844

message parameter, an extension mechanism is used (byte 0x00), and new entry is added to code table (if code 845
table is used). 846

 847
Numbers are coded by reserving four bits for each digit in the number’s ASCII representation, that 848

is, two ASCII numbers are coded into one byte. In 849

e) Table 1 is shown a 4-bit code for each number and special codes that may appear in ASCII coded numbers. 850
 851
If the ASCII presentation of a number contains odd number characters, the last four bits of the coded number are 852
set to zero (‘padding’ token), otherwise an additional 0x00 byte is added to end of coded number. If the number to 853
be coded is integer, decimal number, or octal number, the identifier byte 0x12 is used. For hexadecimal numbers, 854
the identifier byte 0x13 is used. Hexadecimal numbers are converted to integers before coding (the coding scheme 855
does not allow characters from ‘a’ trough ‘f’ to appear in number). 856
 857
Numbers are never added to a dynamic code table. 858

 859
Token Code Token Code

Padding 0000 7 1000
0 0001 8 1001
1 0010 9 1010
2 0011 + 1100
3 0100

E 1101

9 Right shifted by 3 bit positions – approximately 10%.

©FIPA (2000) FIPA Agent Message Transport

24

4 0101 - 1110
5 0110 . 1111
6 0111

 860

Table 1: Binary Representation of Number Tokens 861

 862

f) Index is a pointer to code table entry. Its size (in bits) depends on code table size. If the code table size is 256 863
entries, the size of the index is one byte; otherwise its size is two bytes (represented in network byte order). 864

 865
g) “Byte” is a one-byte code word, “Short” is a short integer (two bytes, network byte order), and “Long” is a long 866

integer (four bytes, network byte order). 867
 868
h) Dates are coded as numbers, that is, four bits are reserved for each ASCII number (see comment 0 above). 869

Information whether the time is relative or absolute and whether the type designator is present or not, is coded into 870
identifier byte. These fields always have static length (two bytes for year and milliseconds, one byte for other 871
components). 872

873
i) None of the actual content of the message (the information contained in the :content parameter of the ACL 874

message) is coded nor are any of its components are added to a code table. 875
 876

877

©FIPA (2000) FIPA Agent Message Transport

25

7.3 XML Representation: fipa-xml-std 877

This section defines the message transport syntax for an XML based representation of ACL. It should be noted that 878
some grammatical information is expressed in the comments of the DTD. These additions are normative aspects of the 879
fipa-xml-std definition even though the XML parser does not check them. 880
 881

7.3.1 XML DTD 882
<!--883
Document Type: XML DTD884
Document Purpose: Encoding of FIPA ACL messages (included in the885
FIPA Standard, Specification "Agent Message Transport"886
- see http://www.fipa.org/)887

888
Last Revised: 07-03-2000889

-->890
<!-- Possible FIPA Communicative Acts, See [FIPA00037] - <document number> for a full891
list of valid performatives. -->892
<!ENTITY % communicative-acts893

"accept-proposal|agree|cancel|cfp|confirm894
|disconfirm|failure|inform|not-understood895
|propose|query-if|query-ref|refuse896
|reject-proposal|request|request-when897
|request-whenever|subscribe|inform-if898
|inform-ref">899

900
<!-- The FIPA message root element, the communicative act is901
an attribute - see below and the message itself is a list902
of parameters. The list is unordered. None of the elements903
should occur more than once except receiver.904

-->905
<!ENTITY % msg-param906

"receiver|sender|content|language|content-language-encoding|ontology|907
protocol|reply-with|in-reply-to|reply-by|reply-to|conversation-id" >908

909
<!ELEMENT fipa-message (%msg-param;)* >910

911
912

<!-- Attibute for the fipa-message - the communicative act itself and913
the conversation id (which is here so an ID value can be used). -->914

<!ATTLIST fipa-message act (%communicative-acts;) #REQUIRED915
conversation-id ID #IMPLIED>916

917
<!-- The agent identifier of the sender. -->918
<!ELEMENT sender (a-id)>919

920
<!-- The agent identifier(s) of the receiver. -->921
<!ELEMENT receiver (a-id)>922

923
<!-- The message content -->924
<!--925
One can choose to embed the actual content in the message,926
or alternatively refer to a URI which represents this content927
-->928
<!ELEMENT content (#PCDATA)>929
<!ATTLIST content href CDATA #IMPLIED>930

931
<!-- The content language used for the content.932

The linking attribute href associated with language can be used933
to refer in an unambiguous way to the (formal) definition of the934
standard/fipa content language.935

-->936

©FIPA (2000) FIPA Agent Message Transport

26

937
<!ELEMENT language (#PCDATA)>938
<!ATTLIST language href CDATA #IMPLIED>939

940
<!-- The encoding used for the content language.941

The linking attribute href associated with encoding can be used942
to refer in an unambiguous way to the (formal) definition of the943
language encoding.944

-->945
946

<!ELEMENT content-language-encoding (#PCDATA)>947
<!ATTLIST content-language-encoding href CDATA #IMPLIED>948

949
<!-- The ontology used in the content -->950
<!--951
The linking attribute href associated with ontology can be used to refer952
in an unambiguous way to the (formal) definition of the ontology.953
-->954
<!ELEMENT ontology (#PCDATA)>955
<!ATTLIST ontology href CDATA #IMPLIED>956

957
<!-- The protocol element958
The linking attribute href associated with protocol can be used to refer959
in an unambiguous way to the (formal) definition of the protocol.960
-->961
<!ELEMENT protocol (#PCDATA)>962
<!ATTLIST protocol href CDATA #IMPLIED>963

964
<!-- The reply-with parameter -->965
<!ELEMENT reply-with (#PCDATA)>966
<!ATTLIST reply-with href CDATA #IMPLIED>967

968
<!-- The in-reply-to parameter -->969
<!ELEMENT in-reply-to (#PCDATA)>970
<!ATTLIST in-reply-to href CDATA #IMPLIED >971

972
<!-- The reply-by parameter -->973
<!ELEMENT reply-by EMPTY>974

975
<!-- The time should be specified in Section 5 of this document-->976
<!ATTLIST reply-by time CDATA #REQUIRED977

href CDATA #IMPLIED >978
979

<!-- The reply-to parameter -->980
<!ELEMENT reply-to (a-id)>981

982
<!-- The conversation-id parameter -->983
<!ELEMENT conversation-id (#PCDATA)>984
<!ATTLIST conversation-id href CDATA #IMPLIED>985

986
<!ELEMENT a-id (name, hap, addresses?, resolvers?, user-defined*)>987

988
<!ELEMENT name EMPTY>989
<!-- An id can be used to uniquely identify the name of the agent.990

The refid attribute can be used to refer to an already defined991
agent name, avoiding unnecessary repetition.992
Either the id OR refid should be specified,993
(both should not be present at the same time) -->994

995
<!ATTLIST name id ID #IMPLIED996

refid IDREF #IMPLIED>997
998

<!ELEMENT hap EMPTY>999
<!ATTLIST hap href CDATA #IMPLIED>1000

©FIPA (2000) FIPA Agent Message Transport

27

1001
<!ELEMENT addresses (url+)>1002
<!ELEMENT url EMPTY>1003
<!ATTLIST url href CDATA #IMPLIED>1004

1005
<!ELEMENT resolvers (a-id+)>1006

1007
<!ELEMENT user-defined (#PCDATA)>1008
<!ATTLIST user-defined href CDATA #IMPLIED > 1009
 1010

1011

©FIPA (2000) FIPA Agent Message Transport

28

8 References 1011

[FIPA00023] Foundation for Intelligent Physical Agents, “FIPA Agent Management”, Document Number 00023. 1012
 1013
[FIPA00061] Foundation for Intelligent Physical Agents, “FIPA Agent Communication Language”, Document Number 1014
00061. 1015
 1016
[FIPA00037] Foundation for Intelligent Physical Agents, “FIPA Communicative Acts”, Document Number 00037. 1017
 1018
[FIPA00007] Foundation for Intelligent Physical Agents, “FIPA Content Languages”, Document Number 00007. 1019
 1020
[FIPA00008] Foundation for Intelligent Physical Agents, “FIPA SL Content Language”, Document Number 00008. 1021
 1022
[FIPA00014] Foundation for Intelligent Physical Agents, “FIPA Nomadic Application Support”, Document Number 1023
00014. 1024
 1025
[ISO8601] “Date Elements and Interchange Formats, Information Interchange – Representation of Dates and Times”. 1026
Ref: ISO 8601:1988(E). 1027
 1028
[OMG99] OMG Internet Inter-ORB Protocol (IIOP): Common Object Request Broker Architecture Version 2.2 1029
 1030
[RFC822] “Standard for the Format of ARPA Internet Text Messages”, D. H. Crocker, IETF RFC822, August, 1982. 1031
 1032
[RFC2396] “Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, U. C. Irvine and L. 1033
Masinter. IETF RFC 2396, August 1998. 1034
 1035
[Tanenbaum92] “Modern Operating Systems”, A. S. Tanenbaum, Prentice Hall, 1992. 1036
 1037
[WAPForum99c] WAP Forum. Wireless Application Protocol Specifications. (Draft Versions) Version 1.2. 22-November-1038
1999. Available at URL: http://www.wapforum.org1039

©FIPA (2000) FIPA Agent Message Transport

29

Normative Annex A: Concrete Message Envelope Syntax 1040
This section gives the concrete syntax for the message envelope specification that must be used to transport messages 1041
over the Message Transport Protocol. 1042
 1043
This concrete syntax has been inspired by [RFC822]. In particular, the same lexical analysis of messages also applies 1044
here. 1045
 1046

8.1 Lexical analysis 1047

Messages consist of message envelope slots and, optionally, a message body. The message body is simply a 1048
sequence of ASCII characters representing an ACL message. The message body is separated from the message 1049
envelope by two subsequent CRLF tokens with nothing in between the tokens (that is, a line with nothing preceding the 1050
CRLF). 1051
 1052
Each message envelope slot can be viewed as a single, logical line of ASCII characters, comprising a slot name and a 1053
slot value. For convenience, the slot value portion of this conceptual entity can be split into a multiple-line representation 1054
by inserting, at the transmitter side, a CRLF immediately followed by at least one LWSP-char (this action is called 1055
folding). At the receiver side, CRLF immediately followed by a LWSP-char is considered equivalent to the LWSP-char 1056
(this action is called unfolding). 1057
 1058
Once a slot has been unfolded, at the receiver side it may be viewed as being composed of a slot name, followed by a 1059
colon (:), followed by a slot body, and terminated by a carriage-return/line-feed (CRLF). The slot name must be 1060
composed of printable ASCII characters (that is, characters that have values between 33 and 126 decimal, except 1061
colon). The slot body may be composed of any ASCII characters, except CR or LF. (While CR and/or LF may be 1062
present in the actual text, they are removed by the action of unfolding the slot.) 1063
 1064
Except as noted, alphabetic strings may be represented in any combination of upper and lower case. However, ACC 1065
are required to preserve case information when transporting messages. 1066
 1067
These rules show a slot meta-syntax, without regard for the particular type or internal syntax. Their purpose is to permit 1068
detection of slots; also, they present to higher-level parsers an image of each slot as fitting on one line. 1069
 1070
MessageEnvelope = Slot+ CRLF MessageBody.1071

1072
MessageBody = Text* (CRLF Text*)*1073

| Byte*.101074
1075

Slot = SlotName ":" [SlotBody] CRLF.1076
1077

SlotName = 1* <any CHAR, excluding CTLs, SPACE, and ":">.1078
1079

SlotBody = SlotBodyContents [CRLF LWSP-char SlotBody].1080
1081

SlotBodyContents = <the ASCII characters making up the SlotBody, as defined in1082
the following section and consisting of combinations of Atom, QuotedString and specials1083
tokens or else consisting of Text>.1084
 1085
The following rules are used to define an underlying lexical analyser, which feeds tokens to higher level parsers. 1086

1087
; (Octal, Decimal.)1088

1089
CHAR = <any ASCII character>. ; (0-177, 0.-127.)1090

1091
DIGIT = <any ASCII decimal digit>. ; (60- 71, 48.- 57.)1092

1093
CTL = <any ASCII control ; (0- 37, 0.- 31.)1094

10 Note that this cannot be transmitted over the fipa-iiop-std MTP.

©FIPA (2000) FIPA Agent Message Transport

30

character and DEL>. ; (177, 127.)1095
1096

CR = <ASCII CR, carriage return>. ; (15, 13.)1097
1098

LF = <ASCII LF, linefeed>. ; (12, 10.)1099
1100

SPACE = <ASCII SP, space>. ; (40, 32.)1101
1102

HTAB = <ASCII HT, horizontal-tab>. ; (11, 9.)1103
1104

<"> = <ASCII quote mark>. ; (42, 34.)1105
1106

CRLF = CR LF.1107
1108

LWSPChar = SPACE / HTAB. ; semantics = SPACE1109
1110

LinearWhiteSpace = ([CRLF] LWSPChar)+. ; semantics = SPACE1111
; CRLF => folding1112

1113
Text = <any CHAR including bare CR and1114

bare LF but NOT including CRLF>.1115
1116

Atom = <any CHAR except <">, SPACE and CTLs>1117
<any CHAR except SPACE and CTLs> *.1118

1119
QuotedString = <"> (QText/QuotedPair)* <">. ; Regular qtext or1120

; quoted chars.1121
1122

QText = <any CHAR excepting <">, ; => may be folded1123
"\" and CR, and including linear-white-space>.1124

1125
QuotedPair = "\" CHAR. ; may quote any char1126

1127
Word = Atom / QuotedString.1128

1129
Byte = <any 8-bit byte>.1130

1131

8.2 Syntax 1132

 1133
The following rules apply after the unfolding operation, as specified in the previous section. 1134
 1135
MessageEnvelope = Slot+ CRLF MessageBody.1136

1137
Slot = ACLRepresentationSlot CRLF1138

| CommentSlot CRLF1139
| ContentLengthSlot CRLF1140
| ContentEncodingSlot CRLF1141
| DateSlot CRLF1142
| EncryptedSlot CRLF1143
| IntendedReceiverSlot CRLF1144
| ReceivedSlot CRLF1145
| EnvSenderSlot CRLF1146
| EnvReceiverSlot CRLF1147
| TransportBehaviourSlot CRLF1148
| UserDefinedSlot CRLF.1149

1150
MessageBody = Text* (CRLF Text*)*1151

| CRLF Byte*.111152
1153

11 Note that this cannot be transmitted over the fipa-iiop-std MTP.

©FIPA (2000) FIPA Agent Message Transport

31

ACLRepresentationSlot = "ACL-representation" ":" word.1154
1155

CommentSlot = "Comments" ":" text*.1156
1157

ContentLengthSlot = "Content-length" ":" DIGIT+.1158
1159

ContentEncodingSlot = "Content-encoding" ":" word.1160
1161

DateSlot = "Date" ":" DateTime.1162
1163

DateTime = See Section 5 of this document.1164
1165

EncryptedSlot = "Encrypted" ":" word [word].1166
1167

IntendedReceiverSlot = "Intended-receiver" ":" AgentIdentifierList.1168
1169

AgentIdentifierList = AgentIdentifier ["," AgentIdentifier]*.1170
1171

ReceivedSlot = "Received" ":"1172
["from" URL]1173
["by" URL]1174
["id" word]1175
["via" word]1176
";" DateTime.1177

1178
EnvSenderSlot = "From" ":" AgentIdentifier.1179

1180
EnvReceiverSlot = "To" ":" AgentIdentifierList.1181

1182
TransportBehaviourSlot = "Transport-behaviour" ":"1183

["error-messages" AgentIdentifierList]1184
["delivery" word]1185
["acknowledgement" AgentIdentifierList].1186

1187
UserDefinedSlot = <any slot which has not been defined in this specification or1188
published as an extension to this specifications; slot name must be unique and may be1189
pre-empted by published extensions.>.1190

1191
AgentIdentifier = "(" "AID"1192

":name" Word1193
":hap" URL1194
[":addresses" URLSequence]1195
[":resolvers" AgentIdentifierSequence]1196
(UserDefinedSlot Expression)* ")".1197

1198
AgentIdentifierSequence = "(" "sequence" AgentIdentifier* ")".121199

1200
URLSequence = "(" "sequence" URL* ")".1201

1202
URL = See [RFC2396]1203
 1204

8.3 Additional Syntax Rules 1205

 1206
The following additional rules not specified in the grammar also apply: 1207
 1208
1. The abstract syntax of the message envelope are mandatory. 1209
 1210
2. This specification permits multiple occurrences of message envelope slots. For the purposes of disambiguation the 1211

first occurrence overrides any subsequent occurrence (see [RFC822] for further details). 1212

12 Note that a sequence is considered to have a left to right (first to last) ordering.

©FIPA (2000) FIPA Agent Message Transport

32

 1213
In the future, additional slots may be defined and added to the message envelope. Such slots are prefixed with X-1214
FIPA- and their behaviour is not specified. If an organisation wishes to add its own message envelope slots it is 1215
suggested they prefix the new slot name with X-CompanyName- to reduce the chances of conflict. 1216

	Scope
	Normative References
	Agent Message Transport Reference Model
	Message Transport Model
	Message Structure

	Message Transport Service
	Expressing Message Transport Information
	Abstract Message Envelope Syntax
	Message Envelope Slot Semantics
	Agent Message Transport Objects
	Message Envelope Description
	Received Object Description

	Updating Message Envelope Slot Information
	Additional Message Envelope Slots

	Agent Identifiers and Transport Addresses
	Message Transport Functions of the ACC
	Interfaces to the Message Transport Service
	Standard MTP Interfaces to the MTS
	Proprietary MTP Interfaces to the MTS

	Agent Communication Channel Message Handling Behaviour
	Interpretation of Message Envelope Instructions
	Forwarding Messages
	Handling a Single Receiver
	Handling Multiple Transport Addresses for a Single Receiver
	Handling Multiple Receivers

	Delivering Messages
	Using a resolver

	Error and Confirmation Messages

	Using the Message Transport Service
	Sending Messages
	Receiving Messages

	Querying Message Transport Service Polices and Capabilities
	Agent Platform Transport Descriptions
	Agent Platform Transport Description
	Message Transport Protocol Description

	Minimal Transport Requirements for FIPA Interoperability

	Representation of Time
	Message Transport Protocols
	Message Transport Protocol for IIOP: fipa-iiop-std
	Interface Definition
	Concrete Message Envelope Syntax

	Message Transport Protocol for Wireless Networks: fipa-wap-std
	Concrete Message Envelope Syntax

	Representations of ACL Messages
	String Representation: fipa-string-std
	Message Syntax
	Grammar Rules
	Lexical Rules
	Notes on the Grammar Rules

	Bit-Efficient Representation: fipa-bitefficient-std
	Tokenised ACL Syntax
	Using Dynamic Code Tables
	Notes on the Grammar Rules

	XML Representation: fipa-xml-std
	XML DTD

	References
	Lexical analysis
	Syntax
	Additional Syntax Rules

