
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Interaction Protocol Library Specification 5

 6

Document title FIPA Interaction Protocol Library Specification
Document number DC00025F Document source FIPA TC C
Document status Deprecated Date of this status 2003/02/10
Supersedes FIPA00003
Contact fab@fipa.org
Change history See Informative Annex A — ChangeLog

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 18

Geneva, Switzerland 19

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 20

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 21
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-22
based applications. This occurs through open collaboration among its member organizations, which are companies and 23
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 24
and intends to contribute its results to the appropriate formal standards bodies. 25

The members of FIPA are individually and collectively committed to open competition in the development of agent-26
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 27
partnership, governmental body or international organization without restriction. In particular, members are not bound to 28
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 29
participation in FIPA. 30

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 31
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 32
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 33
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 34
used in the FIPA specifications may be found in the FIPA Glossary. 35

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 36
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 37
specifications and upcoming meetings may be found at http://www.fipa.org/. 38

iii

Contents 39

1 Scope...1 40
2 Overview..2 41

2.1 Interaction Protocols...2 42
2.2 Status of a FIPA-Compliant Interaction Protocol ..2 43
2.3 FIPA Interaction Protocol Library Maintenance..3 44
2.4 Inclusion Criteria...3 45

3 AUML Sequence Diagrams for Interaction Protocol Specification ..4 46
3.1 Introduction...4 47
3.2 Extending UML by Protocol Diagrams ...5 48

3.2.1 Protocol Diagrams...5 49
3.2.2 AgentRoles..7 50
3.2.3 Agent Lifeline...8 51
3.2.4 Threads of Interaction ...10 52
3.2.5 Messages..11 53
3.2.6 Complex Messages...13 54
3.2.7 Nested Protocols...14 55
3.2.8 Complex Nested Protocols..15 56
3.2.9 Threads of Interaction and Messages Inside and Outside Nested Protocols ...16 57
3.2.10 Parameterised Protocols...17 58
3.2.11 Bound Elements ..18 59

4 References ..21 60
5 Informative Annex A — ChangeLog ..22 61

5.1 2003/03/10 - version F by FIPA Architecture Board...22 62

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

1 Scope 63

This document contains: 64
 65
• Specifications for structuring the FIPA Interaction Protocol Library (IPL) including a status of a FIPA Interaction 66

Protocols (IPs), maintenance of the library and inclusion criteria for new IPs. 67
 68
• A description of how to understand and express IPs using AUML (Agent Unified Modeling Language). 69
 70
• The FIPA IP registry list. 71
 72
This specification is primarily concerned with defining the structure of the FIPA IPL and the requirements for an IP to be 73
included in the library. 74
 75

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

2

2 Overview 76

This specification focuses on the organization, structure and status of the FIPA IPL and discusses the main 77
requirements that an IP must satisfy in order to be FIPA-compliant. The objectives of standardising and defining a 78
library of FIPA compliant IPs are: 79
 80
• To provide tested patterns of agent interaction that may be of use in various aspects of agent-based systems, 81
 82
• To facilitate the reuse of standard agent IPs, and, 83
 84
• To express IPs in a standard agent unified modelling language (AUML). 85
 86
In the following, we present the basic principles of the FIPA IPL which help to guarantee that the IPL is stable, that there 87
are public rules for the inclusion and maintenance of the IPL, and that developers seeking a public IPs can use the IPL. 88
 89

2.1 Interaction Protocols 90

Ongoing conversations between agents often fall into typical patterns. In such cases, certain message sequences are 91
expected, and, at any point in the conversation, other messages are expected to follow. These typical patterns of 92
message exchange are called interaction protocols. A designer of agent systems has the choice to make the agents 93
sufficiently aware of the meanings of the messages and the goals, beliefs and other mental attitudes the agent 94
possesses, and that the agent’s planning process causes such IPs to arise spontaneously from the agents’ choices. 95
This, however, places a heavy burden of capability and complexity on the agent implementation, though it is not an 96
uncommon choice in the agent community at large. An alternative, and very pragmatic, view is to pre-specify the IPs, so 97
that a simpler agent implementation can nevertheless engage in meaningful conversation with other agents, simply by 98
carefully following the known IP. 99
 100
This section of the specification details a number of such IPs, in order to facilitate the effective inter-operation of simple 101
and complex agents. No claim is made that this is an exhaustive list of useful IPs, nor that they are necessary for any 102
given application. The IPs are given pre-defined names and the requirement for adhering to the specification is: 103
 104
A FIPA ACL-compliant agent need not implement any of the standard IPs, nor is it restricted from using other IP names. 105
However, if one of the standard IP names is used, the agent must behave consistently with the IP specification given 106
here. 107
 108
These IPs are not intended to cover every desirable interaction type. Individual IPs do not address a number of 109
common real-world issues in agent interaction, such as exception handling, messages arriving out of sequence, 110
dropped messages, timeouts, cancellation, etc. Rather, the IPs defined in this specification set should be viewed as 111
interaction patterns, to be elaborated according to the context of the individual application. This strategy means that 112
adhering to the stated IPs does not necessarily ensure interoperability; further agreement between agents about the 113
issues above is required to ensure interoperability in all cases. 114
 115
Note that, by their nature, agents can engage in multiple dialogues, perhaps with different agents, simultaneously. The 116
term conversation is used to denote any particular instance of such a dialogue. Thus, the agent may be concurrently 117
engaged in multiple conversations, with different agents, within different IPs. The remarks in this section, which refer to 118
the receipt of messages under the control of a given IP, refer only to a particular conversation. 119
 120

2.2 Status of a FIPA-Compliant Interaction Protocol 121

The definition of an IP belonging to the FIPA IPL is normative, that is, if a given agent advertises that it employs an IP in 122
the FIPA Content Language Library (see [FIPA00007]), then it must implement the IP as it is defined in the FIPA IPL. 123
However, FIPA-compliant agents are not required to implement any of the FIPA IPL IPs themselves, except those 124
required for Agent Management (see [FIPA00023]). 125
 126

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

3

By collecting IP definitions in a single, publicly accessible registry, the FIPA IPL facilitates the use of standardized IPs 127
by agents developed in different contexts. It also provides a greater incentive to developers to make their IPs generally 128
applicable. 129
 130
FIPA is responsible for maintaining a consistent list of IP names and for making them publicly available. In addition to 131
the list of encoding schemes, each IP in the FIPA IPL may specify additional information, such as stability information, 132
versioning, contact information, different support levels, etc. 133
 134

2.3 FIPA Interaction Protocol Library Maintenance 135

The most effective way of maintaining the FIPA IPL is through the use of the IPs themselves by different agent 136
developers. This is the most direct way of discovering possible bugs, errors, inconsistencies, weaknesses, possible 137
improvements, as well as capabilities, strengths, efficiency, etc. 138
 139
In order to collect feedback on the IPs in the library and to promote further research, FIPA encourages coordination 140
among designers, agent developers and FIPA members. 141
 142

2.4 Inclusion Criteria 143

To populate the FIPA IPL, setting fundamental guidelines for the selection of specific IPs is necessary. The minimal 144
criteria that must be satisfied for an IP to be FIPA compliant are: 145
 146
• A clear and accurate representation of the IP is provided using AUML protocol diagram, 147
 148
• Substantial and clear documentation must be provided, and, 149
 150
• The usefulness of a new IP should be made clear. 151
 152
FIPA does not enforce the use of any particular IP. 153
 154

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

4

3 AUML Sequence Diagrams for Interaction Protocol Specification 155

3.1 Introduction 156

During the 1970s, structured programming was the dominant approach to software development. Along with it, software 157
engineering technologies were developed in order to ease and formalize the system development lifecycle: from 158
planning, through analysis and design and finally to system construction, transition, and maintenance. In the 1980s, 159
object-oriented languages experienced a rise in popularity, bringing with it new concepts such as data encapsulation, 160
inheritance, messaging, and polymorphism. By the end of the 1980s and beginning of the 1990s, a jungle of modelling 161
approaches grew to support the object-oriented marketplace. To make sense of and unify these various approaches, an 162
Analysis and Design Task Force was established on 29 June 1995 within the Object Management Group (OMG). And 163
by November 1997, a de jure standard was adopted by the OMG members called the Unified Modelling Language 164
(UML - see [OMGuml]). 165
 166
UML unifies and formalizes the methods of many object-oriented approaches, including analysis and design [Booch94 167
and Booch95], modelling [Rumbaugh91] and software engineering [Jacobson94]. It supports the following kinds of 168
models: 169
 170
• Static models 171

Such as class and package diagrams describe the static semantics of data and messages. Within system 172
development, class diagrams are used in two different ways, for two different purposes. First, they can model a 173
problem domain conceptually and since they are conceptual in nature, they can be presented to the customers. 174
Second, class diagrams can model the implementation of classes which guides developers. At a general level, the 175
term class refers to the encapsulated unit and at the conceptual level, models types and their associations; the 176
implementation level models implementation classes. While both can be more generally thought of as classes, their 177
usage as concepts and implementation notions is important both in purpose and semantics. Package diagrams 178
group classes in conceptual packages for presentation and consideration. (Physical aggregations of classes are 179
called components that are in the implementation model family, mentioned below.) 180

 181
• Dynamic models 182

These include interaction diagrams (that is, sequence and collaboration diagrams), state charts and activity 183
diagrams. 184

 185
• Use cases 186

The specification of actions that a system or class can perform by interacting with outside actors. They are 187
commonly used to describe how a customer communicates with a software product. 188

 189
• Implementation models 190

These describe the component distribution on different platforms, such as component models and deployment 191
diagrams 192

 193
• Object Constraint Language (OCL) 194

This is a simple formal language to express more semantics within an UML specification. It can be used to define 195
constraints on the model, invariant, pre- and post-conditions of operations and navigation paths within an object net. 196

 197
For modelling agents and agent-based systems, UML is insufficient. Compared to objects, agents are active because 198
they act for reasons that emerge from themselves. The activity of agents is based on their internal states, which include 199
goals and conditions that guide the execution of defined tasks. While objects need control from outside to execute their 200
methods, agents know the conditions and intended effects of their actions and hence take responsibility for their needs. 201
Furthermore, agents do not only act solely but together with other agents. Multi-agent systems can often resemble a 202
social community of interdependent members that act individually. 203
 204
However, no sufficient specification formalism exists yet for agent-based system development. To employ agent-based 205
programming, a specification technique must support the whole software engineering process—from planning, through 206
analysis and design, and finally to system construction, transition, and maintenance. 207

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

5

A proposal for a full life-cycle specification of agent-based system development is beyond the scope of this 208
specification. Here, we suggest a subset of an agent-based extension to the standard UML, called AUML, for the 209
specification of agent interaction protocols (AIPs). 210
 211
It has to be distinguished between generic (or parameterised) protocols (and their instantiations) and domain-specific 212
protocols. 213
 214

3.2 Extending UML by Protocol Diagrams 215

In the following, we provide sequence diagrams for AUML [Odell2000], an extension to UML. We refer to these 216
sequence diagrams as protocol diagrams (PDs) which show well-defined interactions among agents. Note that we do 217
not define formal semantics for the communicative acts for AUML, but instead use the UML meta-model. 218
 219

3.2.1 Protocol Diagrams 220

Adapted from [OMGuml], section 3.59. 221
 222

3.2.1.1 Semantics 223
A PD represents an interaction, which is a set of messages exchanged among different agent roles within a 224
collaboration to effect a desired behaviour of other AgentRoles or agent instances. 225
 226

3.2.1.2 Notation 227
A PD has two dimensions: the vertical dimension represents time, the horizontal dimension represents different 228
AgentRoles. Normally the time proceeds down the page and usually only time sequences are important, but in real-time 229
applications the time axis could be an actual metric. There is no significance to the horizontal ordering of the 230
AgentRoles. 231
 232

3.2.1.3 Presentation Options 233
The axes can be interchanged, so that time proceeds horizontally to the right and different AgentRoles are shown as 234
horizontal lines. 235
 236
Various labels (such as timing marks, generated goals depending on the received message, etc.) can be shown either 237
in the margin or near the lifelines or messages that they label. 238
 239

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

6

3.2.1.4 Example 240
 241

 FIPA-ContractNet-Protocol

Initiator Participant

cfp (action, precondition)

refuse (reason-1)

not-understood

propose (precondition-2)

reject-proposal (reason-2)

accept-proposal (proposal)

inform

dead-
line

failure (reason-3)

x

x

x

 242
 243

3.2.1.5 Mapping 244
The mapping is analogous defined as for sequence diagrams (see [OMGuml]). 245
 246
A PD maps like a sequence diagram into an Interaction and an underlying Collaboration. An Interaction specifies a 247
sequence of communications; it contains a collection of partially ordered Messages, each specifying a communication 248
between a sender role and a receiver role. Collections of agent roles that conform to the ClassifierRoles in the 249
Collaboration owning the Interaction, communicate by dispatching Stimuli that conform to the Messages in the 250
Interaction. An AgentRole maps into a ClassifierRole. A PD presents one collection of AgentRoles and arrows mapping 251
to AgentRole and Stimuli that conform to the ClassifierRoles and Messages in the Interaction and its Collaboration. 252
 253
In a PD, each AgentRole box with its lifeline maps into an agent role that conforms to a ClassifierRole in the 254
Collaboration. The name fields maps into the name of the agent, the role name into the Classifier's name and the class 255
field maps into the names of the Classifier (in this case AgentClasses being Classes) being the base Classifiers of the 256
ClassifierRole. The splitting of lifelines has a concurrency Association defining either AND/OR parallelism or decision 257
Association denoting threads (<<thread>>). The associations among roles are not shown on the sequence diagram 258
since they must be obtained in the model from a complementary collaboration diagram or other means. A message 259
arrow maps into a Stimulus connected to two AgentRoles. the sender and receiver AgentRole. The Stimulus conforms 260
to a Message between the ClassifierRoles corresponding to the two AgentRoles' lifelines that the arrow connects. The 261
Link is used for the communication of the Stimulus and plays the role specified by the AssociationRole connected to the 262
Message. Unless the correct Link can be determined from a complementary collaboration diagram or other means, the 263
Stimulus is either not attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a dummy Link 264
between the Instances conforming to the AssociationRole implied by the two ClassifierRoles due to the lack of complete 265
information. The name of the communicative act is mapped onto the behaviour associated by the action performing, 266
requested information, information passing, negotiation or error handling connected to the Message. Different 267
alternatives exist for showing the arguments of the Stimulus. If references to the actual Instances being passed as 268
arguments are shown, these are mapped onto the arguments of the Stimulus. If the argument expressions are shown 269
instead, these are mapped onto the Arguments of the action performing, requested information, information passing, 270

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

7

negotiation or error handling connected to the dispatching communicative act. Finally, if the types of the arguments are 271
shown together with the name of the communicative act, these are mapped onto the parameter types of the 272
communicative act. A timing label placed on the level of an arrow endpoint maps into the name of the corresponding 273
Message. A constraint or guard placed on the diagrams maps into a Constraint on the entire Interaction. The cardinality 274
label restricts the number of sending and receiving instances of agent roles accordingly to the numbers denoted at the 275
beginning (sender) and end (receiver) of the message. 276
 277
An arrow with the arrowhead pointing to an AgentRole symbol within the frame of the diagram maps into a Stimulus 278
dispatched by a CreateAction, that is, the Stimulus conforms to a Message in the Interaction which is connected to 279
the CreateAction. The interpretation is that the AgentRole instance (not an arbitrary agent role, nor a set of 280
AgentRole instances) is created by dispatching the Stimulus, and the AgentRole instance conforms to the receiver role 281
specified in the Message. After the creation of the AgentRole instance, it may immediately start interacting with other 282
AgentRoles. This implies that the creation of the AgentRole dispatches these Stimuli. If an AgentRole instance 283
termination symbol ("X") is the target of the of an arrow, the arrow maps into a Stimulus which will cause the receiving 284
agent role instance to be removed. The Stimulus conforms to a Message in the Interaction with a DestroyAction 285
attached to the Message or the agent instance terminates itself. 286
 287
The order of the arrows in the diagram map onto a pair of associations between the Messages that correspond to the 288
Stimuli the arrows maps onto. A predecessor association is established between Messages corresponding to 289
successive arrow ends in the vertical sequence. In case of concurrent arrows preceding an arrow, the corresponding 290
Message has a collection of predecessors. In case of exclusive-or and inclusive-or arrows preceding an arrow the 291
corresponding message has one and at least one out of the collection of possible predecessors, respectively. 292
Moreover, each Message has an activator (thread of interaction) association to the Message corresponding to the 293
incoming arrow of the activation or pro-active sending of a message. 294
 295
A nested protocol maps into a PD. The name compartment of a nested protocol maps into the name of the 296
Collaboration. The guard and constraint compartment maps into a constraint on the complete Interaction. 297
 298
A complex nested protocol maps into a PD. The order of the messages within the protocol is defined according to the 299
combination of the complex nested protocol. The ordering of the messages in the nested protocol is the ordering of 300
these protocols. Depending on the combination the messages are sent in AND/OR parallelism or decision ordering. 301
 302

3.2.2 AgentRoles 303

In the framework of agent oriented programming an agent satisfying a distinguished role behaves in a special way. In 304
contrast to this semantics role in UML is an instance focused term. Moreover the term multi-object does not fit to 305
describe AgentRoles but it is used to show operations that address the entire set, rather than a single object in it. 306
However, there is a communication with one instance of this multi-object. By AgentRole a set of agents satisfying 307
distinguished properties, interfaces or having a distinguished behaviour are meant. 308
 309
UML distinguishes between: 310
 311
• multiple classifications where a retailer agent can act as well as a buyer as well as a seller agent, for example, and, 312
 313
• dynamic classification where an agent can change its classification during its existence. 314
 315
Agents can perform various roles within one IP. Using a contract-net protocol, for example, between a buyer and a 316
seller of a product, the initiator of the protocol has the role of a buyer and the participant has the role of a seller. But the 317
seller can as well be a retailer agent, which acts as a seller in one case and as a buyer in another case, i.e. agents 318
satisfying a distinguished role can support multiple classification and dynamic classification. Another example can be 319
found in [FIPA00023] which defines the functionality of the Directory Facilitator (DF) and the Agent Management 320
System (AMS). These functionalities can be implemented by different agents, but the functionality of the DF and AMS 321
can also be integrated into one agent. 322
 323
An AgentRole can be seen as a set of agents satisfying a distinguished interface, service description or behaviour. 324
Therefore the implementation of an agent can satisfy different roles. 325

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

8

 326
Note that within FIPA the notion of role is not used, but in the framework of specifying agent-based systems this notion 327
is appropriate. 328
 329

3.2.2.1 Semantics 330
An AgentRole describes two different variations that can apply within a protocol definition. A protocol can be defined 331
between different concrete agent instances or a set of agents satisfying a distinguished role and/or class. An agent 332
satisfying a distinguished AgentRole and class is called agent of a given AgentRole and class, respectively. 333
 334

3.2.2.2 Notation 335
An AgentRole is shown as a rectangle that is filled with some string of one of the following forms: 336
 337
• role 338

This denotes arbitrary agents satisfying the distinguished AgentRole. 339
 340
• instance / role-1 ... role-n 341

This denotes a distinguished agent instance that satisfies the AgentRoles 1-n where n ≥ 0. 342
 343
• instance / role-1 ... role-n : class 344

This denotes a distinguished agent instance that satisfied the AgentRoles 1-n where n ≥ 0 and class it belongs to. 345
 346

3.2.2.3 Presentation Options 347
The second case can be abbreviated as instance if n equals zero, that is, a concrete agent is meant independent of the 348
role(s) it satisfies and class it belongs to. 349
 350

3.2.2.4 Example 351
 352

 Seller

 Seller-1

 Seller-1/Seller, Buyer

 Seller-1/Seller, Buyer : CommercialAgent

 353
 354

3.2.2.5 Mapping 355
See Section 3.2.1.5, Mapping. 356
 357

3.2.3 Agent Lifeline 358

The agent lifeline defines the time period when an agent exists. For example a user agent is created when a user logs 359
on to the system and the user agent is destroyed when the user logs off. Another example is when an agent migrates 360
from one machine to another. 361
 362

3.2.3.1 Semantics 363
A PD defines the pattern of communication, that is, the steps in which the communicative acts are sent between agents 364
of different AgentRoles. The agent lifeline describes the time period in which an agent of a given AgentRole exists. Only 365
during this time period an agent can participate on a protocol. 366
 367
The lifeline starts when the agent of a given AgentRole is created and ends when it is destroyed. The lifeline can be 368
split in order to describe AND/OR parallelism and decisions and may merge together at some subsequent point. 369
 370

3.2.3.2 Notation 371
An agent lifeline is shown as a vertical dashed line. The lifeline represents the existence of an agent of a given 372
AgentRole at a particular time. If the agent is created or destroyed during the period of time shown on the PD, then its 373
lifeline starts or stops at the appropriate point; otherwise it goes from the top of the diagram to the bottom. An 374
AgentRole is drawn at the head of the lifeline. If an agent of a given AgentRole is created during the PD, then the 375

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

9

message that creates it is drawn with its arrowhead on the AgentRole. Note, that the AgentRole (see Section 3.2.3.4, 376
Example) that receives the message is responsible for the creation of the agent instance, that is, the arrowhead ends at 377
the dashed line of the AgentRole receiving the message and the AgentRole is fixed at the left-hand or right-hand side of 378
the lifeline or the thread of interaction. If an agent instance is destroyed during the PD, then its destruction is marked by 379
a large "X", either at the message that causes the destruction or (in the case of self destruction) at the final action of the 380
AgentRole. The termination is restricted to concrete instances of an agent role. 381
 382
AgentRoles that exist when a protocol starts is shown at the top of the diagram (above the first message arrow). An 383
AgentRole that exists when the protocol finishes has its lifeline continued beyond the final arrow of the diagram. 384
 385
The lifeline may split into two or more lifelines to show AND/OR parallelism and decisions. Each separate track 386
corresponds to a branch in the message flow. The lifelines may merge together at some subsequent point. The splitting 387
of the lifeline for: 388
 389
• AND parallelism starts at a horizontal heavy bar, 390
 391
• OR parallelism (inclusive-or) starts at a horizontal heavy bar with a non-filled diamond, and, 392
 393
• decision (exclusive-or) starts at a horizontal heavy bar with a non-filled diamond with "x" inside the diamond and is 394

continued with a set of parallel vertical lifelines connected to the heavy bar. 395
 396
The merging is done the analogous way, that is, the parallel vertical lifelines stop at some of the horizontal heavy bars 397
and one lifeline is continued from at the heavy bar. 398
 399

3.2.3.3 Presentation Options 400
None. 401
 402

3.2.3.4 Example 403
 404

x

x

 405
 406
See also Section 3.2.1.4, 407

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

10

Example. 408
 409

3.2.3.5 Mapping 410
See Section 3.2.1.5, Mapping. 411
 412

3.2.4 Threads of Interaction 413

The sending of messages can be done either in parallel or as a decision between different communicative acts. 414
Receiving different communicative acts usually results in different behaviour and different answers, that is, the 415
behaviour of an AgentRole depends on the received message. 416
 417
Adapted from [OMGuml], section 7.4. 418
 419

3.2.4.1 Semantics 420
Since the behaviour of an AgentRole depends on the incoming message and different communicative acts are allowed 421
as an answer to a communicative act, the thread of interaction, that is, the processing of incoming messages, has to be 422
split up into different threads of interaction. The lifeline of an AgentRole is split and the thread of interaction defines the 423
reaction to received messages. 424
 425
The thread of interaction shows the period during which an AgentRole is performing some task as a reaction to an 426
incoming message. It represents only the duration of the action in time, but not the control relationship between the 427
sender of the message and the receiver. A thread of interaction is always associated with the lifeline of an AgentRole. 428
Note we do not mean a physical thread in this context. The specification is independent of the implementation using 429
threads or other mechanisms. 430
 431

3.2.4.2 Notation 432
A thread of interaction is shown as a tall thin rectangle whose top is aligned with its initiation time and whose bottom is 433
aligned with its completion time. It is drawn over the lifeline of an AgentRole. The task being performed may be labelled 434
as text next to the thread of interaction or in the left margin, depending on the style; alternately the incoming message 435
may indicate the task, in which case it may be omitted on the thread of interaction itself. 436
 437
If the distinction between the reaction to different incoming communicative acts can be neglected, the entire lifeline may 438
be shown as one thread of interaction. 439
 440

3.2.4.3 Presentation Options 441
• Variation 442

A thread of interaction may can take only a short period of time. To simplify diagrams, for compactification reasons 443
of the diagram the parallelism and the decisions can be abbreviated by omitting the splitting/merging and putting the 444
different threads of interaction one after another on the lifeline. 445

 446
• Variation 447

A break of the rectangle describes a change in the thread of interaction. 448
 449

3.2.4.4 Example 450
 451

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

11

request

query

not-understood

x

x

 can be abbreviated as

request

query

not-understood

x

 452
 453

3.2.4.5 Mapping 454
See Section 3.2.1.5, Mapping. 455
 456

3.2.5 Messages 457

The main issue of protocols is the definition of communicative patterns, especially the sending of messages from one 458
AgentRole to another. This sending can be done in different ways, for example, with different cardinalities, depending 459
on some constraints or using AND/OR parallelism and decisions. 460
 461
Adapted from [OMGuml], section 7.5 and section 8.9. 462
 463

3.2.5.1 Semantics 464
A message or sending of a communicative act is a communication from one AgentRole to another that conveys 465
information with the expectation that the receiving AgentRole would react according to the semantics of the 466
communicative act. The specification of the protocol says nothing about the implementation of the processing of the 467
communicative act. 468
 469

3.2.5.2 Notation 470
A message sending is shown as a horizontal solid arrow from a thread of interaction of an AgentRole to another thread 471
of interaction of another AgentRole. In case of a message is sent from an AgentRole to itself (note that there might be 472
many individual agents in an AgentRole), the arrow may start and end on the same lifeline or thread of interaction. Such 473
a nested thread of interaction is denoted by a thread of interaction that is shifted a little bit to the right side in the actual 474
thread of interaction. 475
 476
Nested protocols are represented by a separate thread of interaction, along with an arrow initiating the nested protocol 477
and one or more arrows terminating the nested protocol. The initiating arrow is drawn starting with a small solid filled 478
circle, and a terminating arrow ends with a circle surrounding a small solid filled circle. 479
 480
Each arrow is labelled with a message label that has the following syntax: 481
 482
predecessor guard-condition sequence-expression communicative-act argument-list 483
 484
Where: 485
 486
• predecessor 487

This consists of at most one natural number followed by a slash (/) defining the sequencing of a parallel construct 488
or the number of the input and output parameter in the context of Section 3.2.9, Threads of Interaction and 489
Messages Inside and Outside Nested Protocols, xxxx. The clause is omitted if the list is empty. 490

 491
• guard-condition 492

This is a usual UML guard condition, with the semantics, that the message is sent iff the guard is true. The guard 493
conditions must be defined on the behavioural semantics of the agents, that is, the internal state of the agent must 494
not be used in the definition of the guard. 495

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

12

 496
• sequence-expression 497

This is a constraint, especially with n..m which denotes that the message is sent n up to m times with n ∈ Ν, m ∈ Ν 498
∪ {*}1. The keyword broadcast denotes the broadcast sending of a message; the keyword deadline denotes a 499
string that is encoded according to [ISO8601] and represents the deadline by which a message is useful. 500

 501
• communicative-act 502

This is either the name, that is, a string representation with an underlined name, of a concrete communicative act 503
instance, the name of a concrete communicative act instance and its associated communicative act, written as 504
name:communicative-act or only the name of the communicative act, for example, inform. 505

 506
• argument-list 507

This is a comma-separated list of arguments enclosed in parentheses. The parentheses can be omitted if the list is 508
empty. Each argument is an expression in pseudo-code or an appropriate programming language or an OCL 509
expression. 510
 511

3.2.5.3 Presentation Options 512
• Variation: Cardinality 513

The cardinality of a message (for example, n senders and m receivers of a message) is shown by writing natural 514
numbers at the beginning and at the end of the arrow. This variation is only allowed if the sender and/or receiver is 515
not an instance of an agent. 516

 517
• Variation: Asynchronous Message Passing 518

An asynchronous message is drawn with a stick arrowhead (). It shows the sending of the message without 519
yielding control. 520

 521
• Variation: Synchronous Message Passing 522

A synchronous message is drawn with a filled solid arrowhead (). It shows the yielding of the thread of control 523
(wait semantics), that is, the AgentRole waits until an answer message is received and nothing else can be 524
processed. 525

 526
• Variation: Time intensive Message Passing 527

Normally message arrows are drawn horizontally. This indicates the duration required to send the message is 528
atomic, that is, it is brief compared to the granularity of the interaction and that nothing else can take place during 529
the message transmission. That is the correct assumption within many computers. If the messages requires some 530
time to arrive for mobile communication, for example, during which something else can occur then the message 531
arrow may be slanted downward so that the arrowhead is below the arrow tail (). 532

 533
• Variation: Repetition 534

The repetition of parts of a PD is represented by an arrow or one of its variations usually marked by some guards or 535
constraints ending at a thread of interaction which is according to the time axis before or after the actual time point. 536
Note, that in this case the time ordering on the PDs is violated. 537

 538

3.2.5.4 Example 539
 540

1 The asterix represents repetition an arbitrary number of times.

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

13

create-request :
Request

fipa-ams

my-new-
agent

 541
 542

3.2.5.5 Mapping 543
See Section 3.2.1.5, Mapping. 544
 545

3.2.6 Complex Messages 546

Besides the already presented kinds of messages, more complex messages can be used. 547
 548

3.2.6.1 Semantics 549
A complex message may be the parallel sending of messages or exclusively sending of exactly one message out of a 550
set of different messages. 551
 552

3.2.6.2 Notation 553
Three kinds of complex messages are distinguished. All three complex messages substitute an arrow from one thread 554
of interaction to another thread of interaction by an arrow starting at one thread of interaction ending either: 555
 556
• at a heavy bar (for AND parallelism), 557
 558
• at a heavy bar with a non-filled diamond (for OR parallelism; inclusive-or), or, 559
 560
• at a heavy bar with a non-filled diamond (for decisions; exclusive-or) with an "x" inside the diamond. 561
 562
From these different kinds of heavy bars new arrows start in a right angle at the bar and end at possibly different 563
threads of interaction, which are possibly combined in a parallel or decisional way. 564
 565
The merging of different messages is done in the analogous way, that is, the parallel horizontal message arrows stop at 566
one vertical bar and one message arrow is continued from the heavy bar. 567
 568

3.2.6.3 Presentation Options 569
None. 570
 571

3.2.6.4 Example 572
 573

 request

query

 1/request

2/query

request

query

 574
 575

(a) (b)2 (c) 576

2 This shows the restriction that request is sent before query.

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

14

 577

3.2.6.5 Mapping 578
See Section 3.2.1.5, Mapping. 579
 580

3.2.7 Nested Protocols 581

Nested protocols are applied to specify complex systems in a modular way. Moreover the reuse of parts of a 582
specification increases the readability of them. 583
 584
A nested protocol can be defined and applied, if it is used several times within the same specification. In contrast to a 585
parameterised protocol it is only an abbreviation for a fixed (part of a) protocol. Additionally nested protocols are used 586
for the definition of repetition of a nested protocol according to guards and constraints. 587
 588
Interleaved protocols show that between different agents a protocol is performed and more over in order to 589
finish/proceed the protocol an agent has to perform another protocol with other agents. 590
 591

3.2.7.1 Semantics 592
If the nested protocol is marked with some guard then the semantics of the nested protocol is the semantics of the 593
protocol under the assumption that the guard evaluates to true, otherwise the semantics is the semantics of an empty 594
protocol, that is, nothing is specified. 595
 596
If the nested protocol is marked with some constraints the nested protocol is repeated as long as the constraints 597
evaluate to true. 598
 599

3.2.7.2 Notation 600
A nested protocol is shown as a rectangle with rounded corners. It may have one or more compartments. The 601
compartments are optional. They are as follows: 602
 603
• Name compartment 604

This holds the (optional) name of the nested protocol as a string. Nested protocols without names are anonymous. 605
It is undesirable to show the same named nested protocol twice in the same diagram except when they define the 606
same nested protocol. The compartment is written in the upper left-hand corner of the rectangle. 607

 608

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

15

• Guard compartment 609
This holds the (optional) guard of the nested protocol in the usual guard notation as [guard-condition]. Nested 610
protocols without guards are equivalent with nested protocols with guard [true]. The guard compartment is 611
written together with the constraint compartment in the lower left-hand corner of the rectangle. 612

 613
• Constraint compartment 614

This holds the (optional) constraint of the nested protocol in the usual constraint notation as {constraint-615
condition}. Nested protocols without constraints are equivalent with nested protocols with constraint {1}. The 616
constraint compartment is written together with the guard compartment in the lower left-hand corner of the 617
rectangle. In addition to the constraint condition used in UML the constraint n..m denotes that the nested protocol 618
is repeated n up to m times with n ∈ Ν, m ∈ Ν ∪ {*}. 619

 620
Another nested protocol can completely be drawn within the actual nested protocol denoting that the inner one is part of 621
the outer one. 622
 623

3.2.7.3 Presentation Options 624
The abbreviations n and * can be applied to denote n..n and 0..*, respectively. Beyond the above usage of nested 625
protocols for simple protocols, nested protocols can also be used applying parameterised protocols or instantiated 626
parameterised protocols. 627
 628
Another presentation option is the definition of interleaved protocols. For a nested protocol being part of another 629
protocol the rectangle representing it has to be completely drawn within the other one. If interleaved protocols are 630
defined, that is, during performing one IP another IP has to be processed, the rectangles are not drawn within each 631
other. 632
 633

3.2.7.4 Example 634
 635

 buyer-1 seller-1

request-good :
Request

request-pay :
Request

commitment

...

...
[commit]

 Broker Retailer

cfp

Wholeseller

request

inform

propose

...

 636
 637

Nested Protocol Interleaved Protocols 638
 639

3.2.8 Complex Nested Protocols 640

Beyond the already presented nested and interleaved protocols, other kinds of complex nested protocols can also be 641
defined. 642
 643

3.2.8.1 Semantics 644
A complex nested protocol defines the parallel or decisional combination of nested protocols. It has to take into 645
consideration the thread of interaction at the beginning and at the end of the complex nested protocol. Furthermore the 646
starting and ending point within the nested protocols have to be considered. 647
 648

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

16

3.2.8.2 Notation 649
Three kinds of complex nested protocols are distinguished. All three complex nested protocols are drawn over the 650
lifeline and threads of interaction within a PD. Each individual nested protocol in a complex nested protocol is 651
introduced by a line that is terminated by the rectangle of a nested protocol. These lines are connected either by: 652
 653
• a heavy bar defining AND parallelism, 654
 655
• a heavy bar with a non-filled diamond defining OR parallelism (inclusive-or), or, 656
 657
• a heavy bar with a non-filled diamond defining decisions (exclusive-or) with an "x" inside the diamond. 658
 659
The threads of interaction which are continued in the different nested protocols are drawn as usual. 660
 661

3.2.8.3 Presentation Options 662
None. 663
 664

3.2.8.4 Example 665
 666

 Broker Retailer

cfp

propose

request

inform

x

 667
 668

3.2.8.5 Mapping 669
See Section 3.2.1.5, Mapping. 670
 671

3.2.9 Threads of Interaction and Messages Inside and Outside Nested Protocols 672

Usually, nested protocols have input and output parameters, namely threads of interaction and messages. 673
 674

3.2.9.1 Semantics 675
Nested protocols are defined in detail either within a PD where it is used or outside another PD. Threads of interaction 676
and messages inside and outside nested protocols define the input and output parameter for nested protocols. 677
 678
The input parameters are the threads of interaction, which are carried on in the nested protocol, and the messages 679
which are received from other IPs. 680
 681
The output parameters are on the one side the threads of interaction which are started within the nested protocol and 682
are carried on outside the nested protocol and the messages which are sent from inside the nested protocol to 683
AgentRoles not involved in the actual nested protocol. A message or thread of interaction ending at an input or starting 684
at an output parameter of a nested protocol describes the connection of a whole PD with the embedded nested 685
protocol. 686
 687

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

17

3.2.9.2 Notation 688
The input and output parameters for the threads of interaction of a nested protocol are shown as a tall thin rectangle 689
(like a thread of interaction) which is drawn beyond the bounds of over the top line and bottom line of the nested 690
protocol rectangle, respectively. 691
 692
The input and output message parameters are shown by arrows starting with a small solid filled circle, and arrows 693
ending at a circle surrounding a small solid filled circle (a bull's eye), respectively. 694

3.2.9.3 Presentation Options 695
The message arrows can be marked like usual messages. In this context, the predecessor denotes the number of the 696
input/output parameter. The input/output thread of interaction can be marked with natural numbers to define the exact 697
number of the parameter. 698
 699

3.2.9.4 Example 700
 701

request-good :
Request

request-pay :
Request

commitment

 702
 703

3.2.9.5 Mapping 704
See Section 3.2.1.5, Mapping. 705
 706

3.2.10 Parameterised Protocols 707

Adapted from [OMGuml], section 5.11. 708
 709

3.2.10.1 Semantics 710
A parameterised protocol is the description for an IP with one or more unbound formal parameters. It therefore defines 711
a family of protocols, each protocol specified by binding the parameters to actual values. Typically the parameters 712
represent agent roles, constraints, instances of communicative acts and nested protocols. The parameters used within 713
the parameterised protocol are defined in terms of the formal parameters so they are become bound when the 714
parameterised protocol itself is bound to the actual values. 715
 716
A parameterised protocol is not a directly-usable protocol because it has unbound parameters. Its parameters must be 717
bound to actual values to create a bound form that is a protocol. 718
 719

3.2.10.2 Notation 720
A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle with rounded corners as 721
when defining a nested protocol. The dashed rectangle contains a parameter list of formal parameters for the protocol. 722
The list must not be empty, although it might be suppressed in the presentation. The name of the parameterised 723
protocol is written as a string in the upper left-hand corner. 724
 725

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

18

The parameter list is a comma-separated list of arguments (formal parameters) defined by identifiers, like names for 726
AgentRoles, constraint expressions, communicative acts or nested protocol names. 727
 728

3.2.10.3 Presentation Options 729
The input/output parameters like messages and threads of interactions can be used and defined as for nested 730
protocols. 731
Communicative act can be marked with an asterisk in the parameter specification, denoting different kinds of messages 732
that can alternatively be sent in this context. 733
 734

3.2.10.4 Example 735
 736

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

not-understood

propose

reject-proposal

accept-proposal

inform

dead-
line

failure

x

x

x

Initiator, Participant,
deadline,

cfp, refuse*, not-
understood*, propose,

reject-proposal*, accept-
proposal*, inform*

 737
 738

3.2.10.5 Mapping 739
See Section 3.2.1.5, Mapping. 740
 741

3.2.10.6 Comment 742
Note the difference between interleaved, nested and parameterised protocols. An interleaved protocol is used to show 743
that during the execution of one protocol another one is started/performed. Nested protocols are used to show 744
repetitions of sub-protocols, identifying fixed sub-protocols, reference to a fixed sub-protocol, like asking the DF for 745
some information, or guarding a sub-protocol. Parameterised protocols are used to prepare patterns which can be 746
instantiated in different contexts and applications, for example, the FIPA Contract Net Protocol for appointment 747
scheduling and negotiation about some good which should be sold. 748
 749

3.2.11 Bound Elements 750

Adapted from [OMGuml], section 5.12. 751
 752

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

19

3.2.11.1 Semantics 753
A parameterised PD cannot be used directly in an ordinary interaction description, because it has free parameters that 754
are not meaningful outside of a scope that declares the parameter. To be used, a formal parameter of a parameterised 755
protocol must be bound to actual values. The actual value for each parameter is an expression defined within the scope 756
of use. If the referencing scope is itself a parameterised protocol, then the parameters of the referencing parameterised 757
protocol can be used as actual values in binding the referenced parameterised protocol, but the parameter names in the 758
two templates cannot be assumed to correspond, because they have no scope outside of their respective templates. 759
We can assume without loss of generality that the parameter names of the different parameterised protocols are 760
different. 761
 762

3.2.11.2 Notation 763
A bound element is indicated in the name string of an element, as follows: 764
 765
parameterised-protocol-name < role-list, constraint-expression-list, value-list > 766
 767
Where: 768
 769
• parameterised-protocol-name 770

This is identical to the name of the parameterised protocol. 771
 772
• role-list 773

This is a comma-delimited list of role labels. constraint-expression-list is a comma-delimited list of constraint terms. 774
 775
• value-list 776

This is a comma-delimited non-empty list of pairs, separated by a colon consisting of a value expression and a 777
communicative act. The communicative act is optional. 778

 779
The number and types of the values must match the number and types of the parameterised protocol formal 780
parameters for the parameterised protocol of the given name. The bound element name may be used anywhere that 781
protocol of the parameterised kind could be used. 782
 783

3.2.11.3 Presentation Options 784
None. 785
 786

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

20

3.2.11.4 Example 787
 788
FIPA-ContractNet-Protocol 789
< 790
 Buyer, Seller 791
 20000807 792
 cfp-seller : cfp, 793
 refuse-1 : refuse, 794
 refuse-2 : refuse, not-understood, propose, reject-proposal, accept-proposal, 795
 cancel, inform, failure 796
> 797
 798

refuse-1

FIPA-ContractNet-Protocol

Buyer Seller

cfp-seller

not-understood

propose

reject-proposal

accept-proposal

inform

2000
0807

failure

x

x

x

refuse-2
x

 799
 800

3.2.11.5 Mapping 801
The use of the bound element syntax for the name of a symbol maps into a Binding dependency between the 802
dependent ModelElement corresponding to the bound element symbol and the provider ModelElement whose name 803
matches the name part of the bound element without the arguments. If the name does not match a parameterised 804
protocol or if the number of arguments in the bound element does not match the number of formal parameters in the 805
parameterised protocol, then the model is ill-formed. Each argument in the bound element maps into a ModelElement 806
bearing a templateArgument association to the Namespace of the bound element. The Binding relationship bears the 807
list of actual argument values. 808
 809

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

21

4 References 810

[Booch94] Booch, G., Object-Oriented Analysis and Design with Applications. Benjamin/Cummings, 1994. 811
[Booch95] Booch, G., Object Solutions: Managing the Object-Oriented Project. Addison-Wesley, 1995. 812
[FIPA00007] FIPA Content Language Library Specification. Foundation for Intelligent Physical Agents, 2000. 813

http://www.fipa.org/specs/fipa00007/ 814
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 815

http://www.fipa.org/specs/fipa00023/ 816
[ISO8601] Date Elements and Interchange Formats, Information Interchange – Representation of Dates and 817

Times, ISO 8601:1988(E), 1988. 818
[Odell2000] Odell, J., Parunak, H. van Dyke and Bauer, B., Extending UML for Agents. In: AOIS Worshop at AAAI, 819

2000. 820
[OMGuml] OMG Unified Modelling Language Version 1.1, Object Management Group, 1999. 821

http://www.omg.org/uml/ 822
[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenzen, W., Object-Oriented Modeling and 823

Design. Prentice Hall, 1991. 824
 825

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

22

5 Informative Annex A — ChangeLog 826

5.1 2003/03/10 - version F by FIPA Architecture Board 827

Entire document : Deprecated 828
 829

