

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Communicative Act Library Specification

Document title FIPA Communicative Act Library Specification
Document number PC00037F Document source FIPA TC C
Document status Preliminary Date of this status 2000/10/20
Supersedes OC00003, DC00038, DC00039, DC00040, DC00041, DC00042, DC00043, DC00044,

DC00045, DC00046, DC00047, DC00048, DC00049, DC00050, DC00051, DC00052,
DC00053, DC00054, DC00055, DC00056, DC00057, DC00058, DC00059, DC00060

Contact fab@fipa.org
Change history
2000/01/18 Initial draft
2000/07/14 Append ACL semantics as Annex A from OC00003
2000/07/28 Incorporating the changes from Baltimore meeting. Each CA specs are combined as

one document.
2000/08/10 Example messages are modified compatible with new ACL string representation and

SL specs.
2000/10/19 Edited examples to conform add new footnotes and clarify cfp, propose and not-

understood.
2000/10/20 Editorial changes; Submission to the FAB

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Introduction ... 1
2 Overview ... 2

2.1 Status of a FIPA-Compliant Communicative Act... 2
2.2 FIPA Communicative Act Library Maintenance... 2
2.3 Inclusion Criteria ... 3

3 FIPA Communicative Acts.. 4
3.1 Accept Proposal ... 4
3.2 Agree... 5
3.3 Cancel ... 6
3.4 Call for Proposal.. 7
3.5 Confirm .. 8
3.6 Disconfirm .. 9
3.7 Failure...10
3.8 Inform..11
3.9 Inform If ...12
3.10 Inform Ref ..13
3.11 Not Understood ..15
3.12 Propagate..17
3.13 Propose...19
3.14 Proxy ..20
3.15 Query If..22
3.16 Query Ref ..23
3.17 Refuse...24
3.18 Reject Proposal..25
3.19 Request...26
3.20 Request When ...27
3.21 Request Whenever..28
3.22 Subscribe ..29

4 References...30
5 Informative Annex A – Formal Basis of ACL Semantics..31

5.1 Introduction to the Formal Model..31
5.2 The Semantic Language ...32

5.2.1 Basis of the Semantic Language Formalism ..32
5.2.2 Abbreviations ..33

5.3 Underlying Semantic Model...34
5.3.1 Property 1...34
5.3.2 Property 2...34
5.3.3 Property 3...35
5.3.4 Property 4...35
5.3.5 Property 5...35
5.3.6 Notation..35
5.3.7 Note on the Use of Symbols in Formulae...36
5.3.8 Supporting Definitions ..36

5.4 Primitive Communicative Acts ...36
5.4.1 The Assertive Inform ..36
5.4.2 The Directive Request ..37
5.4.3 Confirming an Uncertain Proposition: Confirm...37
5.4.4 Contradicting Knowledge: Disconfirm...37

5.5 Composite Communicative Acts ..38
5.5.1 The Closed Question Case...38
5.5.2 The Query If Act ..39
5.5.3 The Confirm/Disconfirm Question Act ..39

 iv

5.5.4 The Open Question Case...40
5.6 Inter-Agent Communication Plans ..41

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 1

1 Introduction
This document contains specifications for structuring the FIPA Communicative Act Library (FIPA CAL) including: status of
a FIPA-compliant communicative act, maintenance of the library and inclusion criteria.

This document is primarily concerned with defining the structure of the FIPA CAL and the requirements for a proposed
communicative act to be included in the library. The elements of the library are listed in this document.

This document also contains the formal basis of FIPA ACL semantics in the annex for the semantic characterization of
each FIPA communicative act.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 2

2 Overview
This document focuses on the organization, structure and status of the FIPA Communicative Act Library, FIPA CAL and
discusses the main requirements that a communicative act must satisfy in order to be FIPA-compliant.

The objectives of standardizing and defining a library of FIPA compliant communicative acts are:

• To help ensure interoperability by providing a standard set of composite and macro communicative acts, derived from

the FIPA primitive communicative acts,

• To facilitate the reuse of composite and macro communicative acts, and,

• To provide a well-defined process for maintaining a set of communicative acts and act labels for use in the FIPA ACL.

In the following, we present the basic principles of the FIPA CAL. These principles help to guarantee that the CAL is
stable, that there are public rules for the inclusion and maintenance of the CAL and that developers seeking
communicative acts for their applications can use the CAL.

2.1 Status of a FIPA-Compliant Communicative Act
The definition of a communicative act belonging to the FIPA CAL is normative. That is, if a given agent implements one of
the acts in the FIPA CAL, then it must implement that act in accordance with the semantic definition in the FIPA CAL.
However, FIPA-compliant agents are not required to implement any of the FIPA CAL languages, except the not-
understood composite act.

By collecting communicative act definitions in a single, publicly accessible registry, the FIPA CAL facilitates the use of
standardized Communicative Acts by agents developed in different contexts. It also provides a greater incentive to
developers to make any privately developed communicative acts generally available.

The name assigned to a proposed communicative act must uniquely identify which communicative act is used within a
FIPA ACL message. It must not conflict with any names currently in the library, and must be an English word or
abbreviation that is suggestive of the semantics. The FIPA Agent Communication Technical Committee is the initial judge
of the suitability of a name.

FIPA is responsible for maintaining a consistent list of approved and proposed communicative act names and for making
this list publicly available to FIPA members and non-members. This list is derived from the FIPA Communicative Act
Library.

In addition to the semantic characterization and descriptive information that is required, each Communicative Act in the
FIPA CAL may specify additional information, such as stability information, versioning, contact information, different
support levels, etc.

2.2 FIPA Communicative Act Library Maintenance
The most effective way of maintaining the FIPA Communicative Act Library is through the use of the communicative acts
themselves by different agent developers. This is the most direct way of discovering possible bugs, errors,
inconsistencies, weaknesses, possible improvements, as well as capabilities, strengths, efficiency etc. In order to collect
feedback on the communicative acts in the library and to promote further research, FIPA encourages coordination
between agent language designers, agent developers, and FIPA members.

FIPA will designate a Technical Committee to maintain the FIPA CAL. The FIPA CAL will be managed by this technical
committee, which will be responsible for the following items:

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 3

• Collecting feedback and the comments about communicative acts in the FIPA CAL. Depending on interest, the
technical committee may organize more specific Working Groups. These groups would be responsible for maintaining
public lists referring to projects and people who are currently working on different communicative acts.

• Inviting contributions in various forms: e-mail comments, written reports, papers, technical documents, and so forth.

The current email address of the technical committee is specified on the first page of this document.

• All technical committee members will be notified about contributions, comments or proposed changes and should be

able to access them.

• The proposed updates to the FIPA CAL must be discussed and approved during an official FIPA meeting, in order that

the FIPA community may be involved with and informed of all of the FIPA approved communicative acts in the library

• In the future, FIPA intends to supply templates (publicly accessible from the FIPA web site) in order to facilitate

submission of candidate communicative acts to the FIPA CAL, and to ensure that agent language developers
understand and can easily satisfy the requirements for the submission of a new communicative act to the FIPA CAL.

2.3 Inclusion Criteria
In order to populate the FIPA CAL, it is necessary to set some fundamental guidelines for the selection of specific
communicative acts.

The minimal criteria that must be satisfied for a communicative act to be included in the FIPA CAL are:

• A summary of the candidate act's semantic force and content type are required.

• A detailed natural language description of the act and its consequences are required.

• A formal model, written in SL, of the act's semantics, its formal preconditions, and its rational effects is required.

• Examples of the usage of the new communicative act are required.

• Substantial and clear documentation must be provided. This means that the proposal must be already well structured.

FIPA members are in no way responsible for translating submitted communicative acts into an acceptable form. See
the form of the acts in the library for a sample.

• The utility of such a new communicative act should be made clear. In particular, it should be clear that the need it

solves is reasonably general, and that this need would be cumbersome to meet by combining existing communicative
acts.

FIPA does not enforce the use of any particular communicative act, except for the case of not-understood, and those acts
which are required to meet the agent management needs of the agent.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 4

3 FIPA Communicative Acts

3.1 Accept Proposal
Summary The action of accepting a previously submitted proposal to perform an action.
Message
Content

A tuple consisting of an action expression denoting the action to be done, and a proposition giving
the conditions of the agreement.

Description Accept-proposal is a general-purpose acceptance of a proposal that was previously submitted
(typically through a propose act). The agent sending the acceptance informs the receiver that it
intends that (at some point in the future) the receiving agent will perform the action, once the given
precondition is, or becomes, true.

The proposition given as part of the acceptance indicates the preconditions that the agent is
attaching to the acceptance. A typical use of this is to finalize the details of a deal in some
protocol. For example, a previous offer to "hold a meeting anytime on Tuesday" might be accepted
with an additional condition that the time of the meeting is 11.00.

Note for future extension: an agent may intend that an action become done without necessarily
intending the precondition. For example, during negotiation about a given task, the negotiating
parties may not unequivocally intend their opening bids: agent a may bid a price p as a
precondition, but be prepared to accept price p'.

Formal Model <i, accept-proposal (j, <j, act>, φ))> ≡
 <i, inform (j, Ii Done (<j, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done (<j, act>, φ)

Example Agent i informs j that it accepts an offer from j to stream a given multimedia title to channel 19
when the customer is ready. Agent i will inform j of this fact when appropriate.

(accept-proposal
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :in-reply-to bid089
 :content
 ((action (agent-identifier :name j)
 (stream-content movie1234 19))
 (B (agent-identifier :name j)
 (ready customer78)))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 5

3.2 Agree
Summary The action of agreeing to perform some action, possibly in the future.
Message
Content

A tuple, consisting of an action expression denoting the action to be done, and a proposition giving
the conditions of the agreement.

Description Agree is a general-purpose agreement to a previously submitted request to perform some action.
The agent sending the agreement informs the receiver that it does intend to perform the action, but
not until the given precondition is true.

The proposition given as part of the agree act indicates the qualifiers, if any, that the agent is
attaching to the agreement. This might be used, for example, to inform the receiver when the agent
will execute the action which it is agreeing to perform.

Pragmatic note: The precondition on the action being agreed to can include the perlocutionary
effect of some other CA, such as an inform act. When the recipient of the agreement (for example,
a contract manager) wants the agreed action to be performed, it should then bring about the
precondition by performing the necessary CA. This mechanism can be used to ensure that the
contractor defers performing the action until the manager is ready for the action to be done.

Formal Model <i, agree (j, <i, act>, φ))> ≡
 <i, inform (j, Ii Done (<i, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done(<i, act>, φ)

Note that the formal difference between the semantics of agree and the semantics of accept-
proposal rests on which agent is performing the action.

Example Agent i (a job-shop scheduler) requests j (a robot) to deliver a box to a certain location. J answers
that it agrees to the request but it has low priority.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19))))
 :protocol fipa-request
 :language FIPA-SL
 :reply-with order567)

(agree
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19)))
 (priority order567 low))
 :in-reply-to order567
 :protocol fipa-request
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 6

3.3 Cancel
Summary The action of one agent informing another agent that the first agent no longer has the intention that

the second agent perform some action.
Message
Content

An action expression denoting the action that is no longer intended.

Description Cancel allows an agent i to inform another agent j that i no longer intends that j perform a
previously requested action. This is not the same as i informing j that i intends that j not perform
the action or stop performing an action. Cancel is simply used to let an agent know that another
agent no longer has a particular intention. (In order for i to stop j from performing an action, i
should request that j stop that action. Of course, nothing in the ACL semantics guarantees that j
will actually stop performing the action; j is free to ignore i’s request.) Finally, note that the action
that is the object of the act of cancellation should be believed by the sender to be ongoing or to be
planned but not yet executed.

Formal Model <i, cancel (j, a)> ≡
 <i, disconfirm (j, Ii Done (a))>
 FP: ¬Ii Done (a) ∧ Bi (Bj Ii Done (a) ∨ Uj Ii Done (a))
 RE: Bj ¬Ii Done (a)

Cancel applies to any form of requested action. Suppose an agent i has requested an agent j to
perform some action a, possibly if some condition holds. This request has the effect of i informing j
that i has an intention that j perform the action a. When i comes to drop its intention, it can inform
j that it no longer has this intention with a disconfirm.

Example Agent j asks i to cancel a previous request-whenever by quoting the action.

(cancel
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (request-whenever
 :sender (agent-identifier :name j)
 :receiver (set(agent-identifier :name i))
 :content1
 "((action (agent-identifier :name i)
 (inform-ref
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content2
 \"((iota ?x
 (=(price widget) ?x))\")
 (> (price widget) 50))"
 …)))
 :langage FIPA-SL
 …)

1 The request-whenever message’s :content parameter in the context of the cancel message is an embedded action expression. So, since this
example uses SL as a content language, the content tuple of the request-whenever message must be converted into a Term of SL.
2 The content of this inform-ref is further embedded in an embedded request-whenever message’s content. So, because this example uses SL as
a content language, the quote mark is itself escaped by '\'.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 7

3.4 Call for Proposal
Summary The action of calling for proposals to perform a given action.
Message
Content

A tuple containing an action expression denoting the action to be done, and a referential
expression defining a single-parameter proposition which gives the preconditions on the action.

Description CFP is a general-purpose action to initiate a negotiation process by making a call for proposals to
perform the given action. The actual protocol under which the negotiation process is established is
known either by prior agreement, or is explicitly stated in the :protocol parameter of the message.

In normal usage, the agent responding to a cfp should answer with a proposition giving the value of
the parameter in the original precondition expression (see the statement of cfp's rational effect).
For example, the cfp might seek proposals for a journey from Frankfurt to Munich, with a condition
that the mode of travel is by train. A compatible proposal in reply would be for the 10.45 express
train. An incompatible proposal would be to travel by airplane.

Note that cfp can also be used to simply check the availability of an agent to perform some action.
Also note that this formalization of cfp is restricted to the common case of proposals
characterized by a single parameter (x) in the proposal expression. Other scenarios might involve
multiple proposal parameters, demand curves, free-form responses, and so forth.

Formal Model <i, cfp (j, <j, act>, Ref x φ(x))> ≡
 <i, query-ref (j, Ref x (Ii Done (<j, act>, φ(x)) ⇒
 (Ij Done (<j, act>, φ(x))))>
 FP: ¬Brefi(Ref x α(x)) ∧ ¬Urefi(Ref x α(x)) ∧
 ¬Bi Ij Done (<j, inform-ref (i, Ref x α(x))>)
 RE: Done (<j, inform (i, Ref x α(x) = r1)> | … |
 <j, inform (i, Ref x α(x) = rk)>)

Where:

α(x) = Ii Done (<j, act>, φ(x)) ⇒ Ij Done (<j, act>, φ(x))

Agent i asks agent j: "What is the 'x' such that you will perform action 'act' when 'φ (x)' holds?"

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x
δ(x).

Note: The RE of this is not a proposal by the recipient. Rather, it is the value of the proposal
parameter. See the example in the definition of the propose act.

Example Agent j asks i to submit its proposal to sell 50 boxes of plums.

(cfp
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name i)
 (sell plum 50))
 (any ?x (and (= (price plum) ?x) (< ?x 10))))
 :ontology fruit-market)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 8

3.5 Confirm
Summary The sender informs the receiver that a given proposition is true, where the receiver is known to be

uncertain about the proposition.
Message
Content

A proposition.

Description The sending agent:

• believes that some proposition is true,

• intends that the receiving agent also comes to believe that the proposition is true, and,

• believes that the receiver is uncertain of the truth of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere3, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last pre-condition determines when the agent should use confirm vs. inform vs.
disconfirm: confirm is used precisely when the other agent is already known to be uncertain about
the proposition (rather than uncertain about the negation of the proposition).

From the receiver's viewpoint, receiving a confirm message entitles it to believe that:

• the sender believes the proposition that is the content of the message, and,

• the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of belief in the
proposition will be a function of the receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, confirm (j, φ)>
 FP: Biφ ∧ BiUjφ
 RE: Bjφ

Examples Agent i confirms to agent j that it is, in fact, true that it is snowing today.

(confirm
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "weather (today, snowing)"
 :language Prolog)

3 Arguably there are situations where an agent might not want to be sincere, for example to protect confidential information. We consider these
cases to be beyond the current scope of this specification.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 9

3.6 Disconfirm
Summary The sender informs the receiver that a given proposition is false, where the receiver is known to

believe, or believe it likely that, the proposition is true.
Message
Content

A proposition.

Description The disconfirm act is used when the agent wishes to alter the known mental attitude of another
agent.

The sending agent:

• believes that some proposition is false,

• intends that the receiving agent also comes to believe that the proposition is false, and,

• believes that the receiver either believes the proposition, or is uncertain of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere3, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last pre-condition determines when the agent should use confirm vs. inform vs.
disconfirm: disconfirm is used precisely when the other agent is already known to believe the
proposition or to be uncertain about it.

From the receiver's viewpoint, receiving a disconfirm message entitles it to believe that:

• the sender believes that the proposition that is the content of the message is false, and,

• the sender wishes the receiver to believe the negated proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of disbelief in the
proposition will be a function of the receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, disconfirm (j, φ)>
 FP: Bi¬φ ∧ Bi(Ujφ ∨ Bjφ)
 RE: Bj¬φ

Example Agent i, believing that agent j thinks that a shark is a mammal, attempts to change j's belief.

(disconfirm
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((mammal shark))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 10

3.7 Failure
Summary The action of telling another agent that an action was attempted but the attempt failed.
Message
Content

A tuple, consisting of an action expression and a proposition giving the reason for the failure.

Description The failure act is an abbreviation for informing that an act was considered feasible by the sender,
but was not completed for some given reason.

The agent receiving a failure act is entitled to believe that:

• the action has not been done, and,

• the action is (or, at the time the agent attempted to perform the action, was) feasible

The (causal) reason for the failure is represented by the proposition, which is the second element
of the message content tuple. It may be the constant true. Often it is the case that there is little
either agent can do to further the attempt to perform the action.

Formal Model <i, failure (j, a, φ)> ≡
 <i, inform (j, (∃e) Single (e) ∧ Done (e, Feasible (a) ∧
 Ii Done (a)) ∧ φ ∧ ¬Done (a) ∧ ¬Ii Done (a))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = (∃e) Single (e) ∧ Done (e, Feasible (a) ∧ Ii Done (a)) ∧ φ ∧
 ¬Done (a) ∧ ¬Ii Done (a)

Agent i informs agent j that, in the past, i had the intention to do action a and a was feasible. i
performed the action of attempting to do a (that is, the action/event e is the attempt to do a), but
now a has not been done and i no longer has the intention to do a, and φ is true.

The informal implication is that φ is the reason that the action failed, though this causality is not
expressed formally in the semantic model.

Example Agent j informs i that it has failed to open a file.

(failure
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (open "foo.txt"))
 (error-message "No such file: foo.txt"))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 11

3.8 Inform
Summary The sender informs the receiver that a given proposition is true.
Message
Content

A proposition.

Description The sending agent:

• holds that some proposition is true,

• intends that the receiving agent also comes to believe that the proposition is true, and,

• does not already believe that the receiver has any knowledge of the truth of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last property is concerned with the semantic soundness of the act. If an agent
knows already that some state of the world holds (that the receiver knows proposition p), it cannot
rationally adopt an intention to bring about that state of the world (i.e. that the receiver comes to
know p as a result of the inform act). Note that the property is not as strong as it perhaps appears.
The sender is not required to establish whether the receiver knows p. It is only the case that, in
the case that the sender already happens to know about the state of the receiver's beliefs, it
should not adopt an intention to tell the receiver something it already knows.

From the receiver's viewpoint, receiving an inform message entitles it to believe that:

• the sender believes the proposition that is the content of the message, and,

• the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, adopt belief in the proposition will be a function of the
receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, inform (j, φ)>
 FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
 RE: Bjφ

Examples Agent i informs agent j that (it is true that) it is raining today.

(inform
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "weather (today, raining)"
 :language Prolog)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 12

3.9 Inform If
Summary A macro action for the agent of the action to inform the recipient whether or not a proposition is

true.
Message
Content

A proposition.

Description The inform-if macro act is an abbreviation for informing whether or not a given proposition is
believed. The agent which enacts an inform-if macro-act will actually perform a standard inform
act. The content of the inform act will depend on the informing agent's beliefs. To inform-if on some
closed proposition φ:

• if the agent believes the proposition, it will inform the other agent that φ, and,

• if it believes the negation of the proposition, it informs that φ is false, that is, ¬φ.

Under other circumstances, it may not be possible for the agent to perform this plan. For example,
if it has no knowledge of φ, or will not permit the other party to know (that it believes) φ, it will send
a refuse message.

Formal Model <i, inform-if (j, φ)> ≡
 <i, inform (j, φ)>|<i, inform (j, ¬φ)>
 FP: Bifi φ ∧ ¬Bi (Bifj φ ∨ Uifj φ)
 RE: Bifj φ

Inform-if represents two possible courses of action: i informs j that φ, or i informs j that not φ.

Examples Agent i requests j to inform it whether Lannion is in Normandy.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-if
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "in(lannion, normandy)"
 :language Prolog)))
 :language FIPA-SL)

Agent j replies that it is not:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "\+ in (lannion, normandy)"
 :language Prolog)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 13

3.10 Inform Ref
Summary A macro action for sender to inform the receiver the object which corresponds to a descriptor, for

example, a name.
Message
Content

An object description (a referential expression).

Description The inform-ref macro action allows the sender to inform the receiver some object that the sender
believes corresponds to a descriptor, such as a name or other identifying description.

inform-ref is a macro action, since it corresponds to a (possibly infinite) disjunction of inform acts,
each of which informs the receiver that "the object corresponding to name is x" for some given x.
For example, an agent can plan an inform-ref of the current time to agent j, and then perform the
act "inform j that the time is 10.45".

The agent performing the act should believe that the object or set of objects corresponding to the
reference expression is the one supplied, and should not believe that the receiver of the act
already knows which object or set of objects corresponds to the reference expression. The agent
may elect to send a refuse message if it is unable to establish the preconditions of the act.

Formal Model <i, inform-ref (j, Ref x δ(x))> ≡
 <i, inform (j, Ref x δ(x) = r1)> | ... |
 (<i, inform (j, Ref x δ(x) = rk)>
 FP: Brefi Ref x δ(x) ∧ ¬Bi(Brefj Ref x δ(x) ∨ Urefj Ref x δ(x))
 RE: Brefj Ref x δ(x)

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Inform-ref represents an unbounded, possibly infinite set of possible courses of action, in which i
informs j of the referent of x.

Example Agent i requests j to tell it the current Prime Minister of the United Kingdom:

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-ref
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((iota ?x (UKPrimeMinister ?x)))"
 :ontology world-politics
 :language FIPA-SL)))
 :reply-with query0
 :language FIPA-SL)

Agent j replies:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((= (iota ?x (UKPrimeMinister ?x)) "Tony Blair"))
 :ontology world-politics
 :in-reply-to query0)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 14

Note that a standard abbreviation for the request of inform-ref used in this example is the act
query-ref.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 15

3.11 Not Understood
Summary The sender of the act (for example, i) informs the receiver (for example, j) that it perceived that j

performed some action, but that i did not understand what j just did. A particular common case is
that i tells j that i did not understand the message that j has just sent to i.

Message
Content

A tuple consisting of an action or event, for example, a communicative act, and an explanatory
reason.

Description The sender received a communicative act that it did not understand. There may be several reasons
for this: the agent may not have been designed to process a certain act or class of acts, or it may
have been expecting a different message. For example, it may have been strictly following a pre-
defined protocol, in which the possible message sequences are predetermined. The not-
understood message indicates to that the sender of the original, that is, misunderstood, action
that nothing has been done as a result of the message. This act may also be used in the general
case for i to inform j that it has not understood j's action.

The second element of the message content tuple is a proposition representing the reason for the
failure to understand. There is no guarantee that the reason is represented in a way that the
receiving agent will understand. However, a co-operative agent will attempt to explain the
misunderstanding constructively.

Note: It is not possible to fully capture the intended semantics of an action not being understood
by another agent. The characterization below captures that an event happened and that the
recipient of the not-understood message was the agent of that event.

φ must be a well formed formula of the content language of the sender agent. If the sender uses
the bare textual message, that is, 'String' in the syntax definition, as the reason φ, it must be a
propositional assertive statement and (at least) the sender can understand that (natural language)
message and calculate its truth value, that is, decide its assertion is true or false. So, for
example, in the SL language, to use textual message for the convenience of humans, it must be
encapsulated as the constant argument of a predicate defined in the ontology that the sender
uses, for example:

(error "message")

Formal Model <i, not-understood(j, a, φ)> ≡
 <i, inform(j, α) >
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = φ ∧ (∃x) Bi ((ιe Done (e) ∧ Agent (e, j) ∧ Bj(Done (e) ∧
 Agent (e, j) ∧ (a = e))) = x)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 16

Examples Agent i did not understand a query-if message because it did not recognize the ontology.

(not-understood
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (query-if
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "<fipa-ccl content expression>"
 :ontology www
 :language FIPA-CCL))
 (unknown (ontology "www")))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 17

3.12 Propagate
Summary The sender intends that the receiver treat the embedded message as sent directly to the receiver,

and wants the receiver to identify the agents denoted by the given descriptor and send the received
propagate message to them.

Message
Content

A tuple of a descriptor, that is, a referential expression, denoting an agent or agents to be
forwarded the propagate message, an embedded ACL communicative act, that is, an ACL
message, performed by the sender to the receiver of the propagate message and a constraint
condition for propagation, for example, timeout.

Description This is a compound action of the following two actions. First, the sending agent requests the
recipient to treat the embedded message in the received propagate message as if it is directly
sent from the sender, that is, as if the sender performed the embedded communicative act directly
to the receiver. Second, the sender wants the receiver to identify agents denoted by the given
descriptor and to send a modified version of the received propagate message to them, as
described below.

On forwarding, the :receiver parameter of the forwarded propagate message is set to the
denoted agent(s) and the :sender parameter is set to the receiver of the received propagate
message. The sender and receiver of the embedded communicative act of the forwarded propagate
message is also set to the same agent as the forwarded propagate message's sender and
receiver, respectively.

This communicative act is designed for delivering messages through federated agents by creating
a chain (or tree) of propagate messages. An example of this is instantaneous brokerage requests
using a proxy message, or persistent requests by a request-when/request-whenever message
embedding a proxy message.

Formal Model <i, propagate (j, Ref x δ(x), <i, cact>, φ)> ≡
 <i, cact(j)>;
 <i, inform (j, Ii((∃y) (Bj (Ref x δ(x) = y) ∧
 Done (<j, propagate (y, Ref x δ(x), <j, cact>, φ)>, Bj φ))))>
 FP: FP (cact) ∧ Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Done (cact) ∧ Bj α

Where :

α= Ii((∃y) (Bj (Ref x δ(x) = y) ∧
 Done (<j, propagate (y, Ref x δ(x), <j, cact>, φ)>, Bj φ)))

Agent i performs the embedded communicative act to j: <i, cact(j)> and i wants j to send the
propagate message to the denoted agent(s) by Ref x δ(x).

Note that <i,cact> in the propagate message is the ACL communicative act without the
:receiver parameter.

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 18

Example Agent i requests agent j and its federating other brokerage agents to do brokering video-on-
demand server agent to get "SF" programs.

(propagate
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :neme j))
 :content
 ((any ?x (registered
 (agent-description
 :name ?x
 :services (set
 (service-description
 :name agent-brokerage))))
 (action (agent-identifier :name i)
 (proxy
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "((all ?y (registered
 (agent-description
 :name ?y
 :services (set
 (service-description
 :name video-on-demand)))))
 (action (agent-identifier :name j)
 (request
 :sender (agent-identifier :name j)
 :content
 \"((action ?z4
 (send-program (category "SF"))))\"
 :ontology vod-server-ontology
 :protocol fipa-reqest …))
 true)"
 :ontology brokerage-agent-ontology
 :conversation-id vod-brokering-2
 :protocol fipa-brokering …))
 (< (hop-count) 5))
 :ontology brokerage-agent-ontology
 …)

4 We cannot specify the concrete actor name when agent i sends the propagate message because it is identified by the referential expression
(all ?y …). In the above example, a free variable ?z is used as the mandatory actor agent part of the action expression send-program in
the content of embedded request message.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 19

3.13 Propose
Summary The action of submitting a proposal to perform a certain action, given certain preconditions.
Message
Content

A tuple containing an action description, representing the action that the sender is proposing to
perform, and a proposition representing the preconditions on the performance of the action.

Description Propose is a general-purpose action to make a proposal or respond to an existing proposal during
a negotiation process by proposing to perform a given action subject to certain conditions being
true. The actual protocol under which the negotiation process is being conducted is known either
by prior agreement, or is explicitly stated in the :protocol parameter of the message.

The proposer (the sender of the propose) informs the receiver that the proposer will adopt the
intention to perform the action once the given precondition is met, and the receiver notifies the
proposer of the receiver's intention that the proposer performs the action.

A typical use of the condition attached to the proposal is to specify the price of a bid in an
auctioning or negotiation protocol.

Formal Model <i, propose (j, <i, act>, φ)> ≡
 <i, inform (j, Ij Done (<i, act>, φ) ⇒ Ii Done (<i, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ij Done (<i, act>, φ) ⇒ Ii Done (<i, act>, φ)

Agent i informs j that, once j informs i that j has adopted the intention for i to perform action act,
and the preconditions for i performing act have been established, i will adopt the intention to
perform act.

Example Agent j proposes to i to sell 50 boxes of plums for $5. This example continues the example of cfp.

(propose
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action j (sell plum 50))
 (= (any ?x (and (= (price plum) ?x) (< ?x 10))) 5)
 :ontology fruit-market
 :in-reply-to proposal2
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 20

3.14 Proxy
Summary The sender wants the receiver to select target agents denoted by a given description and to send

an embedded message to them.
Message
Content

A tuple of a descriptor, that is, a referential expression, that denotes the target agents, an ACL
communicative act, that is, an ACL message, to be performed to the agents, and a constraint
condition for performing the embedded communicative act, for example, the maximum number of
agents to be forwarded, etc.

Description The sending agent informs the recipient that the sender wants the receiver to identify agents that
satisfy the given descriptor, and to perform the embedded communicative act to them, that is, the
receiver sends the embedded message to them.

On performing the embedded communicative act, the :receiver parameter is set to the denoted
agent and the :sender is set to the receiver of the proxy message. If the embedded
communicative act contains a :reply-to parameter (for example, in the recruiting case where
the :protocol parameter is set to fipa-recruiting), it should be preserved in the performed
message.

In the case of a brokering request (that is, the :protocol parameter is set to fipa-brokering), the
brokerage agent (the receiver of the proxy message) must record some parameters, for example,
:conversation-id, :reply-with, :sender, etc.) of the received proxy message to forward
back the reply message(s) from the target agents to the corresponding requester agent (the
sender of the proxy message).

Formal Model <i, proxy (j, Ref x δ(x), <j, cact>, φ)> ≡
 <i, inform (j, Ii((∃y)(Bj (Ref x δ(x) = y) ∧
 Done (<j, cact(y)>, Bj φ))))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α= Ii((∃y) (Bj (Ref x δ(x) = y) ∧ Done (<j, cact(y)>, Bj φ)))

Agent i wants j to perform the embedded communicative act to the denoted agent(s) (y) by Ref
x δ(x).

Note that <j,cact> in the proxy message is the ACL communicative act without the
:receiver parameter. Its receiver is denoted by the given Ref x δ(x) by the agent j.

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Two types of proxy can be distinguished. We will call the type of proxy defined above strong,
because it is a feasibility precondition of j's communicative act to y that j satisfies the feasibility
preconditions of the proxied communicative act. So, if i proxies an inform of the proposition ψ to y
via j, j must believe ψ before it sends the proxied inform message to y.

In addition, we could define weak-proxy, where we do not suppose that j is required to believe ψ. In
this case, j cannot directly inform y of ψ, because j does not satisfy the feasibility preconditions of
inform. In this case, j can only inform y that the original sender i has the intention that the inform
of ψ should happen. More generally, weak-proxy can be expressed as an instance of proxy where
the action <j,cact(y)> is replaced by <j, inform(y, Ii Done (<i, cact(y)>))>.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 21

Example Agent i requests agent j to do recruiting and request a video-on-demand server to send "SF"
programs.

(proxy
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((all ?x (registered(agent-description
 :name ?x
 :services (set
 (service-description
 :name video-on-demand)))))
 (action (agent-identifier :name j)
 (request
 :sender (agent-identifier :name j)
 :content
 "((action ?y5
 (send-program (category "SF"))))"
 :ontology vod-server-ontology
 :language FIPA-SL
 :protocol fipa-request
 :reply-to (set (agent-identifier :name i))
 :conversation-id request-vod-1)
 true)
 :language FIPA-SL
 :ontology brokerage-agent
 :protocol fipa-recruiting
 :conversation-id vod-brokering-1 …)

5 We cannot specify the concrete actor name when agent i sends the proxy message because it is identified by the referential expression (all
?x …). In the above example, a free variable ?x is used as the mandatory actor agent part of the action expression send-program in the
content of embedded request message.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 22

3.15 Query If
Summary The action of asking another agent whether or not a given proposition is true.
Message
Content

A proposition.

Description Query-if is the act of asking another agent whether (it believes that) a given proposition is true. The
sending agent is requesting the receiver to inform it of the truth of the proposition.

The agent performing the query-if act:

• has no knowledge of the truth value of the proposition, and,

• believes that the other agent can inform the querying agent if it knows the truth of the
proposition.

Formal Model <i, query-if (j, φ)> ≡
 <i, request (j, <j, inform-if (i, φ)>)>
 FP: ¬Bifiφ ∧ ¬Uifiφ ∧ ¬Bi Ij Done(<j, inform-if (i, φ)>)
 RE: Done (<j, inform(i, φ)>|<j, inform (i, ¬φ)>)

Example Agent i asks agent j if j is registered with domain server d1:

(query-if
 :sender (agent-identifier :name i)
 :receiver (set (agent-identitfier :name j))
 :content
 ((registered (server d1) (agent j)))
 :reply-with r09
 …)

Agent j replies that it is not:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content ((not (registered (server d1) (agent j))))
 :in-reply-to r09)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 23

3.16 Query Ref
Summary The action of asking another agent for the object referred to by an referential expression.
Message
Content

A descriptor (a referential expression).

Description Query-ref is the act of asking another agent to inform the requester of the object identified by a
descriptor. The sending agent is requesting the receiver to perform an inform act, containing the
object that corresponds to the descriptor.

The agent performing the query-ref act:

• does not know which object or set of objects corresponds to the descriptor, and,

• believes that the other agent can inform the querying agent the object or set of objects that

correspond to the descriptor.
Formal Model <i, query-ref (j, Ref x δ(x))> ≡

 <i, request (j, <j, inform-ref (i, Ref x δ(x))>)>
 FP: ¬Brefi(Ref x δ(x)) ∧ ¬Urefi(Ref x δ(x)) ∧
 ¬Bi Ij Done(<j, inform-ref (i, Ref x δ(x))>)
 RE: Done(<i, inform (j, Ref x δ(x) = r1)> |...|
 <i, inform (j, Ref x δ(x) = rk)>)

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x
δ(x).

Example Agent i asks agent j for its available services.

(query-ref
 :sender (agent-identinfier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((all ?x (available-service j ?x)))
 …)

Agent j replies that it can reserve trains, planes and automobiles.

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((= (all ?x (available-service j ?x))
 (set (reserve-ticket train)
 (reserve-ticket plane)
 (reserve automobile))))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 24

3.17 Refuse
Summary The action of refusing to perform a given action, and explaining the reason for the refusal.
Message
Content

A tuple, consisting of an action expression and a proposition giving the reason for the refusal.

Description The refuse act is an abbreviation for denying (strictly speaking, disconfirming) that an act is
possible for the agent to perform, and stating the reason why that is so.

The refuse act is performed when the agent cannot meet all of the preconditions for the action to
be carried out, both implicit and explicit. For example, the agent may not know something it is
being asked for, or another agent requested an action for which it has insufficient privilege.

The agent receiving a refuse act is entitled to believe that:

• the action has not been done,

• the action is not feasible (from the point of view of the sender of the refusal), and,

• the (causal) reason for the refusal is represented by the a proposition which is the second

element of the message content tuple, (which may be the constant true). There is no
guarantee that the reason is represented in a way that the receiving agent will understand.
However, a cooperative agent will attempt to explain the refusal constructively. See the
description at not-understood.

Formal Model <i, refuse (j, <i, act>, φ)> ≡
 <i, disconfirm (j, Feasible(<i, act>))>;
 <i, inform (j, φ ∧ ¬Done (<i, act>) ∧ ¬Ii Done (<i, act>))>
 FP: Bi ¬Feasible (<i, act>) ∧ Bi (Bj Feasible (<i, act>) ∨
 Uj Feasible (<i, act>)) ∧ Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj ¬Feasible (<i, act>) ∧ Bj α

Where:

α = φ ∧ ¬Done (<i, act>) ∧ ¬Ii Done (<i, act>)

Agent i informs j that action act is not feasible, and further that, because of proposition φ, act has
not been done and i has no intention to do act.

Example Agent j refuses to i reserve a ticket for i, since there are insufficient funds in i's account.

(refuse
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (insufficient-funds ac12345))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 25

3.18 Reject Proposal
Summary The action of rejecting a proposal to perform some action during a negotiation.
Message
Content

A tuple consisting of an action description and a proposition which formed the original
proposal being rejected, and a further proposition which denotes the reason for the
rejection.

Description Reject-proposal is a general-purpose rejection to a previously submitted proposal. The
agent sending the rejection informs the receiver that it has no intention that the
recipient performs the given action under the given preconditions.

The additional proposition represents a reason that the proposal was rejected. Since it
is in general hard to relate cause to effect, the formal model below only notes that the
reason proposition was believed true by the sender at the time of the rejection.
Syntactically the reason should be treated as a causal explanation for the rejection,
even though this is not established by the formal semantics.

Formal Model <i, reject-proposal (j, <j, act>, φ, ψ)> ≡
<i, inform (j, ¬Ii Done (<j, act>, φ) ∧ ψ)>
FP : Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
RE : Bj α

Where:

α = ¬Ii Done(<j, act>, φ) ∧ ψ

Agent i informs j that, because of proposition ψ, i does not have the intention for j to
perform action act with precondition φ.

Example Agent i informs j that it rejects an offer from j to sell.

(reject-proposal
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (sell plum 50))
 (cost 200)
 (price-too-high 50))
 :in-reply-to proposal13)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 26

3.19 Request
Summary The sender requests the receiver to perform some action.

One important class of uses of the request act is to request the receiver to perform another
communicative act.

Message
Content

An action expression.

Description The sender is requesting the receiver to perform some action. The content of the message is a
description of the action to be performed, in some language the receiver understands. The action
can be any action the receiver is capable of performing: pick up a box, book a plane flight,
change a password, etc.

An important use of the request act is to build composite conversations between agents, where
the actions that are the object of the request act are themselves communicative acts such as
inform.

Formal Model <i, request (j, a)>
 FP: FP (a) [i\j] ∧ Bi Agent (j, a) ∧ ¬Bi Ij Done (a)
 RE: Done (a)

FP(a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

Examples Agent i requests j to open a file.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "open \"db.txt\" for input"
 :language vb)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 27

3.20 Request When
Summary The sender wants the receiver to perform some action when some given proposition becomes

true.
Message
Content

A tuple of an action description and a proposition.

Description Request-when allows an agent to inform another agent that a certain action should be performed
as soon as a given precondition, expressed as a proposition, becomes true.

The agent receiving a request-when should either refuse to take on the commitment, or should
arrange to ensure that the action will be performed when the condition becomes true. This
commitment will persist until such time as it is discharged by the condition becoming true, the
requesting agent cancels the request-when, or the agent decides that it can no longer honour the
commitment, in which case it should send a refuse message to the originator.

No specific commitment is implied by the specification as to how frequently the proposition is re-
evaluated, nor what the lag will be between the proposition becoming true and the action being
enacted. Agents that require such specific commitments should negotiate their own agreements
prior to submitting the request-when act.

Formal Model <i, request-when (j, <j, act>, φ)> ≡
 <i, inform (j, (∃e') Done (e') ∧ Unique (e') ∧
 Ii Done (<j, act>, (∃e) Enables (e, Bj φ) ∧
 Has-never-held-since (e', Bj φ)))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α
 RE: Bj α

Where:

α = (∃e') Done (e') (Unique (e') ∧
 Ii Done (<j, act>, (∃e) Enables (e, Bj φ) ∧
 Has-never-held-since (e', Bj φ))

Agent i informs j that i intends for j to perform some act when j comes to believe φ.

Examples Agent i tells agent j to notify it as soon as an alarm occurs.

(request-when
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((alarm \"something alarming!\"))"))
 (Done(alarm)))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 28

3.21 Request Whenever
Summary The sender wants the receiver to perform some action as soon as some proposition becomes true

and thereafter each time the proposition becomes true again.
Message
Content

A tuple of an action description and a proposition.

Description Request-whenever allows an agent to inform another agent that a certain action should be
performed as soon as a given precondition, expressed as a proposition, becomes true, and that,
furthermore, if the proposition should subsequently become false, the action will be repeated as
soon as it once more becomes true.

Request-whenever represents a persistent commitment to re-evaluate the given proposition and
take action when its value changes. The originating agent may subsequently remove this
commitment by performing the cancel action.

No specific commitment is implied by the specification as to how frequently the proposition is re-
evaluated, nor what the lag will be between the proposition becoming true and the action being
enacted. Agents who require such specific commitments should negotiate their own agreements
prior to submitting the request-when act.

Formal Model <i, request-whenever (j, <j, act>, φ)> ≡
 <i, inform (j, Ii Done (<j, act>, (∃e) Enables (e, Bj φ)))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done (<j, act>, (∃e) Enables (e, Bj φ))

Agent i informs j that i intends that j will perform some act whenever some event causes j to
believe φ.

Examples Agent i tells agent j to notify it whenever the price of widgets rises from less than 50 to more than
50.

(request-whenever
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-ref
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((iota ?x (= (price widget) ?x)))"))
 (> (price widget) 50))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 29

3.22 Subscribe
Summary The act of requesting a persistent intention to notify the sender of the value of a reference, and to

notify again whenever the object identified by the reference changes.
Message
Content

A descriptor (a referential expression).

Description The subscribe act is a persistent version of query-ref, such that the agent receiving the subscribe
will inform the sender of the value of the reference, and will continue to send further informs if the
object denoted by the description changes.

A subscription set up by a subscribe act is terminated by a cancel act.

Formal Model <i, subscribe (j, Ref x δ(x))> ≡
 <i, request-whenever (j, <j, inform-ref (i, Ref x δ(x))>,
 (∃y) Bj ((Ref x δ(x) = y))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α= Ii Done (<j, inform-ref (i, Ref x δ(x))>,
 (∃e) Enables (e, (∃y) Bj ((Ref x δ(x) = y)))

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Examples Agent i wishes to be updated on the exchange rate of Francs to Dollars, and makes a subscription
agreement with j (an exchange rate server).

(subscribe
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((iota ?x (= ?x (xch-rate FFR USD)))))

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 30

4 References
[FIPA00008] FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00008/
[FIPA00025] FIPA Interaction Protocol Library Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00025/
[FIPA00070] FIPA ACL Message Representation in String. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00070/
[Cohen90] Cohen, P. R. and Levesque, H. J., Intention is Choice with Commitment. In: Artificial Intelligence, 42(2-3),

pages 213-262, 1990.
[Garson84] Garson, G. W., Quantification in Modal Logic. In: Handbook of Philosophical Logic, Volume II:

Extensions of Classical Logic, Gabbay, D., & Guentner, F., editors. D. Reidel Publishing Company,
pages 249-307, 1984.

[Halpern85] Halpern, J. Y. and Moses, Y., A Guide to the Modal Logics of Knowledge and Belief: A Preliminary Draft.
In: Proceedings of the IJCAI-85, 1985.

[Sadek90] Sadek, M. D., Logical Task Modelling for Man-Machine Dialogue. In: Proceedings of AAAI90, pages 970-
975, Boston, USA, 1990.

[Sadek91a] Sadek, M. D., Attitudes Mentales et Interaction Rationnelle: Vers une Théorie Formelle de la
Communication. Thèse de Doctorat Informatique, Université de Rennes I, France, 1991.

[Sadek91b] Sadek, M. D., Dialogue Acts are Rational Plans. In: Proceedings of the ESCA/ETRW Workshop on the
Structure of Multimodal Dialogue, pages 1-29, Maratea, Italy, 1991.

[Sadek92] Sadek, M. D., A Study in the Logic of Intention. In: Proceedings of the 3rd Conference on Principles of
Knowledge Representation and Reasoning (KR92), pages 462-473, Cambridge, USA, 1992.

[Searle69] Searle, J.R., Speech Acts. Cambridge University Press, 1969.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 31

5 Informative Annex A – Formal Basis of ACL Semantics
This section provides a formal definition of the communication language and its semantics. The intention here is to provide
a clear, unambiguous reference point for the standardised meaning of the inter-agent communicative acts expressed
through messages and protocols. This section of the specification is normative, in that agents which claim to conform to
the FIPA specification ACL must behave in accordance with the definitions herein. However, this section may be treated
as informative in the sense that no new information is introduced here that is not already expressed elsewhere in this
document. The non mathematically-inclined reader may safely omit this section without sacrificing a full understanding of
the specification.

Note also that conformance testing, that is, demonstrating in an unambiguous way that a given agent implementation is
correct with respect to this formal model, is not a problem which has been solved in this FIPA specification. Conformance
testing will be the subject of further work by FIPA.

5.1 Introduction to the Formal Model
This section presents, in an informal way, the model of communicative acts that underlies the semantics of the message
language. This model is presented only in order to ground the stated meanings of communicative acts and protocols. It is
not a proposed architecture or a structural model of the agent design.

Other than the special case of agents that operate singly and interact only with human users or other software interfaces,
agents must communicate with each other to perform the tasks for which they are responsible. Consider the basic case
shown in Figure 1.

Agent i Agent j

Message delivery / transportation service

Convert to transport form Convert from transport form

Goal G

Intent I

Msg M

Message M
Speech act

Figure 1: Message Passing Between Two Agents

Suppose that, in abstract terms, Agent i has amongst its mental attitudes the following: some goal or objective G and
some intention I. Deciding to satisfy G, the agent adopts a specific intention, I. Note that neither of these statements
entail a commitment on the design of Agent i: G and I could equivalently be encoded as explicit terms in the mental
structures of a BDI agent, or implicitly in the call stack and programming assumptions of a simple Java or database
agent.

Assuming that Agent i cannot carry out the intention by itself, the question then becomes which message or set of
messages should be sent to another agent (j in Figure 1) to assist or cause intention I to be satisfied? If Agent i is
behaving in some reasonable sense rationally, it will not send out a message whose effect will not satisfy the intention
and hence achieve the goal. For example, if Harry wishes to have a barbecue (G = "have a barbecue"), and thus derives a
goal to find out if the weather will be suitable (G' = "know if it is raining today"), and thus intends to find out the weather (I
= "find out if it is raining"), he will be ill-advised to ask Sally "have you bought Acme stock today?" From Harry's
perspective, whatever Sally says, it will not help him to determine whether it is raining today.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 32

Continuing the example, if Harry, acting more rationally, asks Sally "can you tell me if it is raining today?", he has acted
in a way he hopes will satisfy his intention and meet his goal (assuming that Harry thinks that Sally will know the
answer). Harry can reason that the effect of asking Sally is that Sally would tell him, hence making the request fulfils his
intention. Now, having asked the question, can Harry actually assume that, sooner or later, he will know whether it is
raining? Harry can assume that Sally knows that he does not know, and that she knows that he is asking her to tell him.
But, simply on the basis of having asked, Harry cannot assume that Sally will act to tell him the weather: she is
independent, and may, for example, be busy elsewhere.

In summary: an agent plans, explicitly or implicitly (through the construction of its software) to meet its goals ultimately
by communicating with other agents, that is, sending messages to them and receiving messages from them. The agent
will select acts based on the relevance of the act's expected outcome or rational effect to its goals. However, it cannot
assume that the rational effect will necessarily result from sending the messages.

5.2 The Semantic Language
The Semantic Language (SL6) is the formal language used to define the semantics of the FIPA ACL. As such, SL itself
has to be precisely defined. In this section, we present the SL language definition and the semantics of the primitive
communicative acts.

5.2.1 Basis of the Semantic Language Formalism

In SL, logical propositions are expressed in a logic of mental attitudes and actions, formalised in a first order modal
language with identity7 (see [Sadek 91a] for details of this logic). The components of the formalism used in the following
are as follows:

• p, p1, ... are taken to be closed formulas denoting propositions,

• φ and ψ are formula schemas, which stand for any closed proposition,

• i and j are schematic variables which denote agents, and,

• | = φ means that φ is valid.

The mental model of an agent is based on the representation of three primitive attitudes: belief, uncertainty and choice (or,
to some extent, goal). They are respectively formalised by the modal operators B, U, and C. Formulas using these
operators can be read as:

• Bip "i (implicitly) believes (that) p",

• Uip "i is uncertain about p but thinks that p is more likely than ¬p", and,

• Cip "i desires that p currently holds".

The logical model for the operator B is a KD45 possible-worlds-semantics Kripke structure (see, for example, [Halpern85])
with the fixed domain principle (see, for example, [Garson84]).

To enable reasoning about action, the universe of discourse involves, in addition to individual objects and agents,
sequences of events. A sequence may be formed with a single event. This event may be also the void event. The
language involves terms (in particular a variable e) ranging over the set of event sequences.

To talk about complex plans, events (or actions) can be combined to form action expressions:

6 SL is also used for the content language of the FIPA ACL messages (see [FIPA00008]).
7 This logical framework is similar in many aspects to that of [Cohen90].

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 33

• a1 ; a2 is a sequence in which a2 follows a1

• a1 | a2 is a nondeterministic choice, in which either a1happens or a2, but not both.

Action expressions will be noted as a.

The operators Feasible, Done and Agent are introduced to enable reasoning about actions, as follows:

• Feasible (a, p) means that a can take place and if it does p will be true just after that,

• Done (a, p) means that a has just taken place and p was true just before that,

• Agent (i, a) means that i denotes the only agent that ever performs (in the past, present or future) the actions which

appear in action expression a,

• Single (a) means that a denotes an action expression that is not a sequence. Any individual action is Single. The

composite act a ; b is not Single. The composite act a | b is Single iff both a and b are Single.

From belief, choice and events, the concept of persistent goal is defined. An agent i has p as a persistent goal, if i has p
as a goal and is self-committed toward this goal until i comes to believe that the goal is achieved or to believe that it is
unachievable. Intention is defined as a persistent goal imposing the agent to act. Formulas as PGip and IiP are intended
to mean that "i has p as a persistent goal" and "i has the intention to bring about p", respectively. The definition of I
entails that intention generates a planning process. See [Sadek92] for the details of a formal definition of intention.

Note that there is no restriction on the possibility of embedding mental attitude or action operators. For example, formula
Ui Bj Ij Done (a, Bip) informally means that agent i believes that, probably, agent j thinks that i has the intention that action
a be done before which i has to believe p.

A fundamental property of the proposed logic is that the modelled agents are perfectly in agreement with their own mental
attitudes. Formally, the following schema is valid:

φ ⇔ Biφ

where φ is governed by a modal operator formalising a mental attitude of agent i.

5.2.2 Abbreviations

In the text below, the following abbreviations are used:

1. Feasible (a) ≡ Feasible (a, True)

2. Done (a) ≡ Done (a, True)

3. Possible (φ) ≡ (∃a) Feasible (a, φ)

4. Bifiφ ≡ Biφ ∨ Bi¬φ

Bifiφ means that either agent i believes φ or that it believes ¬φ.

5. Brefi ιxδ(x) ≡ (∃y)Bi (ιxδ(x) = y)

where ι is the operator for definite description and ιxδ(x) is read "the (x which is) δ". Bref i ιxδ(x) means that agent i
believes that it knows the (x which is) δ.

6. Uifiφ ≡ Uiφ ∨ Ui¬φ
Uifiφ means that either agent i is uncertain (in the sense defined above) about φ or that it is uncertain about ¬φ.

7. Urefi ιxδ(x) ≡ (∃y)Ui (ιxδ(x) = y)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 34

Uref i ιxδ(x) has the same meaning as Bref i ιxδ(x), except that agent i has an uncertainty attitude with respect to δ(x)
instead of a belief attitude.

8. ABn,i,jφ ≡ BiBjBi … φ
introduces the concept of alternate beliefs, n is a positive integer representing the number of B operators alternating
between i and j.

In the text, the term "knowledge" is used as an abbreviation for "believes or is uncertain of".

5.3 Underlying Semantic Model
The components of a communicative act (CA) model that are involved in a planning process characterise both the reasons
for which the act is selected and the conditions that have to be satisfied for the act to be planned. For a given act, the
former is referred to as the rational effect or RE8, and the latter as the feasibility preconditions or FPs, which are the
qualifications of the act.

5.3.1 Property 1

To give an agent the capability of planning an act whenever the agent intends to achieve its RE, the agent should adhere
to the following property:

Let ak be an act such that:

1. (∃x) Biak = x

2. p is the RE of ak and

3. ¬Ci ¬Possible (Done(ak));

then the following formula is valid:

Iip ⇒ Ii Done (a1 | ... | an)

Where:

a1, ..., an are all the acts of type ak.

This property says that an agent's intention to achieve a given goal generates an intention that one of the acts known to
the agent be done. Further, the act is such that its rational effect corresponds to the agent's goal, and that the agent has
no reason for not doing it.

The set of feasibility preconditions for a CA can be split into two subsets: the ability preconditions and the context-
relevance preconditions. The ability preconditions characterise the intrinsic ability of an agent to perform a given CA. For
instance, to sincerely assert some proposition p, an agent has to believe that p. The context-relevance preconditions
characterise the relevance of the act to the context in which it is performed. For instance, an agent can be intrinsically
able to make a promise while believing that the promised action is not needed by the addressee. The context-relevance
preconditions correspond to the Gricean quantity and relation maxims.

5.3.2 Property 2

This property imposes on an agent an intention to seek the satisfiability of its FPs, whenever the agent elects to perform
an act by virtue of property 19:

8 Rational effect is also referred to as the perlocutionary effect in some of the work prior to this specification (see [Sadek90]).
9 See [Sadek91b] for a generalised version of this property.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 35

| = Ii Done(a) ⇒ Bi Feasible(a) ∨ IiBi Feasible(a)

5.3.3 Property 3

If an agent has the intention that (the illocutionary component of) a communicative act be performed, it necessarily has
the intention to bring about the rational effect of the act. The following property formalises this idea:

| = Ii Done (a) ⇒ Ii RE (a)

Where:

RE (a) denotes the rational effect of act a.

5.3.4 Property 4

Consider now the complementary aspect of CA planning: the consuming of CAs. When an agent observes a CA, it should
believe that the agent performing the act has the intention (to make public its intention) to achieve the rational effect of the
act. This is called the intentional effect. The following property captures this intuition:

| = Bi(Done (a) ∧ Agent (j, a) ⇒ Ij RE (a))

Note, for completeness only, that a strictly precise version of this property is as follows:

| = Bi(Done (a) ∧ Agent (j, a) ⇒ Ij Bi Ij RE (a))

5.3.5 Property 5

Some FPs persist after the corresponding act has been performed. For the particular case of CAs, the next property is
valid for all the FPs which do not refer to time. In such cases, when an agent observes a given CA, it is entitled to believe
that the persistent feasibility preconditions hold:

| = Bi(Done (a) ⇒ FP (a))

5.3.6 Notation

A communicative act model will be presented as follows:

<i, act (j, C)>

 FP: φ1

 RE: φ2

where i is the agent of the act, j the recipient, act the name of the act, C stands for the semantic content or propositional

content10, and φ1 and φ2 are propositions. This notational form is used for brevity, only within this section on the formal
basis of ACL. The correspondence to the standard transport syntax (see [FIPA00070]) adopted above is illustrated by a
simple translation of the above example:

(act
 :sender i
 :receiver j
 :content
 C)

10 See [Searle69] for the notions of propositional content (and illocutionary force) of an illocutionary act.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 36

Note that this also illustrates that some aspects of the operational use of the FIPA ACL fall outside the scope of this
formal semantics but are still part of the specification. For example, the above example is actually incomplete without
:language and :ontology parameters to given meaning to C, or some means of arranging for these to be known.

5.3.7 Note on the Use of Symbols in Formulae

Note that variable symbols are used in the semantics description formulae of each communicative act as shown in Table
1.

Symbol Usage
a Used to denote an action. Example: a = <i, inform (j, p)>
act

Used to denote an action type. Example: act = inform (j, p)

Thus, if a = <i, inform (j, p)> and act = inform (j, p) then a = <i, act>.

cact Used to denace only an ACL communicative act type.
φ Used to denote any closed proposition (without any restriction).
p Used to denote a given proposition. Thus 'φ' is a formula schema, that is, a variable that denotes a

formula, and 'p' is a formula (not a variable).

Table 1: Meaning of Symbols in Formulae

Consider the following axiom examples:

Ii φ ⇒ ¬Bi φ,

Here, φ stands for any formula. It is a variable.

Bi (Feasible (a) ⇔ p)

Here, p stands for a given formula: the FP of act 'a'.

5.3.8 Supporting Definitions

Enables (e, φ) = Done (e, ¬φ) ∧ φ

Has-never-held-since (e', φ) = (∀e1) (∀e2) Done (e'; e1 ; e2) ⇒ Done (e2, ¬φ)

5.4 Primitive Communicative Acts

5.4.1 The Assertive Inform

One of the most interesting assertives regarding the core of mental attitudes it encapsulates is the act of informing. An
agent i is able to inform an agent j that some proposition p is true only if i believes p (that is, only if Bip). This act is
considered to be context-relevant only if i does not think that j already believes p or its negation, or that j is uncertain
about p (recall that belief and uncertainty are mutually exclusive). If i is already aware that j does already believe p, there
is no need for further action by i. If i believes that j believes not p, i should disconfirm p. If j is uncertain about p, i should
confirm p.

<i, INFORM (j, φ)>
 FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
 RE: Bjφ

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 37

The FPs for inform have been constructed to ensure mutual exclusiveness between CAs, when more that one CA might
deliver the same rational effect.

Note, for completeness only, that the above version of the inform model is the operationalised version. The complete
theoretical version (regarding the FPs) is the following:

<i, INFORM (j, φ)>
 FP: Biφ ∧ ∧

>n 1
 ¬ ABn,i,j ¬Biφ ∧ ¬ BiBjφ ∧ ∧

>n 2
 ¬ ABn,i,j Bjφ

 RE: Bjφ

5.4.2 The Directive Request

The following model defines the directive request:

<i, REQUEST (j, a)>
 FP: FP (a) [i\j] ∧ Bi Agent (j, a) ∧ Bi ¬PGj Done (a)
 RE: Done (a)

Where:

• a is a schematic variable for which any action expression can be substituted,

• FP (a) denotes the feasibility preconditions of a, and,

• FP (a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

5.4.3 Confirming an Uncertain Proposition: Confirm

The rational effect of the act confirm is identical to that of most of the assertives, i.e., the addressee comes to believe the
semantic content of the act. An agent i is able to confirm a property p to an agent j only if i believes p (that is, Bip). This is
the sincerity condition an assertive act imposes on the agent performing the act. The act confirm is context-relevant only if
i believes that j is uncertain about p (that is, Bi Uj p). In addition, the analysis to determine the qualifications required for an
agent to be entitled to perform an Inform act remains valid for the case of the act confirm. These qualifications are
identical to those of an inform act for the part concerning the ability preconditions, but they are different for the part
concerning the context relevance preconditions. Indeed, an act confirm is irrelevant if the agent performing it believes that
the addressee is not uncertain of the proposition intended to be confirmed.

In view of this analysis, the following is the model for the act confirm:

<i, CONFIRM (j, φ)>
 FP: Biφ ∧ BiUjφ
 RE: Bjφ

5.4.4 Contradicting Knowledge: Disconfirm

The confirm act has a negative counterpart: the disconfirm act. The characterisation of this act is similar to that of the
confirm act and leads to the following model:

<i, DISCONFIRM (j, φ)>
 FP: Bi¬φ ∧ Bi(Ujφ ∨ Bjφ)
 RE: Bj¬φ

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 38

5.5 Composite Communicative Acts
An important distinction is made between acts that can be carried out directly, and those macro acts which can be
planned (which includes requesting another agent to perform the act), but cannot be directly carried out. The distinction
centres on whether it is possible to say that an act has been done, formally Done (Action, p). An act which is composed
of primitive communicative actions (inform, request, confirm), or which is composed from primitive messages by
substitution or sequencing (via the ";" operator), can be performed directly and can be said afterwards to be done. For
example, agent i can inform j that p; Done (<i, inform(j, p)>) is then true, and the meaning (that is, the rational
effect) of this action can be precisely stated.

However, a large class of other useful acts is defined by composition using the disjunction operator (written "|"). By the
meaning of the operator, only one of the disjunctive components of the act will be performed when the act is carried out. A
good example of these macro-acts is the inform-ref act. Inform-ref is a macro act defined formally by:

<i, INFORM-REF (j, ιx δ(x))> ≡
 <i, INFORM (j, ιx δ(x) = r1)> | … | <i, INFORM (j, ιx δ(x) = rn)>

where n may be infinite. This act may be requested (for example, j may request i to perform it), or i may plan to perform
the act in order to achieve the (rational) effect of j knowing the referent of δ(x). However, when the act is actually
performed, what is sent, and what can be said to be Done, is an inform act.

Finally an inter-agent plan is a sequence of such communicative acts, using either composition operator, involving two or
more agents. FIPA interaction protocols (see [FIPA00025]) are primary examples of pre-enumerated inter-agent plans.

5.5.1 The Closed Question Case

In terms of illocutionary acts, exactly what an agent i is requesting when uttering a sentence such as "Is p?" toward a
recipient j, is that j performs the act of "informing i that p" or that j performs the act "informing i that ¬p". We know the
model for both of these acts: <j, INFORM (i, φ)>. In addition, we know the relation "or" that holds between these two
acts: it is the relation that allows for the building of action expressions which represent a non-deterministic choice
between several (sequences of) events or actions.

In fact, as mentioned above, the semantic content of a directive refers to an action expression; so, this can be a
disjunction between two or more acts. Hence, by using the utterance "Is p?", what an agent i requests an agent j to do is
the following action expression:

<j, INFORM (i, p)> | <j, INFORM (i, ¬p)>

It seems clear that the semantic content of a directive realised by a yes/no-question can be viewed as an action
expression characterising an indefinite choice between two CAs inform. In fact, it can also be shown that the binary
character of this relation is only a special case: in general, any number of CAs inform can be handled. In this case, the
addressee of a directive is allowed to choose one among several acts. This is not only a theoretical generalisation: it
accounts for classical linguistic behaviour traditionally called alternatives question. An example of an utterance realising
an alternative question is "Would you like to travel in first class, in business class, or in economy class?" In this case,
the semantic content of the request realised by this utterance is the following action expression:

<j, INFORM (i, p1)> | <j, INFORM (i, p2)> | <j, INFORM (i, p3)>

Where p1, p2 and p3 are intended to mean respectively that j wants to travel in first class, in business class, or in economy
class.

As it stands, the agent designer has to provide the plan-oriented model for this type of action expression. In fact, it would
be interesting to have a model which is not specific to the action expressions characterising the non-deterministic choice
between CAs of type inform, but a more general model where the actions referred to in the disjunctive relation remain
unspecified. In other words, to describe the preconditions and effects of the expression a1 | a2 | … | an where a1, a2, …, an
are any action expressions. It is worth mentioning that the goal is to characterise this action expression as a disjunctive

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 39

macro-act which is planned as such; we are not attempting to characterise the non-deterministic choice between acts
which are planned separately. In both cases, the result is a branching plan but in the first case, the plan is branching in
an a priori way while in the second case it is branching in an a posteriori way.

An agent will plan a macro-act of non-deterministic choice when it intends to achieve the rational effect of one of the acts
composing the choice, no matter which one it is. To do that, one of the feasibility preconditions of the acts must be
satisfied, no matter which one it is. This produces the following model for a disjunctive macro-act:

a1 | a2 | … | an

 FP: FP (a1) ∨ FP (a2) ∨ ... ∨ FP (an)
 RE: RE (a1) ∨ RE (a2) ∨ ... ∨ RE (an)

Where FP (ak) and RE (ak) represent the FPs and the RE of the action expression ak, respectively.

Because the yes/no-question, as shown, is a particular case of alternatives question, the above model can be specialised
to the case of two acts inform having opposite semantic contents. Thus, we get the following model:

<i, INFORM (j, φ)> | <i, INFORM (j, ¬φ)>
 FP: Bifiφ ∧ ¬Bi(Bifjφ ∨ Uifjφ)
 RE: Bifjφ

In the same way, we can derive the disjunctive macro-act model which gathers the acts confirm and disconfirm. We will
use the abbreviation <i, CONFDISCONF (j, φ)> to refer to the following model:

<i, CONFIRM (j, φ)> φ <i, DISCONFIRM (j, φ)>)
 FP: Bifiφ ∧ BiUjφ
 RE: Bifjφ

5.5.2 The Query If Act

Starting from the act models <j, INFORM-IF (i, φ)> and <i, REQUEST (j, a)>, it is possible to derive the
query-if act model (and not plan, as shown below). Unlike a confirm/disconfirm-question, which will be addressed below, a
query-if act requires the agent performing it not to have any knowledge about the proposition whose truth value is asked
for. To get this model, a transformation11 has to be applied to the FPs of the act <j, INFORM-IF (i, φ)> and leads to
the following model for a query-if act:

<i, QUERY-IF (j, φ)> ≡
 <i, REQUEST (j, <j, INFORM-IF (i, φ)>)>
 FP: ¬Bifiφ ∧ ¬Uifiφ ∧ Bi ¬PGj Done (<j, INFORM-IF (i, φ)>)
 RE: Done(<j, INFORM (i, φ)> | <j, INFORM (i, ¬φ)>)

5.5.3 The Confirm/Disconfirm Question Act

In the same way, it is possible to derive the following confirm/disconfirm question act model:

<i, REQUEST (j, <j, CONFDISCONF (i, φ)>)>
 FP: Uiφ ∧ Bi¬PGjDone (<j, CONFDISCONF (i, φ)>)
 RE: Done (<j, CONFIRM (i, φ)> | <j, DISCONFIRM (i, φ) φ)

11 For more details about this transformation, called the double-mirror transformation, see [Sadek91a] and [Sadek91b].

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 40

5.5.4 The Open Question Case

Open question is a question which does not suggest a choice and, in particular, which does not require a yes/no answer.
A particular case of open questions are the questions which require referring expressions as an answer. They are
generally called wh-questions. The "wh" refers to interrogative pronouns such as "what", "who", "where", or "when".
Nevertheless, this must not be taken literally since the utterance "How did you travel?" can be considered as a wh-
question.

A formal plan-oriented model for the wh-questions is required. In the model below, from the addressee's viewpoint, this
type of question can be viewed as a closed question where the suggested choice is not made explicit because it is too
wide. Indeed, a question such as "What is your destination?" can be restated as "What is your destination: Paris,
Rome,... ?".

The problem is that, in general, the set of definite descriptions among which the addressee can (and must) choose is
potentially an infinite set, not because, referring to the example above, there may be an infinite number of destinations,
but because, theoretically, each destination can be referred to in potentially an infinite number of ways. For instance,
Paris can be referred to as "the capital of France", "the city where the Eiffel Tower is located", "the capital of the country
where the Man-Rights Chart was founded", etc. However, it must be noted that in the context of man-machine
communication, the language used is finite and hence the number of descriptions acceptable as an answer to a wh-
question is also finite.

When asking a wh-question, an agent j intends to acquire from the addressee i an identifying referring expression (IRE)
[Sadek90] for a definite description, in the general case. Therefore, agent j intends to make his interlocutor i perform a CA
which is of the following form:

<i, INFORM (j, ιxδ(x) = r)>

Where r is an IRE, for example, a standard name or a definite description, and ιxδ(x) is a definite description. Thus, the
semantic content of the directive performed by a wh-question is a disjunctive macro-act composed with acts of the form of
the act above. Here is the model of such a macro-act:

<i, INFORM(j, ιxδ(x) = r1)> | ... | <i, INFORM(j, ιxδ(x) = rk)>

Where rk are IREs. To deal with the case of closed questions, the generic plan-oriented model proposed for a disjunctive
macro-act can be instantiated for the account of the macro-act above. Note that the following equivalence is valid:

(Bi ιxδ(x) = r1 ∨ Bi ιxδ(x) = r2 ∨ ...) ⇔ (∃y) Bi ιxδ(x) = y

This produces the following model, which is referred to as <i, INFORM-REF(j, ιx δ(x))>:

<i, INFORM-REF(j, ιx δ(x))>
 FP: Brefi ιx δ(x) ∧ ¬ Bi (Brefj ιx δ(x) ∨ Urefj ιx δ(x))
 RE: Brefj ιx δ(x)

Where Brefj ιxδ(x) and Urefj ιxδ(x) are abbreviations introduced above, and αrefj ιxδ(x) is an abbreviation
defined as:

αrefj ιx δ(x) ≡ Brefj ιx?δ(x) ∨ Urefj ιx?δ(x)

Provided the act models <j, INFORM-REF (i, ιx δ(x))> and <i, REQUEST (j, a)>, the wh-question act model
can be built up in the same way as for the yn-question act model. Applying the same transformation to the FPs of the act
schema <j, INFORM-REF (i, ιxδ(x))>, and by virtue of property 3, the following model is derived:

<i, QUERY-REF (j, φ)>?≡ <i, REQUEST (j, <j, INFORM-REF (i, ιx δ(x)>)>
 FP: ¬αrefi ιxδ(x) ∧ Bi ¬PGj Done (<j, INFORM-REF (i, ιxδ(x))>)
 RE: Done (<j, INFORM (i, ιxδ(x) = r1)> | … | <j, INFORM (i, ιxδ(x) = rk)>)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 41

5.6 Inter-Agent Communication Plans
The properties of rational behaviour stated above in the definitions of the concepts of rational effect and of feasibility
preconditions for CAs suggest an algorithm for CA planning. A plan is built up by this algorithm builds up through the
inference of causal chain of intentions, resulting from the application of properties 1 and 2.

With this method, it can be shown that what are usually called "dialogue acts" and for which models are postulated, are,
in fact, complex plans of interaction. These plans can be derived from primitive acts, by using the principles of rational
behaviour. The following is an example of how such plans are derived.

The interaction plan "hidden" behind a question act can be more or less complex depending on the agent mental state
when the plan is generated.

Let a direct question be a question underlain by a plan which is limited to the reaction strictly legitimised by the question.
Suppose that the main content of i's mental state is:

Bi Bifj φ, Ii Bifi φ

By virtue of property 1, the intention is generated that the act <j, INFORM-IF (i, φ)> be performed. Then, according
to property 2, there follows the intention to bring about the feasibility of this act. Then, the problem is to know whether the
following belief can be derived at that time from i's mental state:

Bi(Bifj φ ∧ (¬Bj Bifi φ ∨ Uifi φ))

This is the case with i's mental state. By virtue of properties 1 and 2, the intention that the act <i, REQUEST (j, <j,
INFORM-IF (i, φ)>)> be done and then the intention to achieve its feasibility, are inferred. The following belief is
derivable:

Bi(¬Bifi φ ∧ ¬Uifi φ)

Now, no intention can be inferred. This terminates the planning process. The performance of a direct strict-yn-question
plan can be started by uttering a sentence such as "Has the flight from Paris arrived?", for example.

Given the FPs and the RE of the plan above, the following model for a direct strict-yn-question plan can be established:

<i, YNQUESTION (j, φ)>
 FP: Bi Bifj φ ∧ ¬Bifi φ ∧ ¬Uifi φ ∧ Bi ¬Bj(Bifi φ ∨ Uifi φ)
 RE: Bifi φ

