
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Agent Software Integration Specification 5

 6

Document title FIPA Agent Software Integration Specification
Document number XC00079B Document source FIPA Architecture Board
Document status Experimental Date of this status 2001/08/10
Supersedes FIPA00012
Contact fab@fipa.org
Change history
2000/06/14 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

 ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

 iii

Contents 38

1 Scope.. 1 39
2 Overview ... 2 40
3 Agent Software Integration Reference Model ... 4 41

3.1 Agent Resource Broker ... 5 42
3.1.1 Conformance of an Agent Resource Broker .. 6 43

3.2 Wrapper Service .. 6 44
3.2.1 Conformance of a Wrapper Service ... 7 45

4 Agent Resource Broker Ontology ... 9 46
4.1 Object Descriptions.. 9 47

4.1.1 Service Description... 9 48
4.1.2 Communication Properties ... 10 49

4.2 Function Descriptions .. 10 50
4.2.1 Registration of a Software Object... 11 51
4.2.2 Deregistration of a Software Object.. 11 52
4.2.3 Modification of a Software Object Registration... 11 53
4.2.4 Search for an Software Object Registration ... 11 54

4.3 Predicates.. 12 55
4.3.1 Registered .. 12 56
4.3.2 Member .. 12 57

4.4 Exceptions ... 12 58
4.4.1 Failure Exception Propositions ... 12 59

5 Wrapper Ontology... 13 60
5.1 Object Descriptions.. 13 61
5.2 Function Descriptions .. 13 62

5.2.1 Initialise a Software System ... 13 63
5.2.2 Terminate a Connection to a Software System.. 13 64
5.2.3 Store the State of a Software System .. 13 65
5.2.4 Retrieval of the State of a Software System... 14 66
5.2.5 Subscribe to a Software System Event .. 14 67
5.2.6 Unsubscribe from a Software System Event.. 14 68
5.2.7 Suspend a Software System .. 14 69
5.2.8 Resume a Software System... 15 70
5.2.9 Invoke an Action on a Software System... 15 71
5.2.10 Achieve a Predicate.. 15 72

5.3 Predicates.. 15 73
5.3.1 Member .. 15 74
5.3.2 Parameter... 15 75
5.3.3 Subscribed.. 15 76
5.3.4 Operation.. 16 77

5.4 Exceptions ... 16 78
5.4.1 Failure Exception Propositions ... 16 79

6 References.. 17 80
81

1 Scope 81

This document provides a specification which deals with technologies enabling the integration of services provided by 82
non-agent software into a multi-agent community. It defines in general the relationship between agents and software 83
systems. 84
 85
The purpose of this specification is twofold: it allows agents to describe, broker and negotiate over software systems, 86
and it allows new software services to be dynamically introduced into an agent community. This specification defines a 87
reference model, identifies agent roles (for example, broker, client, etc.) and the messages/actions which define each of 88
these roles. It builds upon [FIPA00061] and [FIPA00023]. 89
 90
This specification operates at the agent communication level and does not define any mappings to specific software 91
architectures; such mappings are considered outside the scope of FIPA. 92
 93
This specification enables developers to build: 94
 95
 Wrappers for software services which are to be utilised and/or controlled by a community of agents ("public 96

services"), 97
 98
 Agents which provide the Agent Resource Broker (ARB) service to allow registration in a query repository and 99

management of such software services, and, 100
 101
 Agents ready to access such public services. 102
 103
It is also intended to be used in the future by third-party developers wishing to implement new software systems ready 104
to be used by FIPA-compliant agents. 105

106

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 2

2 Overview 106

In most significant applications, agents may have a need to obtain a service by other entities in the system. Sometimes, 107
such services could be provided by other agents. However, there are and in the future there will continue to be a wealth 108
of non-agent software systems which provide useful services. If agents are to be truly useful they must be able to 109
interface with and control existing software system such as databases, web-browsers, set-top boxes, speech synthesis 110
programs and so forth. 111
 112
This specification defines how software resources can be described, shared and dynamically controlled in an agent 113
community. Software systems are characterised by software descriptions which define the nature of the software 114
system and how to connect to it. The rationale behind this specification is to allow agents to openly share and trade 115
software resources with each other. Allowing agents to communicate about software resources, means agents can 116
inform each other about the existence of new software resources and thereby facilitate the dynamic inclusion and 117
management of new software systems. This provides agents with a method by which they can dynamically acquire new 118
capabilities. 119
 120
FIPA concerns itself with how agents can connect to and control external software systems, that is systems which are 121
external to and independent of an agents execution context. By way of contrast, internal attachment to software, where 122
the software is included in an agents execution context is not considered in FIPA as it would require assumptions to be 123
made about the internal implementation of agents. 124
 125
Software systems come in all shapes and sizes. Many different types of interfaces are possible each with their own 126
particular networking protocol, strengths and weaknesses. Furthermore, there are a number of emerging distribution 127
technologies such as CORBA, DCOM and Java-RMI which are creating (competing) standards for the integration of 128
software systems and resources. To simplify this situation and to provide the freedom to agent-programmers, this 129
specification does not mandate the use of any particular API or distribution technology, rather it treats software 130
integration at the agent-communication level. That is in terms of the types and contents of messages exchanged 131
between agents. To support this, two new agent roles have been identified (see Figure 1): 132
 133
 An Agent Resource Broker (ARB) agent brokers a set of software descriptions to interested agents. Clients query 134

it about what software services are available. 135
 136
 A Wrapper agent allows an agent to connect to a software system uniquely identified by a software description. 137

Client agents can relay commands to the Wrapper agent and have them invoked on the underlying software 138
system. The role provided by the Wrapper agent provides a single generic way for agents to interact with software 139
systems. 140

 141

ARB

Client
Agent

Wrapper
Agent

Software
System

query

invoke

Outside Scope
of FIPA

 142
 143

Figure 1: General Agent Software Integration Scenario 144
 145

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 3

In this document we refer to ARB and Wrapper agents. However, these are defined as agent capabilities rather than 146
explicit agent types (see Figure 2). Each capability is defined by an ontology (defining the syntax and semantics of a set 147
of actions and predicates) which are supported by an agent fulfilling the corresponding ARB or Wrapper role1. 148

 149

Agent

Wrapper

Mapping to Technology

CGI ActiveXApril Java Orb
Trader...

HTTP DCOMTCP/IP RMI IIOP

Software Services

Web
Server

Java
Component

Server

CORBA
Server

Legacy
System

ACL Messages

 150
 151

Figure 2: Layered Model for a Wrapper 152
 153
Figure 3 shows three examples of possible Wrapper Agents. The top Wrapper agent provides a dedicated mapping to a 154
legacy database over, for example say, the TCP/IP protocol. The top Wrapper agent will set-up a connection to the 155
legacy database and will translate invocation requests from the client agent into operations on the legacy database. The 156
bottom Wrapper agent provides a mapping to the application-level HTTP protocol, enabling the client agent to access 157
internet resources from web-servers. Finally, the middle Wrapper agent provides a mapping to a CORBA standard 158
Object Request Broker (ORB) allowing the client agent to manipulate an SQL database over an ORB bus. This 159
Wrapper agent could be specialised to accessing just SQL databases using CORBA ORBs or it could be a more 160
general Wrapper agent which supports dynamic connection to any system which has been registered with the ORB’s 161
Implementation Repository. 162
 163

Wrapper
Agent

Client
Agent

Wrapper
Agent

Wrapper
Agent

ORB Bus

HTTP

Dedicated
Mapping

SQL
Database

Web Server

Legacy
Database

 164
 165

Figure 3: Example Scenario for Wrapper Agents and Software Systems 166
 167
This specification provides details about how to find and interface with software systems in a manner which is FIPA-168
compliant. 169

170
1 This specification is only concerned with the interactions between agents. How a Wrapper agent actually connects to and invokes operations on a
software system is the responsibility of individual Wrapper agent developers. Wrapper agents can be specific in that they only support specific types
of software systems, or they may be able to support connections to a number of different software system types.

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 4

3 Agent Software Integration Reference Model 170

The agent software integration reference model extends the entities defined in [FIPA00023] to include two new agent 171
roles (see Figure 4): 172
 173

Agent1

Software4
DF

Software3

Agent2
Agenti
(ARB)

Agentj
(Wrapper)

Agentk
(Using

Software1)

Software1 Software2

MTS

ACL

 174
 175

Figure 4: Agent Software Integration Reference Model 176
 177
 The ARB agent (Agenti in Figure 4) is an agent which supports the ARB capability as defined in this specification. 178

An ARB agent brokers a set of software descriptions to interested client agents and an ARB advertises this service 179
by registering with the DF. 180
 181
Software services are described by textual software descriptions which list the properties of the software service. 182
Part of the software description will describe where the software is located and how to interface with it (for example, 183
networking protocols, encoding types supported). An agent providing the ARB interface supports the FIPA-ARB 184
ontology (see section 4, Agent Resource Broker Ontology) with commands and predicates for registering and 185
searching for software services. 186

 187
 The Wrapper agent (Agentj in the figure) is an agent which can dynamically interface with a software system 188

uniquely described by a software description. The Wrapper agent will allow client agents to invoke commands on 189
the underlying software system, translating the commands contained in ACL messages into operations on the 190
underlying software system. Wrapper agents may be able to support multiple connections to software systems 191
simultaneously2. 192

 193
A Wrapper agent supports the FIPA-Wrapper ontology (see section 4, Agent Resource Broker Ontology) with 194
commands and predicates for initialising and issuing requests to software systems. 195

 196
How a Wrapper agent is implemented and what interface exists between the Wrapper agent and the underlying 197
software system that provides the software service is a matter for Wrapper developers and third-party tool support 198
vendors. 199

 200
A key point to remember is that Wrapper agents have the ability to dynamically manage new software devices. This 201
is the conceptual difference between a Wrapper agent and an agent which upgrades a software service to being an 202
agent-level service. This difference will of course be reflected in the DF. To illustrate the point consider two agents: 203
The first agent has the capability to send and receive email and accordingly it will advertise this service in its DF 204
entry. The second agent has the capability of connecting to an email service, it is a Wrapper agent and will accept a 205
description of the software service required (in this case the location of the mail host and the networking protocol to 206
use). The first agent will allow a client to send and receive email since it has a static connection to a given email 207
server. The second agent will allow an agent to dynamically connect to a remote email service identified by a 208
software description. 209

 210

2 A Wrapper agent which supports the full FIPA-Wrapper ontology is considered to provide more than a simple bridging function to an external
software system. Such an agent implicitly provides a management functionality.

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 5

Client Agents (Agent-k in Figure 4) are agents which wish to use the services provided by a software system, for 211
example Software1. They can query the DF in order to find out if an agent exists which provides an ARB service in the 212
agent domain. Next they can query the ARB agent to see if there is a software system (identified by a software 213
description) which meets its requirements (Software1). If Agentk cannot interface directly with the software system 214
identified by the software description returned by the ARB (Software1), then it must obtain the services of an agent that 215
can (a Wrapper agent). Agentk queries the DF to find out if there is an agent which supports the Wrapper capability for 216
the specific software system which the software description identifies. In this example, the DF returns Agentj in 217
response to the query. Agentk then contacts Agentj (the Wrapper agent) to initiate control of Software1. The Wrapper 218
agent (Agentj) will then invoke operations on the underlying software system in response to requests sent to it by 219
Agentk. 220
 221
Some agents (Agent2 in Figure 4) can directly interface to software systems (Software3) and thus do not need work 222
through a Wrapper agent. Such capabilities are outside the scope of this specification. It should be noted, that Agent2 223
could have obtained the address of Software3 from the ARB agent. 224
 225
Other agents (Agent1 in Figure 4) can embed private software within their execution context. This is outside the scope of 226
this specification. 227
 228
The following is a summary of steps necessary to support the reference model: 229
 230
1. Agenti registers with the DF. It advertises the fact that it provides an ARB service by providing a service description 231

with fipa-arb as the value of the the :type parameter. 232
 233
2. Agentj registers with the DF. It advertises the fact that it provides a Wrapper service by providing a service 234

description with fipa-wrapper as the value of the :type parameter. 235
 236
3. Agentk queries the DF for an agent which provides an ARB service. The DF returns the name of Agenti as satisfying 237

the query. 238
 239
4. Agentk queries the Agenti for a software system which matches some specific requirements, for example a Group3 240

fax-server. Agenti returns a software description which uniquely identifies a specific software service. 241
 242
5. Agentk queries the DF for an agent which can provide a Wrapper service to a Group3 fax-server. The DF returns the 243

name of Agentj as satisfying the query. 244
 245
6. Agentk requests that Agentj initialise a connection to the Group3 fax server identified by the service description (from 246

step 4). 247
 248
7. Agentk requests that Agentj invoke a certain operation on the Group3 fax server. 249
 250
8. Agentk requests that Agentj close the connection to the Group3 fax server. 251
 252

3.1 Agent Resource Broker 253

The Agent Resource Broker (ARB) is a special service that can be provided by an agent. Every agent in the domain is 254
allowed to support this service, however it is mandatory that every agent platform which wants to support FIPA-255
compliant software sharing must have at least one agent that provides this ARB service. This service must be 256
registered with the DF in order to be advertised in the agent domain. 257
 258
Every ARB agent is able to understand the FIPA-ARB ontology as specified in section 4, Agent Resource Broker 259
Ontology. Therefore, in order to find an agent which provides ARB service, agents must query the Directory Facilitator 260
(DF), whose address is by default known by all agents in the domain. 261
 262
An agent which offers the ARB service wishes to broker a set of software services for direct use by other agents. 263
However, an ARB may not wish to simply hand over a software description in response to a query from an interested 264
agent. It may wish to negotiate over the terms and conditions of use of the software system, request authorisation or 265

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 6

even provide permanent or evaluation keys for use with the software system. Such negotiation is application-266
dependent. 267
 268

3.1.1 Conformance of an Agent Resource Broker 269

A FIPA-compliant ARB agent must at least: 270
 271
 Register the ARB service description with the DF with fipa-arb as the :type and FIPA-ARB as the :ontology, 272
 273
 Implement the actions described in the FIPA-ARB ontology according to the behaviour and parameters specified in 274

section 4, Agent Resource Broker Ontology, 275
 276
 Implement and assert the predicates described in the FIPA-ARB ontology according to the semantics specified in 277

section 4.3, Predicates, 278
 279
 Create and store registration predicates in response to a successful register-software action, 280
 281
 Understand the request [FIPA00037] communicative act to request the execution of one of the ARB actions; 282
 283
 Understand the query-if [FIPA00037] and query-ref [FIPA00037] communicative acts to query its knowledge 284

by using the query predicate; 285
 286
 Implement the FIPA-Request [FIPA00026] and FIPA-Query [FIPA00027] interaction protocols, and, 287
 288
 Implement the not-understood [FIPA00037], agree [FIPA00037], refuse [FIPA00037], failure 289

[FIPA000437] and inform [FIPA00037] communicative acts in order to respond to requests and queries according 290
to the FIPA-Request and FIPA-Query interaction protocols. 291

 292
Even if these requirements guarantee FIPA compliance, of course they are not sufficient to guarantee the usefulness of 293
the ARB agent to the agent domain. 294
 295

3.2 Wrapper Service 296

Wrapper services are provided by agents. The Wrapper service allows an agent to: 297
 298
 Request a dynamic connection to a software, 299
 300
 Invoke operations on the software system, 301
 302
 To be informed of the results of operations, 303
 304
 To query the properties of the software system, 305
 306
 Set the parameters of a software system, 307
 308
 Subscribe to events of the software system, 309
 310
 Manage the state of the service, and, 311
 312
 Terminate the service. 313
 314
An agent can request of an agent which provides a Wrapper service to dynamically connect to a software system 315
uniquely identified by a software service description. The ARB service supports the sharing and brokering of such 316
software descriptions. 317
 318

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 7

An agent providing a Wrapper service (the Wrapper agent) can be specific to a type of software system (specifically it 319
commits to a given software system ontology). In addition, a Wrapper can be specific about the types of connection and 320
communication protocols it can support when interfacing with a software system, for example, HTTP, SMTP, etc. This 321
allows client agents who wish to use the services of a Wrapper agent to discriminate between Wrapper agents on the 322
basis of both the software systems supported and the types of connections supported. 323
 324
Wrapper agents may be able to support multiple software types and multiple service instances simultaneously. In order 325
to allow a Wrapper agents to distinguish between concurrent services, Wrapper agents will return a :service-326
instance-id to the client agent on the successful completion of an init action. Most of the actions supported by the 327
FIPA-Wrapper ontology require the inclusion of this :service-instance-id. 328
 329
A Wrapper agent has freedom on how it chooses to "wrap" a software system. The most basic integration scenario 330
would model a software system simply as a collection of operations which can be performed on the software system. 331
 332
A more sophisticated Wrapper agent can divide the operations into three general categories. Specific actions and 333
predicates have been included in the FIPA-Wrapper ontology to reflect and support this distinction, that is, to provide 334
Wrapper agents with the necessary vocabulary to support such distinctions should Wrapper agent-designers wish to 335
support them. The three categories are: 336
 337
1. Event Notification 338

The software system asynchronously notifies every agent subscribed to an event when that specific event occurs. 339
The actions software-subscribe and software-unsubscribe actions support this activity. The 340
subscribed predicate supports the querying to which events an agent is subscribed. 341
 342

2. Sensing Functions 343
The agent can require to the wrapper to be informed of the result of a function call which does not change the state 344
of the environment and of the software system itself. The query-ref and query-if communicative acts and the 345
parameter predicate support this activity. 346

 347
3. Effecting Actions 348

The agent can require the Wrapper agent to perform an action. The invoke action supports this function for 349
domain-dependent operations. The achieve action provides a generic way to set the parameters of a software 350
service. 351

 352
Such a categorisation allows the interfaces to different software systems to be treated in a generic component-based 353
manner. There is a generic method for discovering what event types, parameters and operations are supported using 354
the query-ref and query-if communicative acts in conjunction with the predicates supported by the FIPA-355
Wrapper ontology. The actions of the FIPA-Wrapper ontology provide a single generic way to subscribe to and 356
unsubscribe from events, to modify parameters and to invoke operations. 357
 358
As mentioned already, a Wrapper agent does not have to provide such a component-based interface to a software 359
system. 360
 361

3.2.1 Conformance of a Wrapper Service 362

A FIPA-compliant Wrapper agent must: 363
 364
 Register the Wrapper service description with the DF with fipa-wrapper as the :type and FIPA-Wrapper as 365

the :ontology, 366
 367
 Implement the actions described in the FIPA-Wrapper ontology according to the behaviour and parameters 368

specified in section 5, Wrapper Ontology, 369
 370
 Implement and assert the predicates described in the FIPA-Wrapper ontology according to the semantics 371

specified in section 5.3, Predicates, 372

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 8

 373
 Understand the request communicative act to request the execution of one of these Wrapper actions, 374
 375
 Understand the query-if and query-ref communicative acts to query its asserted predicates by using the 376

FIPA-Wrapper predicates, 377
 378
 Implement the FIPA-Request and FIPA-query interaction protocols, and, 379
 380
 Implement the not-understood, agree, refuse, failure, inform communicative acts in order to respond to requests 381

and queries according to the FIPA-request and FIPA-Query interaction protocols. 382
 383

384

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 9

4 Agent Resource Broker Ontology 384

4.1 Object Descriptions 385

This section describes a set of frames, that represent the classes of objects in the domain of discourse within the 386
framework of the FIPA-ARB ontology. 387
 388
The following terms are used to describe the objects of the domain: 389
 390
 Frame. This is the mandatory name of this entity, that must be used to represent each instance of this class. 391
 392
 Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the 393

table. 394
 395
 Parameter. This is the mandatory name of a parameter of this frame. 396
 397
 Description. This is a natural language description of the semantics of each parameter. 398
 399
 Presence. This indicates whether each parameter is mandatory or optional. 400
 401
 Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence. 402
 403
 Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter. 404
 405

4.1.1 Service Description 406

This type of object represents the description of each service registered with the DF. 407
 408
Frame
Ontology

service-description
FIPA-ARB

Parameter Description Presence Type Reserved Values
name The name of the service. Mandatory String
type The type of the service. Mandatory String fipa-arb

fipa-wrapper
ontology A list of ontologies supported by

the service.
Optional Set of String FIPA-ARB

FIPA-Wrapper

protocol A list of interaction protocols
supported by the service.

Optional Set of String

properties A list of properties that
discriminate the service.

Optional Set of property

communication-
properties

A list of communication methods
of the service.

Mandatory Set of
communication-
properties

 409
410

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 10

4.1.2 Communication Properties 410

This object represents the generic, service-independent properties which describe how to connect to the service3. 411
Communication properties are independent of any given communication protocol and they should be complete and 412
provide the minimum information required for an agent to successfully connect directly to a software system. 413
 414
Frame
Ontology

communication-properties
FIPA-ARB

Parameter Description Presence Type Reserved Values
net-protocol The network protocol of the

service.
Mandatory String IIOP

SMTP
HTTP

address The transport address of the
service.

Mandatory URL

message-body-
format

The format of the message body. Mandatory String FIPA-String-ACL

message-body-
encoding

The encoding of the message
body.

Mandatory String See [ISO2022]

 415

4.2 Function Descriptions 416

The following tables define usage and semantics of the functions that are part of the FIPA-ARB ontology and that are 417
supported by the ARB service. 418
 419
The following terms are used to describe the functions of the FIPA-ARB domain: 420
 421
 Function. This is the symbol that identifies the function in the ontology. 422
 423
 Ontology. This is the name of the ontology, whose domain of discourse includes the function described in the 424

table. 425
 426
 Supported by. This is the type of agent that supports this function. 427
 428
 Description. This is a natural language description of the semantics of the function. 429
 430
 Domain. This indicates the domain over which the function is defined. The arguments passed to the function must 431

belong to the set identified by the domain. 432
 433
 Range. This indicates the range to which the function maps the symbols of the domain. The result of the function is 434

a symbol belonging to the set identified by the range. 435
 436
 Arity. This indicates the number of arguments that a function takes. If a function can take an arbitrary number of 437

arguments, then its arity is undefined. 438
 439

440

3 It is not mandatory to return all of the communication properties in response to a query. These could be withheld by the ARB pending a successful
negotiation over terms and conditions of the service.

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 11

4.2.1 Registration of a Software Object 440

Function register

Ontology FIPA-ARB

Supported by ARB
Description The execution of this function has the effect of registering a new software object into the

knowledge base of the executing agent.
Domain service-description

Range The execution of this function results in a change of the state, but it has no explicit result.
Therefore there is no range set.

Arity 1
 441

4.2.2 Deregistration of a Software Object 442

Function deregister

Ontology FIPA-ARB

Supported by ARB
Description An agent may deregister an object in order to remove all of its attributes from a directory.
Domain service-name
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 1

 443

4.2.3 Modification of a Software Object Registration 444

Function modify

Ontology FIPA-ARB

Supported by ARB
Description An agent may make a modification in order to change its object registration with another agent.

The argument of a modify function will replace the existing object description stored within the
executing agent.

Domain service-description
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 1

 445

4.2.4 Search for an Software Object Registration 446

Function search

Ontology FIPA-ARB

Supported by ARB
Description An agent may search for an object template in order to request information from an agent, in

particular from an ARB. A successful search can return one or more service descriptions that
satisfy the search criteria and a null set is returned where no agent entries satisfy the search
criteria.

Domain service-description

Range Set of service-descriptions
Arity 1

 447
448

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 12

4.3 Predicates 448

4.3.1 Registered 449

When an ARB agent performs a register action, it asserts the predicate: 450
 451
(registered service-description) 452
 453
This predicate can be subsequently queried through the used of the query-if and query-ref communicative acts. 454
 455

4.3.2 Member 456

This predicate can be used to bind sets of expressions to iota-supplied variables: 457
 458
(member element set) 459
 460

4.4 Exceptions 461

The exceptions for the FIPA-ARB ontology follow the same form and rules as specified in [FIPA00023]. 462

4.4.1 Failure Exception Propositions 463

Communicative Act
Ontology

failure
FIPA-ARB

Predicate symbol Arguments Description
service-name-in-use String The specified service name is already in use;

the string identifies the service name.
 464

465

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 13

5 Wrapper Ontology 465

5.1 Object Descriptions 466

This section describes a set of frames, that represent the classes of objects in the domain of discourse within the 467
framework of the FIPA-Wrapper ontology. 468
 469
The FIPA-Wrapper ontology shares the service-description and communication-properties objects 470
defined in section 4, Agent Resource Broker Ontology. 471
 472

5.2 Function Descriptions 473

The following tables define usage and semantics of the functions that are part of the FIPA-Wrapper ontology and that 474
are supported by the Wrapper service. 475
 476

5.2.1 Initialise a Software System 477

Function init

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may initialise the underlying software system before use. The first argument allows an

agent to differentiate between software services and the second argument can contain
parameters to the software for initialisation. A successful initialisation returns the service
instance identifier of the software system.

Domain service-description, Set of property
Range service-instance-id
Arity 2

 478

5.2.2 Terminate a Connection to a Software System 479

Function close

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may close the connection to a software system when it has finished with it. The first

argument is the specific identifier of the software system and the second argument can contain
parameters to the software for the closure of the connection.

Domain service-instance-id, Set of property
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 2

 480

5.2.3 Store the State of a Software System 481

Function store

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may store the state of a software system. A successful store results in the state

identifier associated with the software system being returned.
Domain service-instance-id

Range state-id

Arity 1
 482

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 14

5.2.4 Retrieval of the State of a Software System 483

Function restore

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may restore the state of a software system.
Domain service-instance-id

Range The execution of this function results in a change of the state, but it has no explicit result.
Therefore there is no range set.

Arity 1
 484

5.2.5 Subscribe to a Software System Event 485

Function software-subscribe

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may subscribe to an event of a software system.
Domain service-instance-id, event-name
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 2

 486

5.2.6 Unsubscribe from a Software System Event 487

Function software-subscribe

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may unsubscribe from an event of a software system.
Domain service-instance-id, event-name
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 2

 488

5.2.7 Suspend a Software System 489

Function suspend

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may suspend the operation of a software system.
Domain service-instance-id

Range The execution of this function results in a change of the state, but it has no explicit result.
Therefore there is no range set.

Arity 1
 490

491

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 15

5.2.8 Resume a Software System 491

Function resume

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may resume the operation of a software system.
Domain service-instance-id

Range The execution of this function results in a change of the state, but it has no explicit result.
Therefore there is no range set.

Arity 1
 492

5.2.9 Invoke an Action on a Software System 493

Function invoke

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may invoke an action on a software system.
Domain service-instance-id, functional-expression
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 2

 494

5.2.10 Achieve a Predicate 495

Function achieve

Ontology FIPA-Wrapper

Supported by Wrapper agent
Description An agent may assert as true a predicate.
Domain predicate

Range The execution of this function results in domain-dependent result
Arity 1

 496

5.3 Predicates 497

5.3.1 Member 498

The definition of this predicate is the same as that given in section 4.3.2, Member. 499
 500

5.3.2 Parameter 501

When a Wrapper agent initialises the connection to a software service, a parameter predicate for each of the set of 502
available parameters of the software system is asserted: 503
 504
(parameter service-instance-id parameter-name value) 505
 506

5.3.3 Subscribed 507

When the connection to a software system is initialised, for each event type supported by the software system, all event 508
subscriptions are cancelled: 509
 510
(not (subscribed service-instance-id event-name)) 511
 512

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 16

When an event type is subscribed to4, a subscribed predicate is asserted: 513
 514
(subscribed service-instance-id event-name) 515
 516

5.3.4 Operation 517

When a Wrapper agent initialises a service, an operation predicate is asserted for each operation supported by the 518
software system5: 519
 520
(operation service-instance-id operation-name (set argument-type))) 521
 522

5.4 Exceptions 523

The exceptions for the FIPA-Wrapper ontology follow the same form and rules as specified in [FIPA00023]. 524

5.4.1 Failure Exception Propositions 525

Communicative Act
Ontology

failure
FIPA-Wrapper

Predicate symbol Arguments Description
service-in-use String The specified service is already in use; the

string identifies the service.
service-suspended String The specified service has been suspended;

the string identifies the service.
service-already-suspended String The specified service is already suspended;

the string identifies the service.
service-unreachable String The specified service is not reachable; the

string identifies the service.
maximum-number-of-
instances-exceeded

 The number of service instances has been
exceeded.

not-storable String The specified state identifier is not storable;
the string identifies the state.

not-retrievable String The specified state identifier is not retrievable;
the string identifies the state.

not-suspendable String The specified service cannot be suspended;
the string identifies the service.

not-resumable String The specified service cannot be resumed; the
string identifies the service.

exceeded String A resource has been exceeded; the string
identifies the resource.

 526

527

4 Not all software systems will support event services.
5 A Wrapper agent can retract these operations if the operation subsequently becomes unavailable.

© 2000 Foundation for Intelligent Physical Agents FIPA Agent Software Integration

 17

6 References 527

[FIPA00023] FIPA Agent Management Specification, Foundation for Intelligent Physical Agents, 2000. 528
http://www.fipa.org/specs/fipa00023/ 529

[FIPA00026] FIPA Request Interaction Protocol Specification, Foundation for Intelligent Physical Agents, 2000. 530
http://www.fipa.org/specs/fipa00026/ 531

[FIPA00027] FIPA Query Interaction Protocol Specification, Foundation for Intelligent Physical Agents, 2000. 532
http://www.fipa.org/specs/fipa00027/ 533

[FIPA00037] FIPA Communicative Act Library Specification, Foundation for Intelligent Physical Agents, 2000. 534
http://www.fipa.org/specs/fipa00037/ 535

[FIPA00061] FIPA ACL Message Structure Specification, Foundation for Intelligent Physical Agents, 2000. 536
http://www.fipa.org/specs/fipa00061/ 537

[ISO2022] Information Technology-Character Code Structure and Extension Techniques, International Standards 538
Organisation, 1994. 539
http://www.iso.ch/cate/d22747.html 540

	Scope
	Overview
	Agent Software Integration Reference Model
	Agent Resource Broker
	Conformance of an Agent Resource Broker

	Wrapper Service
	Conformance of a Wrapper Service

	Agent Resource Broker Ontology
	Object Descriptions
	Service Description
	Communication Properties

	Function Descriptions
	Registration of a Software Object
	Deregistration of a Software Object

	Predicates
	Exceptions

	Wrapper Ontology
	Object Descriptions
	Function Descriptions
	Initialise a Software System
	Terminate a Connection to a Software System
	Store the State of a Software System

	Predicates
	Parameter
	Subscribed
	Operation

	Exceptions
	Failure Exception Propositions

	References

